

Capacity Extension at Shannon Foynes

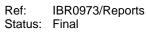
Environmental Impact Assessment Report Volume 8 Appendices

Appendix 8.2

GQRA Report

Contents

1	Introducti	on		1			
	1.1	Terms o	of reference	1			
	1.2	Objectiv	/es	1			
	1.3	Previou	s reports	1			
	1.4	Sources	s of information	1			
2	Site desc	ription		3			
	2.1	Site loc	ation and layout	3			
	2.2	Propose	ed development	5			
3	Preliminary Risk Assessment (Desk Study)						
	3.1	Historical development of the site					
	3.2	Consult	ation	7			
	3.3	Ground	conditions	8			
		3.3.1	Solid geology	8			
		3.3.2	Drift geology	9			
		3.3.3	Hydrogeology	10			
		3.3.4	Groundwater vulnerability	11			
		3.3.5	Surface water hydrology	11			
4	Prelimina	ry Risk As	sessment & outline conceptual site model	13			
	4.1	Introduc	ction	13			
	4.2	Prelimir	nary Risk Assessment conclusions	13			
5	Intrusive	ground inv	vestigation methodology & objectives	15			
	5.1	Method	ology	15			
	5.2	Objectiv	ves for Investigation	15			
	5.3	Samplir	ng strategy	15			
	5.4	Analytic	cal strategy	19			
6	Risk asse	ssment m	ethodology	20			
	6.1	Soils ris	k assessment methodology	20			
		6.1.1	Contamination assessment methodology	20			
		6.1.2	Human health risk assessment framework	20			
		6.1.3	Published generic site assessment criteria	20			
		6.1.4	Ground contamination assessment	22			
	6.2	Ground	water risk assessment methodology	22			
		6.2.1	Published generic site assessment criteria	22			
7	Actual ground conditions						
	7.1	Ground conditions2					
	7.2	Ground	water conditions	25			
		7.2.1	Groundwater strikes during drilling	25			
		7.2.2	Standing groundwater	26			
	7.3	Hydroge	eological units & groundwater flow	26			
	7.4	Observa	ation of potential contaminants in soil and groundwater	26			
	7.5	Underg	round structures and services	27			


i

Ref: IBR0973/Reports Status: Final

Date: April 2018

8	Ground contamination					
	8.1	Introduction	28			
	8.2	Discussion of the soil chemical results				
		8.2.1 Contaminants below laboratory detection limits	28			
		8.2.2 Contamination above detection limits but below S4UL, SGV or GAC	28			
		8.2.3 Contamination above detection limits with no S4UL, SGV or GAC	29			
		8.2.4 Contaminants exceeding commercial S4UL, SGV or GAC	29			
	8.3	Asbestos in soils	29			
9	Groundwa	ter contamination	30			
	9.1	Introduction	30			
	9.2	Results	30			
10	Risk Asse	ssment	32			
	10.1	Overview of contaminant sources, pathways and receptors	32			
		10.1.1 Sources	32			
		Ground contamination	32			
		Groundwater contamination	32			
		Radon gas	32			
		Off site sources	32			
		10.1.2 Pathways	33			
		10.1.3 Receptors	33			
	10.2	Risk Assessment and Revised Conceptual Model	34			
11	Conclusio	ns	36			
	11.1	Recommendations	36			
		11.1.1 Unidentified contamination	36			

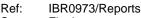
Date: April 2018

Figures

- Figure 1 Site location Figure 2 Site layout plan
- Figure 3 Solid geology (taken from GSI's Spatial Resources portal)
- Figure 4 Sub soils (taken from GSI's Spatial Resources portal)
- Figure 5 Groundwater aquifer (taken from GSI's Spatial Resources portal)
- Figure 6 Groundwater vulnerability (taken from GSI's Spatial Resources portal)
- Figure 7 Site investigation locations on Durnish Lands
- Figure 8 Site investigation locations at Jetty extension site

Tables

- Table 1 Site details
- Table 2 Surrounding land uses
- Table 3 Conceptual model for the site
- Table 4 Ground conditions encountered on Durnish Lands
- Table 5 Ground conditions encountered on jetty extension (on shore) site
- Table 6 Ground conditions encountered on jetty extension (off shore) site
 Table 7 Summary of water strikes during drilling
 Table 8 Groundwater monitoring levels


- Table 9 Groundwater contaminant concentrations exceeding screening values
- Table 10 Refined Risk Assessment and Site Conceptual Model

Appendices

Appendix A Foynes Port - Jetty Phase 2, ABCO, GDG Gavin & Doherty Geosolutions, Ground Investigation Factual Report, January 2018

Soil screening tables Appendix B

Appendix C Groundwater screening tables

1 Introduction

1.1 Terms of reference

RPS was appointed by Shannon Foynes Port Company to undertake an environmental ground investigation and associated testing in support of the proposed redevelopment measures at the existing Port of Foynes (Main Street, Ballynacragga North, Foynes, County Limerick). The redevelopment will incorporate a jetty extension, pontoon relocation and expansion of the Port onto neighbouring lands to the east (Durnish Lands).

This facilitated the production of a Generic Quantitative Risk Assessment (GQRA) to quantify potential contamination risks for the redevelopment.

1.2 Objectives

This report describes the investigations undertaken to characterise the ground conditions beneath the site, and to quantify the potential risks to any development from sub-soil contamination and groundwater. This information will also form the basis of any further assessments and remedial measures, if deemed necessary.

1.3 Previous reports

A Preliminary Risk Assessment (PRA) was completed by RPS for the site in March 2018:

'Shannon Foynes Port Company, Port expansion, Preliminary Risk Assessment (Desk Study) Report, IBR0973'. RPS, March 2018.

The PRA report highlighted the potential contamination sources, pathways and receptors which were likely to be present on the site. The principal source of contamination was considered to be the potential for made ground within the port and off-site sources.

It was recommended that, in accordance with CLR11, an intrusive site investigation and quantitative risk assessment should be carried out if the site is to be redeveloped to ascertain if source – pathway – receptor linkages are present.

1.4 Sources of information

Environmental Protection Agency Map viewer - http://gis.epa.ie/Envision/

Ref: IBR0973/Reports

- Geological Survey Ireland Spatial Resources Map Viewer Department of Communications,
 Climate Action and Environment
 (http://dcenr.maps.arcgis.com/apps/MapSeries/index.html?appid=a30af518e87a4c0ab2fbde2
 aaac3c228)
- Model Procedures for the Management of Land Contamination, Contaminated Land Report
 11, Defra and Environment Agency, September 2004
- Irish Aquifer Properties A Reference Manual and Guide, Environmental Protection Agency and Geological Survey Ireland, March 2015
- Ordnance Survey Ireland Environmental Report (Ref. 19734562)
- Internet based aerial photography
- Environmental Protection Agency's Radon Map (http://www.epa.ie/radiation/radonmap/)
- Port of Foynes Jetty Phase 2, Ground Investigation Report, ABCO Marine and Gavin and Doherty Geosolutions Ltd, February 2018
- Port of Foynes Jetty Phase 2, Ground Investigation Factual Report, ABCO Marine and Gavin and Doherty Geosolutions Ltd, January 2018

Ref: IBR0973/Reports

2 Site description

2.1 Site location and layout

Inagh

In

Figure 1 Site location

Port of Foynes is located to the north of the small village of Foynes, approximately 35km west of Limerick.

A site walkover was completed by RPS personnel on 20th March 2017. A photographic record of the site walkover is included in Appendix B of the PRA Report. The Port of Foynes is located at the edge of hilly land on the southern bank of the River Shannon Estuary, where the river widens before it flows into the Atlantic Ocean.

As shown on Figure 2, the proposed extension area is located to the east and south east of the existing port in the Durnish Lands area. The Durnish Lands are bounded by the River Shannon to the north, the River Robertstown (a tributary river to the River Shannon) to the east, the N69 Road to the south (which leads into Foynes Village) and the Harbour Entrance Road to the west. The Durnish Lands are generally flat, hummocky, low lying ground. In the

Ref: IBR0973/Reports

area west of the Harbour Entrance Road there is higher land with a steeper gradient, due to a large rock outcrop covered in thick vegetation. Various low points within the site are prone to having standing water and are very soft. Active channels of water are thought to have previously crossed the fields, though this may be dependent on rainfall or saturation of the soil. A box culvert is located on the Durnish site with a shallow watercourse. Drainage ditches bound the land and demarcate the fields; the water level in the ditches is controlled by sluices to prevent flooding. The north east of the Durnish land is protected from the tide along the river estuary by levees. A disused railway line runs east to west along the southern boundary of the Durnish Lands and crosses the Harbour Entrance Road. The railway line is mostly at the same level as the surrounding land with only short stretches on low embankments.

The Durnish Lands site is currently a greenfield site. The land is generally covered in grass with hedge lines located along the Harbour entrance road on the western boundary. The historic maps (Section 3.1) of the Durnish Lands show that the site has been used for agricultural purposes. A potential quarry was identified to the west of the site however this was not marked on OSI current or historic maps. Therefore, it can be assumed that the quarry was a minor work possibly used as a local source for limestone as lime kilns are noted in the greater area.

Table 1 Site details

Site address	Port of Foynes, Foynes, Limerick, Ireland
Grid reference	126300E 151445N
Estimated site area	620,870 m ²

Ref: IBR0973/Reports

Figure 2 Site layout plan

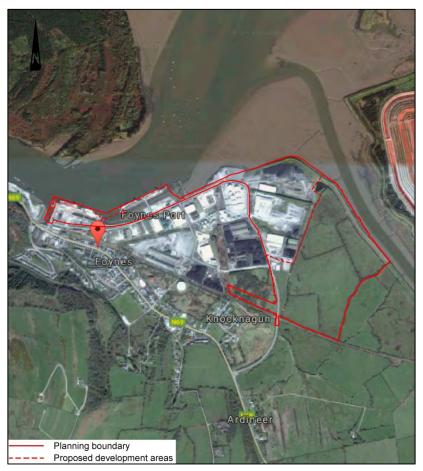


Table 2 Surrounding land uses

Boundary	Surrounding land uses			
North	The Shannon Estuary is present to the north of the site.			
East	The River Robertstown is present to the east of the site; it flows into the Shannon Estuary just north of the site. Beyond the river to the east, Aughinish Alumina, Europe's largest alumina refinery, is present. The Bauxite Residue Disposal Area (BRDA) for the plant is present just east of the river. The waste bauxite residue produced during the refining of the alumina is deposited in this area.			
South	The Port of Foynes is present to the south of the site. A railway line runs along the southern boundary of the Durnish Lands site. The small village of Foynes is present further south.			
West	The area to the west of the site is generally undeveloped.			

2.2 Proposed development

The development proposals incorporate modifications to the existing jetties and quays including connecting the existing West quay and East Quay, relocation of a small craft landing pontoon and expansion of the Port Estate onto the Durnish Lands present immediately east of the existing Port of Foynes. This will involve filling and raising of the Durnish Lands site levels to a typical height of 4.44m OD using material imported from

Ref: IBR0973/Reports

authorised quarries. General infrastructure will be developed on the Durnish Lands site as well as a number of warehouses.

Foul water will be treated to a tertiary level using a package treatment system. The effluent will be subjected to tertiary treatment by the means of a polishing filter which also acts as a percolation area to redistribute the treated and polished effluent to the groundwater. It is proposed to use a stratified sand polishing filter to provide the dual function of polishing the effluent and also infiltrating the treated effluent to the groundwater.

Ref: IBR0973/Reports

3 Preliminary Risk Assessment (Desk Study)

The PRA was completed by RPS in March 2018 and is summarised in Sections 3 and 4.

3.1 Historical development of the site

Two historical maps of the area are provided within the Ordnance Survey Ireland (OSI) Environmental Report; a six inch map from c. 1830s and a twenty-five inch map from c. 1890s. 'Durnish Cottage', a small residential dwelling, was present on the wider Port of Foynes site on both historical maps. The surrounding area of the site was generally undeveloped on the 1830s map. The only notable addition on the 1890s map was the presence of a railway line running along the southern boundary of the site.

As reported in the Ground Investigation Report produced by Gavin and Doherty Geosolutions (February 2018), initial works were carried out at the Port in 1846, with the construction of a masonry wharf 83m long and 12m wide in the location now known as the West Quay. This wall is still in place at Berth 1.

In 1936, the port was designed to cater for 8,000 ton vessels with maximum draft of 7.6m. In 1968 the Trustees constructed the East Jetty under Foreshore License; this was principally for the provision of a berth to service ore exports and included a conveyor and loading arm. In 1984, the East Jetty was extended westwards to cater for the growing number of ships calling at the Harbour. A dedicated Oil Dolphin facility was constructed in 1992 and provided a berth for oil and chemical tankers. The new West Quay was completed in 1999.

The Port has expanded during the 20th century. The inner port area of Foynes comprises of two distinct jetties; the western jetty and the eastern jetty. Planning permission was secured in 2012 for a 2.5 hectare land reclamation project behind the jetty. The western jetty was originally constructed in 1934 and then completely upgraded and extended in 1998, with 271m of quayside berthage (SFPC Master Plan, February 2013).

3.2 Consultation

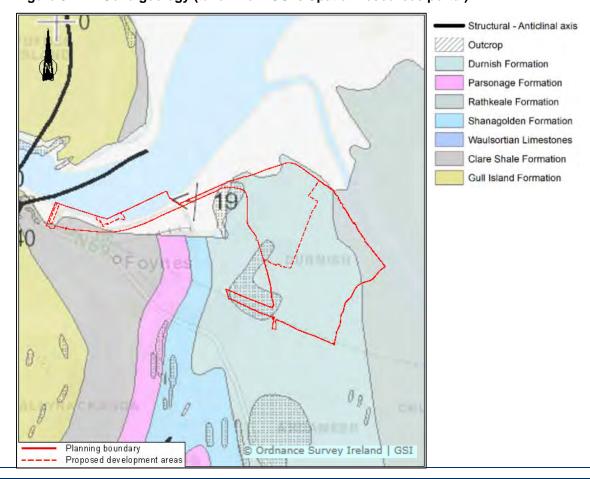
Consultation requests were sent to a number of statutory consultees as part of the EIA scoping process. The responses have been reviewed and summarised below where any comments relevant to this assessment were noted.

Ref: IBR0973/Reports

Clare County Council

The response received from Clare County Council requested that 'subsoil pollution' be addressed as part of the Environmental Impact Statement.

BIM - Ireland's Seafood Development Agency


As part of the BIM response it is noted that adequate protection will be provided to the aquaculture industry. In particular, they note that background levels of suspended solids in the nearby waters cannot at any time increase by more than 30% (due to the presence of licenced shellfish sites).

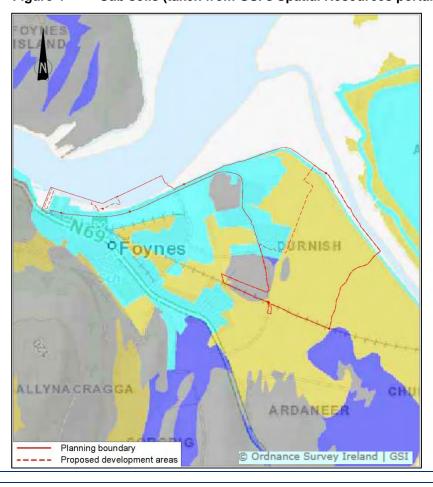
3.3 Ground conditions

Information held online by Geological Survey Ireland at their Spatial Resources Map Viewer was used to clarify the geology and hydrogeology information provided in the OSI Environmental Report. The following describes the findings of this preliminary research. Information on the anticipated ground conditions is also provided within the Ground Investigation and Ground Investigation Factual Reports produced by ABCO Marine and Gavin and Doherty Geosolutions.

3.3.1 Solid geology

Figure 3 Solid geology (taken from GSI's Spatial Resources portal)

Ref: IBR0973/Reports



The bedrock geology anticipated in the vicinity of the site is shown on Figure 3. The geology of the wider Foynes area consists of formations from the Carboniferous system, from the Visean and basal Namurian stage. The formations are dipping gently to the south west. The bedrock of the Durnish lands site consists of the Rathkeale Formation to the east of the site and the Durnish Formation to the west. The bedrock geology of the Port of Foynes marine site is the Clare Shale Formation.

The Rathkeale Formation comprises non fossiliferous dark muddy limestone with mudstones, which are well bedded and brittle. This is uniformly overlain by the Durnish Formation, which is a uniform bioclastic limestone with bands that include chert nodules parallel to bedding. It is abundant in fossils, with complete coral beds. The Durnish formation is overlain by the Shanagolden Formation of black limestone and then the Parsonage and Corgrig Lodge formation, a fine grained muddy limestone. These are overlain by the Clare Shale Formation which is a clay rich mudstone with bands of siltstone. The carboniferous limestone formations represent an offshore ramp. The changes in grain size and the fossil content between the formations indicates changes in relative sea level. The Clare shale formation which was deposited above the carboniferous limestone formations represents a deep marine, representing a significant rise in relative sea level.

3.3.2 Drift geology

Figure 4 Sub soils (taken from GSI's Spatial Resources portal)

Ref: IBR0973/Reports

As shown on Figure 4, the Port of Foynes is mapped as Made Ground (blue), which is superimposed on a region composed mostly of Estuarine Sediments consisting of silts and clays (green). Glacial tills (purple), mainly of limestone origin, are present to the south of the Durnish site while bedrock (shale and limestone) is anticipated at surface in certain areas on and in proximity to the site (grey).

3.3.3 Hydrogeology

As shown in Figure 5, the site area is located across two aquifer domains: Poor Aquifer (PU) and Locally Important Aquifer (LI). The PU designation represents bedrock which is generally unproductive while the LI designation represents bedrock which is moderately productive only in local zones. A Regionally Important Aquifer - Karstified (conduit) is present to the east of the site area (approximately 2km).

Karst activities were found in two boreholes less than 3k from Port of Foynes in the Walsortian Limestone and Rathkeale Formation.

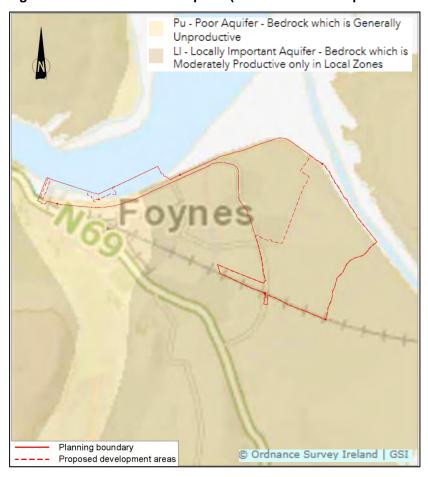


Figure 5 Groundwater aquifer (taken from GSI's Spatial Resources portal)

Ref: IBR0973/Reports

3.3.4 Groundwater vulnerability

In accordance with the Water Framework Directive (2000/60/EC) it is necessary to understand the groundwater vulnerability of the site, which is defined as the tendency and likelihood for general contaminants to reach the water table after introduction at the ground surface.

The site mainly falls within an area of low groundwater vulnerability. However, higher groundwater vulnerability is anticipated where rock is present at surface i.e. in the western portion of the site.

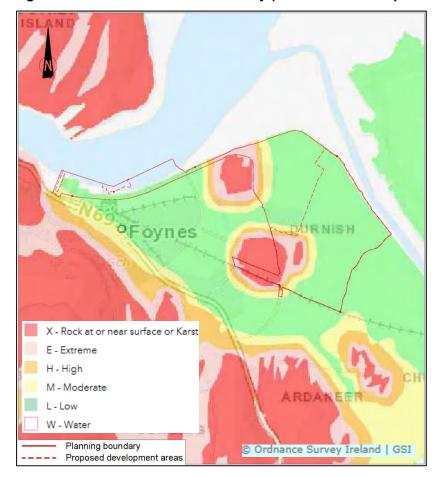


Figure 6 Groundwater vulnerability (taken from GSI's Spatial Resources portal)

3.3.5 Surface water hydrology

The OSI Environmental Report shows a number of watercourses to be present on the site. Small watercourses seem to form the boundary of the site. In addition, a number of watercourses are present in the northern portion of the site with small field drains also present along many of the field boundaries. The large Robertstown River runs along the eastern boundary of the site, into the Shannon River/Estuary just north of the site.

Ref: IBR0973/Reports

The OSI Environmental Reports identifies one weir, four springs, two sluices and two pumps within the search radius of the site. The Lower Shannon Estuary is noted to be of unpolluted status.

Ref: IBR0973/Reports

4 Preliminary Risk Assessment & outline conceptual site model

4.1 Introduction

Risk estimation involves detailed evaluation of source – pathway – receptor scenarios to determine whether a linkage exists between any sources of contaminants and potential receptors. A risk exists where a receptor is exposed to a contaminant, via a pathway. If any element of the source-pathway-receptor linkage is absent, then no risk is present.

The preliminary conceptual site model and Preliminary Risk Assessment are presented in Table 3.

Table 3 Conceptual model for the site

POTENTIAL SOURCES

Potential on-site sources:

Made ground within port area

Potential off-site sources:

Aughinish Alumina, Europe's largest alumina refinery, is present to the east of the site

POTENTIAL PATHWAYS

Humans:

- Dermal (skin) contact with contaminated soil, fugitive dust or waters and the absorption of any contaminants through the skin into the body
- Inhalation of fugitive soil dust or vapour
- Ingestion of soil by hand to mouth activity

Environment:

- Leaching of contaminants from soils to groundwater
- Vertical and horizontal migration in groundwater

POTENTIAL RECEPTORS

- Humans in form of future site users (commercial, site workers), landscaping and maintenance workers
- Perched groundwater, bedrock aquifer, River Robertstown and Shannon Estuary
- Buildings and services

4.2 Preliminary Risk Assessment conclusions

The desk study highlighted the potential contamination sources, pathways and receptors which were likely to be present on the site. The principal source of contamination was likely to be the presence of Made Ground within the Port and an off ite source (Aughinish Alumina).

Ref: IBR0973/Reports

Therefore, as per the guidance provided in CLR 11; an intrusive ground investigation followed by a generic quantitative risk assessment was undertaken.

Ref: IBR0973/Reports

5 Intrusive ground investigation methodology & objectives

5.1 Methodology

The contamination assessment comprised six main elements, carried out on a phased basis as described below:

Phase I - PRA

- Desk Study (carried out by RPS)
- Site walkover (carried out by RPS)

The information gathered during the PRA (as detailed in the previous sections) was used to plan and focus the Phase II investigation, which comprised the following:

Phase II - GQRA

- Ground investigation
- Chemical testing of soil samples
- Chemical testing of groundwater samples
- Contamination risk assessment

5.2 Objectives for Investigation

- To assess sub-soil and groundwater contamination to enable a generic quantitative risk assessment (GQRA) to be undertaken to assess the potential risks to human health and from future development proposals.
- To summarise the findings of the chemical testing and based on the results; revise the Conceptual Model for the site and risk rating proposed by RPS in the Preliminary Risk Assessment report.
- To provide sufficient evidence with regards to the sites suitability for the proposed end use.

5.3 Sampling strategy

An intrusive ground investigation was undertaken by ABCO Marine between March and July 2017. The site investigation has been reported upon by Gavin and Doherty Geosolutions Ltd on behalf of ABCO Marine. The site investigation report is included in Appendix A. As shown on Figure 7, the investigation on the Durnish Lands comprised:

Seven (7) boreholes (LD01 – LD07) to a maximum depth of 17.8m bgl

Ref: IBR0973/Reports

Ten (10) trial pits (TP01 – TP10) to a maximum depth of 4.7m bgl

They were positioned within the footprint of the proposed expansion area onto Durnish Lands. The boreholes were used to provide information on ground conditions and soil and groundwater quality. The trial pits were used to provide information on ground conditions and soil quality.

Ref: IBR0973/Reports

Figure 7 Site investigation locations on Durnish Lands

As shown on Figure 8, the investigation at the Jetty extension site incorporated:

Eight (8) on land boreholes (L01 – L08) to a maximum depth of 30.1m bgl

Ref: IBR0973/Reports

Seventeen (17) marine boreholes (M01 – M16B) to a maximum depth of 45.2m bgl

Figure 8 Site investigation locations at Jetty extension site

The boreholes were sunk using a combination of cable percussion drilling (Dando 2000 rig) and rotary core follow on drilling (T44 Beretta rig). As discussed within the ground investigation report, a number of in situ and laboratory geotechnical tests were also completed as part of the investigation.

Environmental soil samples were taken at regular intervals throughout the length of the excavation of each borehole and trial pit. The protocol observed during the recovery of samples followed the guidance set out in BS 10175:2011 the Code of Practice for the Investigation of Potentially Contaminated Sites.

50mm HDPE slotted pipes were installed within six of the boreholes on the Durnish Lands site (LD01 – LD06) to facilitate the monitoring of groundwater. All of these installations incorporated a slotted section of pipe across the encountered bedrock (i.e. following rotary coring) and as such the groundwater samples are considered representative of the bedrock groundwater body. Groundwater samples were collected from the installed boreholes in August 2017, following development and purging of at least three well volumes, to ensure a representative sample of groundwater was taken from each well.

No groundwater monitoring was undertaken within the land based boreholes at the jetty extension site as no significant land based earthworks will be required to facilitate the proposed development in this area.

As outlined with the PRA completed by RPS in March 2018, it was not deemed necessary for ground gas monitoring to be completed. A potential risk from ground gases could only

Ref: IBR0973/Reports

exist on the Durnish Lands site as receptors in the form of buildings are planned for construction on this site. Made ground, one of the main sources of ground gas, was not anticipated on the Durnish Lands site as it is a greenfield site. In addition, the land at Durnish is to be raised and filled with material that will be imported from authorised quarries. This material may act as a 'passive dispersal layer' for any ground gas to be dispersed through.

5.4 Analytical strategy

Forty-seven (47) soil samples from the Durnish Lands site investigation and five (5) samples from the land-based site investigation at the proposed jetty extension site were sent to Exova Jones Environmental for analysis. Samples were analysed for a mixture of; pH, Sulphate as SO4, Chloride, Cyanide (total), Loss on ignition, Organic matter, Total organic carbon, Asbestos in soil, Aluminium, Arsenic, Barium, Beryllium, Boron (water soluble), Cadmium, Copper, Chromium (total), Chromium (hexavalent), Iron, Lead, Mercury, Nickel, Selenium, Sulphur as S, Vanadium, Zinc, Dibutyltin, Tributyltin, Triphenyltin, Total Petroleum Hydrocarbons (TPH-CWG C5 – C35 aromatic-aliphatic split), Volatile Organic Compounds (VOCs), Semi-volatile Organic Compounds (SVOCs), Benzene, Toluene, Ethylbenzene, Xylenes, Methyl tert-butyl ether (MTBE), speciated Polycyclic Aromatic Hydrocarbons (PAHs), speciated Poly Chlorinated Biphenyls (PCBs) and Phenols (speciated HPLC).

Speciated TPH analysis was undertaken to provide a better understanding of the 'make up' of the hydrocarbon contamination in relation to the specific carbon banding, as suggested within the 'Total Petroleum Hydrocarbon Criteria Working Group' (TPH-CWG) literature and recommended by the Environment Agency document P5-080/TR3 'The UK Approach for Evaluating Human Health Risks from Petroleum Hydrocarbon in Soil'.

Six (6) groundwater samples for environmental analysis were taken and analysed for a similar range of contaminants as listed above for the soil samples. The soil and groundwater laboratory analytical results are included within Appendix A.

Ref: IBR0973/Reports

6 Risk assessment methodology

6.1 Soils risk assessment methodology

6.1.1 Contamination assessment methodology

In the absence of government guidance on contaminated land risk assessment within the Republic of Ireland, current guidance provided by the UK Environment Agency (EA) has been utilised to form the basis of this assessment.

6.1.2 Human health risk assessment framework

The Environment Agency has published guidance in relation to assessing the potential risk from contaminated land to human health. Science Report SR2 'Human Health Toxicological Assessment of Contaminants in Soil' and Science Report SR3 'Updated Technical Background to the CLEA Model' are intended to replace CLR 9 and 10 respectively and together with CLR 11 'Model Procedures for the Management of Land Contamination' provide the most up to date framework for human health risk assessment within the UK.

CLR10 previously stated that 'the contamination is assumed to be at or within 1m of the surface' (CLR10 pg 10). SR3 contains a brief discussion of contamination depth on p13 and although it does not specifically mention a depth of 1.0m it states that 'it is assumed that the pollution is at the surface or close to it' and 'whether or not soil contamination at greater depth or beneath hard standing poses a risk to health depends on the importance of the contact pathways (primarily ingestion and dermal contact) and the likelihood that such soils may be brought to the surface through activities such as gardening or building works'. For the purpose of this assessment therefore, it is considered that at depths greater than 1m, the probability of human exposure via the direct contact pathways are significantly reduced.

6.1.3 Published generic site assessment criteria

In order to assess the human health and environmental risks posed by potential contaminants within the underlying soils, RPS undertook an initial screen of the laboratory results using the 2015 LQM/CIEH Suitable 4 Use Levels (S4ULs) (Copyright Land Quality management Limited reproduced with permission; Publication Number S4UL3474. All Rights Reserved) as trigger values. Where contamination results are recorded above these S4ULs, further assessment of the risks or remedial action may be needed.

These new LQM/CIEH S4ULs replace the second edition of the LQM/CIEH Generic Assessment Criteria (GAC) published in 2009. Differences in modelling assumptions and

Ref: IBR0973/Reports

added land uses and substances create the difference between these S4ULs and the previous GAC. These values are provided for 6 land use classifications:

- Residential with homegrown produce
- Residential without homegrown produce
- Allotments
- Commercial
- Public open space near residential housing
- Public park

The provisional Category 4 Screening Levels (pC4SLs) developed by Defra provide the same added land uses as the S4ULs but are based on a different toxicological benchmark. The pC4SLs are based on a 'low level of toxicological concern' (LLTC) whereas the S4ULs remain based on the 'minimal' or 'tolerable' risk level outlined in SR2 to ensure a fully conservative approach is being taken.

These new values have been adopted within this investigation as they provide the most up to date trigger values that are based on appropriate and rationale assumptions. Similarly to the previous GAC, the S4ULs are provided for 1%, 2.5% and 6% soil organic matter (SOM). In the absence of complete analysis of SOM at the site, generic values derived for a SOM value of 1% have been utilised in the risk assessment where possible to ensure the most conservative approach is taken.

For pollutants with no relevant S4ULs, assessment criteria were provided by the following publications:

- Soil Guideline Values (SGVs)
- The Soil Generic Assessment Criteria (GAC) for Human Health Risk Assessment –
 CL:AIRE December 2009

In light of the publication of SR2 and SR3 the Environment Agency published SGVs for Benzene, Toluene, Ethylbenzene, Xylene, Selenium, Mercury, Arsenic, Cadmium, Phenol, Nickel and Sum of PCDDs, PCDFs and dioxin-like PCBs for the following standard land use scenarios assuming a Sandy Loam soil and Soil Organic Matter (SOM) content of 6%:

- Residential
- Allotments
- Commercial

Ref: IBR0973/Reports

CL:AIRE in association with The Environmental Industries Commission (EIC) and Association of Geotechnical and Geo-environmental Specialists (AGS) published a set of Generic Assessment Criteria in 2009 for previously unpublished contaminants which are intended to complement the SGVs derived by the Environment Agency. The GACs have been derived predominantly for VOCs and SVOCs using CLEA v1.06 for a number of different Soil Organic Matter contents (1%, 2.5% and 6%).

As the planned redevelopment of the Port of Foynes includes a jetty extension and warehousing, storage and port centric development on Durnish Lands, all soil samples have been screened against generic values derived for a commercial end use.

6.1.4 Ground contamination assessment

A summary of the geochemical test results is presented in Appendix B. Within these tables, those cells with no value recorded indicate that the samples were not scheduled for that particular suite of analysis. All samples were screened against the generic site assessment criteria discussed in Section 6.1.3.

The ground contamination assessment for the site is discussed in Section 8 of this report.

6.2 Groundwater risk assessment methodology

6.2.1 Published generic site assessment criteria

The groundwater chemical analysis results were initially screened against threshold values listed by:

- 1. Guidelines for Drinking-water Quality, World Health Organization, 4th edition, 2011 (WHO).
- European Union Environmental Objectives (Groundwater) (Amendment) Regulations 2016 (S.I. No. 366 of 2016)
- 3. European Union Environmental Objectives (Surface Waters) (Amendment) Regulations 2015 (S.I. No. 386 of 2015)
- 4. Interim Guideline Values provided by 'Towards setting guideline values for the protection of groundwater in Ireland', Environmental Protection Agency, January 2003
- 5. European Communities (Drinking Water) Regulations 2014 (S.I. No. 122 of 2014)
- Atkins ATRISK Water Screening Values derived using CLEA for a Commercial land use, 2011 (WSV).

Use of the Drinking Water Standards (1 and 5) provides a very conservative risk assessment as groundwater is not utilised for drinking water in the area of the site. Groundwater

Ref: IBR0973/Reports

chemistry results used as part of the site assessment are included in Appendix C and the detailed discussion of the groundwater contamination assessment is presented in Section 9 of this report.

Ref: IBR0973/Reports

7 Actual ground conditions

7.1 Ground conditions

The ground conditions indicated by the exploratory investigations are described in the exploratory hole logs presented in Appendix A and are briefly summarised below.

The site investigation logs indicate that the Durnish Lands site is generally underlain by the sequence demonstrated in Table 4 while the on shore part of the jetty extension site is generally underlain by the sequence outlined in Table 5. The offshore jetty extension ground conditions are summarised in Table 6.

Table 4 Ground conditions encountered on Durnish Lands

	Typical description		Depth (m bgl)		
Strata			To bottom		
Drift deposits					
Topsoil	Soft to firm sandy gravelly clay/silt	0.0	0.3		
Estuarine/Alluvial – Cohesive	Soft sandy silty gravelly CLAY	0.0	7.7		
Estuarine/Alluvial – Granular	Silty GRAVEL	2.6	12.0		
Glacial – Granular	Cobbles and boulders	0.0	14.5		
Solid geology: Rathkeale Formation					
Limestone Strong to very strong grey bedded crystalline Limestone		0.0	17.8		

Table 5 Ground conditions encountered on jetty extension (on shore) site

	Typical description		Depth (m bgl)		
Strata			To bottom		
Made ground					
Made Ground Silty sandy GRAVEL with occasional cobbles placed as fill (current quay)		0.0	5.0		
Drift deposits					
Estuarine/Alluvial –	Very soft sandy CLAY		7.0		
Cohesive	Very soft sandy SILT with shell fragments	4.0	18.0		
Estuarine/Alluvial – Granular	From clayey sandy GRAVEL to GRAVEL and COBBLES		27.0		
Solid geology: Clare Shale Formation					
Limestone	Strong, dark, fine to medium grained crystalline Limestone	22.2	25.8		

Ref: IBR0973/Reports

Table 6 Ground conditions encountered on jetty extension (off shore) site

		Depth bgl (m)				
Material	Typical description	To top	To Bottom			
Drift deposits						
Estuarine/Alluvial – Cohesive Very soft silty CLAY to sandy gravelly CLAY		0.0	14.5			
Estuarine/Alluvial – Granular	From GRAVEL to boulder GRAVEL		30.4			
Solid geology: Clare	Solid geology: Clare Shale Formation					
Limestone	Strong dark, fine to coarse grained crystalline Limestone	9.0		45.2		
Siltstone	Strong thinly laminated black Siltstone			21.3		

7.2 Groundwater conditions

7.2.1 Groundwater strikes during drilling

During the site investigation, groundwater was encountered during excavation of six (6) of the ten (10) trial pits undertaken on the Durnish Lands site at depths between 1.30m and 4.00m bgl. No groundwater strikes were noted within any of the boreholes. Groundwater strikes are summarised in Table 7.

Table 7 Summary of water strikes during drilling

Site investigation location	Waterstrike (m bgl)	Waterstrike (m CD)	Remark	Strata
TP01	4.0	0.24	Slight seepage	Soft grey with brown mottling slightly sandy slightly gravelly SILT with occasional lenses of fine sand and plant remains
TP02	4.0	0.68	Slight seepage	Soft to firm grey sandy SILT with fragments of sea shell.
TP03	4.0	0.78	Slight seepage	Soft grey sandy SILT with fragments of sea shell.
TP06	1.3	3.25	Very fast	Firm to stiff grey brown slightly sandy slightly gravelly CLAY with frequent sub angular to sub rounded cobbles and boulders and occasional lenses of fine Sand.
TP08	2.0	2.93	Fast	Firm to stiff grey slightly sandy slightly gravelly CLAY with occasional sub angular to sub rounded cobbles and boulders.

Ref: IBR0973/Reports

Site investigation location	Waterstrike (m bgl)	Waterstrike (m CD)	Remark	Strata
TP09	1.5	2.75	Very fast	Stiff grey slightly sandy slightly gravelly CLAY with frequent sub angular to sub rounded cobbles and rare boulders.

7.2.2 Standing groundwater

Groundwater monitoring wells were installed in boreholes LD01 to LD06 on the Durnish Lands. Groundwater measurements were recorded on 10th August 2017. The results of the monitoring are presented in Table 8.

Table 8 Groundwater monitoring levels

Site investigation location	Ground level (m CD)	Water depth (m bgl)	Water level (m CD)
LD01	11.8	1.2	10.6
LD02	17.9	1.3	16.6
LD03	8.0	1.5	6.5
LD04	8.8	1.7	7.1
LD05	7.7	2.2	5.5
LD06	6.3	1.9	4.4

7.3 Hydrogeological units & groundwater flow

It should be noted that all the boreholes were installed with the screened portions across the encountered bedrock. The monitoring rounds suggest that bedrock groundwater flow is generally from the north east to the south west across the Durnish Lands site with the locations closest to Shannon River/Estuary under tidal influence.

As noted in Table 7, groundwater strikes during excavation were encountered in six of the trial pits. These groundwater strikes were all encountered within the cohesive estuarine/alluvial deposits. No groundwater strikes are recorded on the borehole logs. This suggests the presence of an inconsistent shallow groundwater body in certain parts of the site.

7.4 Observation of potential contaminants in soil and groundwater

No visual or olfactory observations of contamination were identified during the site investigation.

Ref: IBR0973/Reports

7.5 Underground structures and services

No underground obstructions or services were noted during the site investigation.

Ref: IBR0973/Reports

8 Ground contamination

8.1 Introduction

The results of the laboratory analysis were used to carry out a generic quantitative risk assessment (GQRA) using the methodology outlined in Section 6.0. The soil results have been screened against the latest available LQM/CIEH S4ULs, CL:AIRE GAC and SGVs for a commercial end use.

A summary of the soil geochemical test results are presented in Appendix B. Within these tables, those cells with no recorded values indicate that the samples were not scheduled for that particular suite of analysis.

8.2 Discussion of the soil chemical results

8.2.1 Contaminants below laboratory detection limits

The following soil contaminant concentrations were at or below the method detection limit and have therefore not been considered further within this report;

Chromium VI, Mercury, Dibutyltin, Tributyltin, Triphenyltin, all PAHs, all TPH-CWG except Aliphatics C21-C35, Aromatics C16-C21 and Aromatics C21-C35, Benzene, Ethylbenzene, Xylenes, MTBE, all PCBs, all Phenols except Phenol, o-Cresol, and Cresols, all SVOCs and all VOCs except Toluene and Dichloromethane.

8.2.2 Contamination above detection limits but below S4UL, SGV or GAC

The following soil contaminants were recorded at concentrations above the method detection limit but below their S4UL, SGV or GAC value;

Arsenic, Beryllium, Boron (water soluble), Cadmium, Copper, Chromium (total), Nickel, Selenium, Vanadium, Zinc, Aliphatics C21-C35, Aromatics C16-C21, Aromatics C21-C35, Toluene, Phenol, Cresols, Toluene and Dichloromethane.

The above contaminants were recorded at concentrations which do not pose an unacceptable risk to human health and are not considered further in the risk assessment.

Ref: IBR0973/Reports

8.2.3 Contamination above detection limits with no S4UL, SGV or GAC

The concentrations of one contaminant, for which no S4UL, SGV or GAC is currently available, were recorded above the laboratory method detection limit:

o-Cresol.

The recorded concentrations of o-Cresol were very low and therefore are not considered to pose a risk.

8.2.4 Contaminants exceeding commercial S4UL, SGV or GAC

None of the contaminants exceeded the commercial screening values.

8.3 Asbestos in soils

Screening for the present of asbestos was completed on thirty-seven (37) of the fifty-two (52) samples. As shown in Appendix B, asbestos was not identified in any of the samples.

Ref: IBR0973/Reports

9 Groundwater contamination

9.1 Introduction

A groundwater screening table for the six groundwater samples is presented in Appendix C. These have been screened against the generic site assessment criteria discussed in Section 6.2.1.

9.2 Results

Upon completion of the intrusive site investigation, groundwater samples were taken from LD01 - LD06. These samples were analysed for a range of potential contaminants including:

- Metals
- TPH-CWG
- PAHs (16 USEPA Speciated)
- SVOCs
- VOCs

The vast majority of contaminants recorded concentrations less than the method detection limit in the groundwater samples. As shown in Table 9, the samples show some exceedances of the screening values.

Table 9 Groundwater contaminant concentrations exceeding screening values

Contaminant	Screening value	Exceeding concentrations	Locations exceeding
Sulphate as SO4	187.5 mg/l (Groundwater Regulations 2016)	198.3-1918.4 mg/l	LD03, LD04 & LD06
Chloride	18735 mg/l (Groundwater Regulations 2016)	195.4-13829 mg/l	LD01-LD06
Total Cyanide	10 μg/l (IGV, EPA 2003)	1090-3326 µg/l	LD01-LD06
Aluminium	150 µg/l (Groundwater Regulations 2016)	250-355 μg/l	LD01, LD02 & LD04
Arsenic	7.5 µg/l (Groundwater Regulations 2016)	10.9-52.5 µg/l	LD01, LD04, LD05 & LD06
Barium	100 μg/l (IGV, EPA 2003)	135 & 179 µg/l	LD03 & LD06
Boron	1000 μg/l (IGV, EPA 2003)	2459 & 2500 µg/l	LD03 & LD04

Ref: IBR0973/Reports

Contaminant	ntaminant Screening value Excee		Locations exceeding
Calcium	200 μg/l (IGV, EPA 2003)	285.5-369 mg/l	LD01, LD02, LD03 & LD04
Iron	200 μg/l (IGV, EPA 2003)	1458-37220 µg/l	LD01, LD02, LD03 & LD04
Magnesium	50 mg/l (IGV, EPA 2003)	56.1-1062 mg/l	LD01, LD03 & LD04
Manganese	50 μg/l (IGV, EPA 2003)	77-6122 µg/l	LD01-LD06
Nickel	8.6 µg/l (Surface water Regulations 2015)	23 & 34 µg/l	LD04 & LD05
Potassium	5 mg/l (IGV, EPA 2003)	9.2-291.7 mg/l	LD01-LD06
Sodium	150 mg/l (IGV, EPA 2003)	273.5-8473 mg/l	LD01, LD02, LD03, LD04 & LD06
Zinc	75 μg/l (Groundwater Regulations 2016)	126 µg/l	LD03
Exceeds groundwater	surface water regulations	Exceeds EPA Inte	erim Guideline Values

The EPA Interim Guideline Values were produced in 2003 and are guideline values only. The interim guideline value chosen was the GSI Trigger Value (background concentration) where it applied, and where it did not apply the most stringent value of the:

- The Drinking Water Standard, or
- The EQS for the Aquatic Environment/ Dangerous Substances, where appropriate.

In many cases these IGVs are therefore potentially outdated or based on Drinking Water Standards. It is therefore considered that exceedances of the groundwater or surface water regulations are more pertinent to this assessment.

No anthropogenic sources of Sulphate, Chloride, Aluminium, Arsenic, Nickel or Zinc were identified on the Durnish Lands. It is possible that geogenic sources of these potential contaminants are contributing to their concentrations in groundwater. The likely direction of groundwater flow across the Durnish Lands site is from the north east towards the south west. The off-site aluminium plant could therefore be acting as a source of these contaminants in groundwater.

Ref: IBR0973/Reports

10 Risk Assessment

Using the methodology outlined in the previous sections, the laboratory analytical results were used to carry out a generic quantitative risk assessment (GQRA).

10.1 Overview of contaminant sources, pathways and receptors

10.1.1 Sources

Ground contamination

No exceedances of the commercial screening values used were noted within any soil samples and as such no risk to human health is considered to exist.

Groundwater contamination

Exceedances of the EPA Interim Guideline Values have not been considered in any more detail. The IGVs were produced in 2003 and in many cases are therefore potentially outdated or based on Drinking Water Standards. It is therefore considered that exceedances of the groundwater or surface water regulations are more pertinent to this assessment.

Exceedances of the groundwater or surface water regulations exist for Sulphate, Chloride, Aluminium, Arsenic, Nickel and Zinc within the samples taken from the bedrock groundwater on the Durnish Lands site. No anthropogenic sources of these potential contaminants were identified on the Durnish Lands. It is possible that geogenic sources of these potential contaminants are contributing to their concentrations in groundwater. The likely direction of groundwater flow across the Durnish Lands site is from the north east towards the south west. The off-site aluminium plant could therefore be acting as a source of these contaminants in groundwater.

Radon gas

According to the radon map for the Republic of Ireland, between one and five per cent of the homes in the area are estimated to be above the reference level.

Off site sources

As outlined in Section 0, the off-site aluminium plant located to the east of the site could be the source of elevated concentrations of metals detected within the groundwater samples from the Durnish Lands site.

Ref: IBR0973/Reports

Status: Final Date: April 2018

10.1.2 Pathways

- Pathways associated with impacts to human health through inhalation of soil and/or dusts will not exist as no soil contamination has been identified on site.
- Groundwater within the site will not be used as a potable source of water, therefore, the ingestion pathway for contamination to human health from groundwater is not deemed to be active.
- A pathway for the migration of contaminants from shallow groundwater into the underlying deeper bedrock aquifer is unlikely on site as no continuous shallow groundwater body was encountered on site.
- The fill proposed to be imported for raising and filling the Durnish Lands site will be imported from authorised quarries and will have minimal potential for leaching contaminants into the underlying soil and groundwater.
- A pathway may exist whereby groundwater on site can migrate into the River Robertstown or the Shannon Estuary.
- A pathway for the migration of Radon gas into buildings will not be active on the developed Durnish Lands site (as this is the only located where buildings are proposed for development) as Radon concentrations are known to be low.

10.1.3 Receptors

End-Users

As no significant soil or groundwater contamination has been identified there is no risk posed to commercial site end users.

Construction workers

As no significant soil or groundwater contamination has been identified there is no risk posed to construction workers.

Groundwater

Although a shallow groundwater body was identified on the Durnish Lands site during the site investigation it was found to be inconsistent. The bedrock groundwater has been impacted by elevated concentrations of Sulphate, Chloride, Aluminium, Arsenic, Nickel and Zinc. As discussed in Section 10.1.1, both geogenic sources and the nearby alumina refinery plant could be contributing to these elevated concentrations (as suggested by the direction of groundwater flow across the Durnish Lands site from north east to south west). Therefore, the elevated concentrations are considered to be representative of the bedrock groundwater within the vicinity of the site and therefore representative of the baseline conditions.

Ref: IBR0973/Reports

Status: Final Date: April 2018

Surface water – River Robertstown and Shannon Estuary

It is possible that shallow and or bedrock groundwater could be in hydraulic conductivity with the River Robertstown and/or the Shannon Estuary. The bedrock groundwater has been impacted by elevated concentrations of Sulphate, Chloride, Aluminium, Arsenic, Nickel and Zinc. As discussed in Section 10.1.1, both geogenic sources and the nearby alumina refinery plant could be contributing to these elevated concentrations (as suggested by the direction of groundwater flow across the Durnish Lands site from north east to south west). Therefore, the elevated concentrations are considered to be representative of the bedrock groundwater within the vicinity of the site and therefore representative of the baseline conditions.

10.2 Risk Assessment and Revised Conceptual Model

A review of the CSM based on the above information indicates that no potential contaminant linkages exist, for the proposed site end-use. The revised site conceptual model is illustrated in Table 10 and the risks to receptors are summarised below.

Risk to human health

No risks to human health have been identified.

Risk to groundwater

The bedrock groundwater has been impacted by elevated concentrations of Sulphate, Chloride, Aluminium, Arsenic, Nickel and Zinc. The elevated concentrations of potential contaminants identified within the bedrock groundwater are considered to be representative of the baseline conditions in the vicinity of the site and as such no significant risk to groundwater is considered to exist.

Risk to surface water

It is possible that shallow and or bedrock groundwater could be in hydraulic conductivity with the River Robertstown and/or the Shannon Estuary. The elevated concentrations of potential contaminants identified within the bedrock groundwater are considered to be representative of the baseline conditions in the vicinity of the site and as such no significant risk to surface water is considered to exist.

Ref: IBR0973/Reports

Status: Final Date: April 2018

Table 10 Refined risk assessment & site conceptual model

Source	Pathway(s)	Receptors(s)	Relevant Source – Pathway – Receptor linkage (SPR)	Mitigation measures		
On-site sources						
Contaminants in soil	Dermal contact, inhalation and/or ingestion of soil or dust	Humans in form of construction workers, maintenance workers and site end users	No contaminants were identified at concentrations exceeding the screening values in the soil samples.	None required		
Contaminants in groundwater	Horizontal migration	River Robertstown and Shannon Estuary	Elevated concentrations of Sulphate, Chloride, Aluminium, Arsenic, Nickel and Zinc were identified within the groundwater. However, these concentrations are considered are considered to be representative of the baseline conditions in the vicinity of the site and as such no significant risk to surface waters is considered to exist.			
	Vertical migration	Bedrock aquifer	Elevated concentrations of Sulphate, Chloride, Aluminium, Arsenic, Nickel and Zinc were identified within the groundwater. However, these concentrations are considered are considered to be representative of the baseline conditions in the vicinity of the site and as such no significant risk to groundwater is considered to exist.	None required		
Ground borne gas (Radon)	Migration to indoor air	Humans in the form of future site users	According to the radon map for the Republic of Ireland, between one and five per cent of the homes in the area are estimated to be above the reference level.	None required		

Ref: IBR0973/Reports

Status: Final Date: April 2018

11 Conclusions

As identified in Section 10, the risk assessment has demonstrated that no source-pathwayreceptor linkages exist on the proposed development site. No remedial measures are considered necessary if the site is to be developed for commercial end use.

11.1 Recommendations

11.1.1 Unidentified contamination

During construction works should unexpected contamination be encountered in soils or groundwater with visual or olfactory signs of contamination, samples of the potentially contaminated material should be obtained and sent for chemical analysis. An updated risk assessment should be completed to assess risks to human health and environmental receptors. Should unacceptable risks be identified then appropriate remedial works will be conducted and agreement sought from the relevant regulatory bodies.

Ref: IBR0973/Reports

Status: Final Date: April 2018

Appendix A

Foynes Port – Jetty Phase 2, ABCO, GDG Gavin & Doherty Geosolutions, Ground Investigation Factual Report,

January 2018

Ref: IBR0973/Reports

Status: Final Date: April 2018

Foynes Port – Jetty Phase 2

Gavin and Doherty Geosolutions Ltd

Scottish Provident Building 7 Donegall Square West Belfast, BT1 6JH +442890918845 www.gdgeo.com

Project Title: Foynes Port – Jetty Phase 2

Report Title: Ground Investigation Factual Report

Document reference:

Client: ABCO Marine

Ultimate Client: RPS under authority of Shannon Foynes Port Company

Confidentiality: Between GDG and ABCO Marine, extending also to their client RPS and

Shannon Foynes Port Company as end user client.

Essential Requirements: This report is best viewed in colour.

Document Control

Approved: WB	Checked:	Authored: CB/NM	Date	Revision DRAFT
Approved:	Checked:	Authored:	Date	Revision
WB		CB/NM	03/01/2018	00
• • •	Checked:			

Guidelines of use of report:

This report (hereafter the "Services") was prepared by Gavin & Doherty Geosolutions Ltd. (GDG) for Abco (hereafter the "Client") in accordance with the terms of a contract between Abco and GDG. GDG performed the services with the skill and care ordinarily exercised by a reasonable geotechnical civil engineering specialist at the time the services were performed. The Services were performed by GDG taking into account the limits of the scope of works required by the Client, the time scale involved and the resources agreed between Abco and GDG. Third parties using any information contained within this report do so at their own risk. The design decisions in this report and related comments expressed herein are based on the information received, the conditions recorded during site investigation works, and on the results of tests made in the field and laboratory. However, there may be conditions existing at the site which have not been disclosed by the investigation available and which have not been taken into account in the report.

GDG provide no other representation or warranty whether express or implied, in relation to the Services expressly contained in the paragraph above.

This report should not be used for any other purposes apart from those expressly stated in this document.

Table of Contents

1	Introduction	
	1.1 Description of the Project	
	1.2 Purpose and scope	
2	The site	3
	2.1 Site location	
	2.2 Current land use	4
	2.3 Topography and land features	
3	Ground investigations	11
	3.1 Previous ground investigations	11
	3.2 Exploratory holes	
	3.3 Drilling	
	3.4 In situ testing	
	3.6 Laboratory testing	
	3.7 Reporting	
4	Ground summary	20
	4.1 Ground model	20
	4.2 Groundwater	23
R۵	eferences	25

1 Introduction

Gavin and Doherty Geosolutions Ltd. (GDG) were engaged by ABCO Marine to provide geotechnical services for the ground investigation at Foynes Port, Co. Limerick. ABCO Marine were instructed by RPS ("the Client's Representative") under the authority of Shannon Foynes Port Company ("the Client") to undertake a ground investigation at Foynes Port.

The investigation was undertaken to provide geotechnical and environmental information for the design team to provide an understanding of the existing ground conditions in order to facilitate the design of an extension to the existing jetty infrastructure, associated land reclamation and enabling works for the development of the Durnish site.

1.1 Description of the Project

RPS were engaged by Shannon Foynes Port Company to procure and oversee the geotechnical and environmental ground investigation to provide design information for proposed new development works at the Foynes Port site. The proposed new development works include storage sheds at the Durnish site and an extension which will join two existing structures at the port; the East Jetty and the West Quay.

ABCO Marine were instructed by RPS to undertake an intrusive ground investigation including land boreholes and trial pits at the Durnish site, and a combination of land and marine boreholes and cone penetration tests (CPT) at the site of the jetty extension. Grab samples were also taken at the marine site for contamination testing as part of the environmental investigation. Ground investigations at both sites included retrieving samples for geotechnical and environmental laboratory testing.

ABCO Marine facilitated the marine boreholes and CPTs by utilising a jack up barge. Ground Investigations Ireland (GII) carried out the borehole drilling using a combination of cable percussion (CP) and rotary core (RC) methods at the Durnish site and the marine site. GII and GEO site and Testing Services (GSTL) undertook the geotechnical laboratory testing. Environmental samples were transferred to Jones Lab for testing.

GDG were present during the ground investigations and undertook the borehole logging and geotechnical test scheduling, for approval by RPS. RPS undertook scheduling for environmental testing.

The ground investigation began on 27th March 2017 and was completed on 6th July 2017. The geotechnical and environmental laboratory testing were completed in October 2017.

1.2 Purpose and scope

The investigation was designed by RPS with the objective of obtaining the following information:

- An overview of the ground and groundwater conditions present with relation to strength and compressibility properties of the ground;
- Information relating to ground contamination.

The purpose of the report is to present the factual information and data from the ground investigation, including logs of the intrusive ground investigation, results of in-situ testing and results of laboratory testing.

The scope of the ground investigation included the following:

<u>Durnish site</u>

- 6 No. land boreholes
- 10 No. trial pits
- Standard penetration testing (SPT)
- In-situ shear vane testing
- Sample recovery for geotechnical laboratory testing
- Sample recovery for environmental sampling
- Installation of groundwater monitoring wells

<u>Jetty extension site</u>

- 8 No. land boreholes
- 15 No. marine boreholes
- 8 No. marine CPTs
- 8 No. 4m sediment sample for environmental sampling
- SPTs
- In-situ shear vane testing
- Sample recovery for geotechnical laboratory testing
- Sample recovery for environmental sampling

Soil and rock descriptions were undertaken in accordance with British Standard BS5930:2015, Code of Practice for Site Investigation which incorporates guidance presented in BS EN ISO 14688-1:2002+A1:2013, BS EN ISO 14688-2:2004+A1:2013 and BS EN ISO 14689-1:2003.

As noted in BS5930:2015 Clause 33.4.4.2, Table 15, the classification of very coarse soils (cobbles and boulders) requires sample size circa 1000kg. As it is not reasonably possible to recover representative samples from boreholes and conventional trial pits to quantify cobble and boulder content, the exploratory hole logs presented in this report make reference to the presence of cobbles and boulders only.

All rock cores obtained were logged by an experienced Engineering Geologist or Geotechnical Engineer. Fracture Index (FI), as recorded on the rotary borehole logs, has been expressed in terms of fracture frequency per metre length of core. The term non-intact has been used for highly fractured or fragmented core where the rock material was recovered as fine to coarse gravel sized fragments.

2 The site

2.1 Site location

The Shannon Foynes Port Company, is located at Main St, Foynes, Co. Limerick, Ireland V94 R232; on the west coast of Ireland. The port is located on the southern shore of the River Shannon Near the N69 Limerick to Tralee road, 30km west of Limerick City and 55km north east of Tralee. The Irish National Grid coordinates for the two sites are provided below:

Durnish site: E126460, N151440

Foynes Port marine site: E125225, N151812

Figure 2-1 Location of Shannon Foynes Port Company

The project site comprises two sites; a marine site and a land site. The marine site is located in the existing port and comprises two existing marine structures; i.e. the East Jetty and the West Quay, and the intertidal area in between. It is proposed that the existing East jetty is extended to meet the West Quay. The land site is located to the east and south east of the existing port in the Durnish land area. The two site locations are shown on Figure 2-2 below.

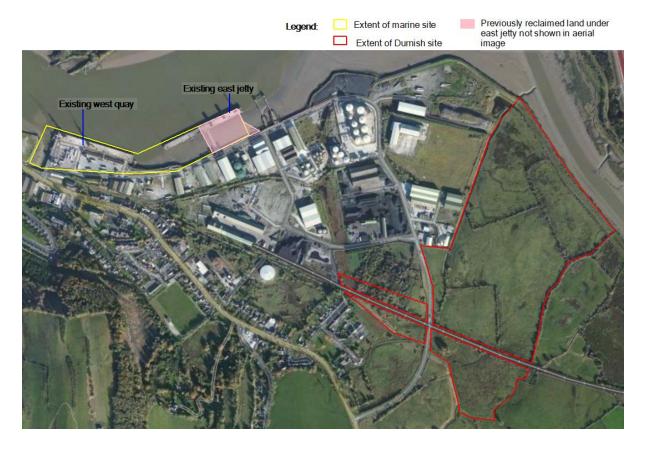


Figure 2-2 Aerial image showing Shannon Foynes Port site location

The jetty extension marine site is bound by the River Shannon to the north, the existing east jetty to the east, the existing West Quay to the west and the port facilities site to the south. The marine site is approximately 73km².

The Durnish land site is bound by the River Shannon to the North, the River Robertstown (a tributary river to the River Shannon) to the east, N69 Road to the south which leads into Foynes Village and Harbour Entrance Road to the west. The Durnish site is approximately 370km².

2.2 Current land use

The East Jetty and West Quay at the marine site are currently used for general port operations, including docking of passenger ships and commercial ships for import and export of goods. The area has a history of marine industry with the port expanding throughout the 19th and 20th century.

The Durnish land site is currently a greenfield site and appears to have no obvious purpose at present. The land is generally covered in grass with hedge lines located along the Harbour entrance road on the western boundary. From historic maps (OSI) of the Durnish site, it shows that the land has been

used as agricultural land with no other use besides a disused railway that crosses the site. The railway is not currently in use but has not been abandoned and therefore maybe active in the future. From the RPS drawing of the Proposed Durnish Development Site Investigation, this drawing shows a quarry that is noted to be to the west of the site. The quarry is not marked on OSI current or historic maps, though dense vegetation is noted in the area both by surveyors and aerial imaging. Therefore, it can be assumed that the quarry was possibly used as a local source for limestone as lime kilns are noted in the greater area.

2.3 Topography and land features

Bathymetry models for the berthing area along the east jetty and the west quay, presents a range in water depth from 8.0m to 12.0m. The majority of the berthing area is approximately 11.7m in depth which is the port authority's stated minimum water depth of the facility. The berthing depth decreases to 9.2m at the Mooring Dolphins to the north east of the east jetty. For the area between the east jetty and the west quay, and behind the jetty, where reclamation is proposed, the bathymetry shows water depth ranges from 0.0m to 2.0m. In this area bed level is relatively higher due to accumulation of estuarine deposits.

The Durnish site is generally flat, hummocky, low lying ground. The ground levels of the boreholes at the Durnish averaged at 1.59m OD, ranging from 1.78m at LD06 in the east to 1.39m at LD05 in the west. In the area west of the port entrance road there is higher land with a steeper gradient, due to a large rock outcrop that is covered in thick vegetation. Various low points within the site are prone to having standing water and are very soft. Historical aerial imaging of the site shows active channels within the site crossing the fields that are not seen in recent aerial imaging, though this may be depended on rainfall or saturation of the soil. A box culvert is located on the Durnish site with a shallow watercourse. Drainage ditches bound the land and demarcate the fields. The drainage ditches have the water level controlled by sluices to prevent flooding. The north east of the Durnish land is protected from the tide along the river estuary by levees. A natural rise in the land to the west of the Durnish land is marked by a large rock outcrop underlying brambles and hawthorns.

A currently disused railway line runs east to west across the site and the site crosses Harbour Entrance Road. The railway line is mostly on the same level as the surrounding land with only short stretches on a low embankment fill to keep the track level consistent.

2.4 Geology

The Geology of this region is defined by the Geological Survey of Ireland, with the Shannon Estuary region being covered by Sheet No.17 and the accompanying booklet for the 1:100,000 scale series. The lithologies recognized as bedrock by GSI for the site are presented in Table 2-1. In this it is possible to differ 5 formations, coming from two stages of the geologic time. An older one formed by marine shelf facies represented by the formations **Rathkeale Formation**, **Durnish Formation**, **Shanagolden Formation** and **Parsonage & Corgrig Lodge Formation**; and another more recent, **Clare Shale Formation**, characterized as fluvio-deltaic & basinal marine. The geological formations are spatialized on the map in .

Table 2-1 Bedrock lithology details (GSI)

Unit Name	Origin	Description	Regional thickness	Age
Rathkeale Formation	Marine shelf facies	Dark muddy limestone & shaly mudstone. Comprises dark argillaceous limestones and shaly mudstones. The formation is unfossiliferous apart from trace fossils. The limestones are well-bedded and brittle and have a fracture cleavage. The lower part of the formation is dominantly shaly.	Maximum estimate of 457.2 m	Carboniferous Dinantian 318.1 - 359.2 (Ma)
Durnish Formation	Marine shelf facies	Blue-black cherty bioclastic limestone. Uniform, blue-black, bioclastic limestones which commonly contain bands of chert nodules parallel to bedding. The limestones contain a coral - brachiopod fauna, the corals being chiefly large solitary Caniniid - Clisiophyllid types.	304.8 m	Carboniferous Dinantian 318.1 - 359.2 (Ma)
Shanagolden Formation	Marine shelf facies	Black well bedded skeletal limestone. Black, well-bedded limestones in which chert is uncommon. The formation is similar to the Durnish Formation except for the general rarity of chert. They are divided from them on the basis of a distinctive coral fauna. The large Caniniids and Clisioph.	76.2 m	Carboniferous Dinantian 318.1 - 359.2 (Ma)
Parsonage & Corgrig Lodge Formation	Marine shelf facies	Fine laminated & muddy limestone & shale.	-	Carboniferous Dinantian Upper 326.4 - 345.3 (Ma)
Clare Shale Formation	Fluvio- deltaic & basinal marine	Mudstone, cherty at base. In the type area the formation consists of a condensed sequence of black shales with closely spaced layers rich in goniatites, underlain by shales with many phosphatic horizons. Nodules and bands of clay ironstone occur near the top of the formation.	12 – 15 m	Carboniferous Namurian 311.7 - 326.4 (Ma)

The geology of the Foynes marine area consists of formations from the Carboniferous system, from the Visean and basal Namurian stage. The formations are dipping gently to the south west. The bedrock of the Durnish site consists of the Rathkeale Formation (RK) to the east of the site and the Durnish Formation (DU) to the west. The Bedrock geology of the Foynes Port marine site is the Clare Shale Formation (CS). All of these formations are Carboniferous in age.

The Rathkeale Formation (RK) comprises dark muddy limestone with mudstones, which are well bedded and brittle. This formation is non fossiliferous. This is uniformly overlain by the Durnish Formation (DU), which is a uniform bioclastic limestone with bands that include chert nodules parallel to bedding. It is abundant in fossils, with complete coral beds. The Durnish formation is overlain by the Shanagolden Formation (SG) of black limestone and then the Parsonage and Corgrig Lodge formation (PA), a fine grained muddy limestone. These are over lain by the Clare Shale Formation (CS) which is a clay rich mudstone with band of siltstone. The carboniferous limestone formations represent an offshore ramp. The changes in grain size and the fossil content between the formations

indicates changes in relative sea level. The Clare shale formation (CS) which was deposited above the carboniferous limestone formations represents a deep marine, representing a significant rise in relative sea level.

The subsoil of the site area was described by Agriculture and Food Development Authority - Teagascand is available in GSI website as well. Foynes Port is mapped as Made Ground, that is superimposed on a region composed by mostly of Estuarine Sediments (silts, clays) — Mesc, on the west area by Limestone till from the Carboniferous —TLs, and also the bedrock at surface (shale and limestone), as can be visualized in Table 2-2 Subsoil (Teagasc) and Figure 2-4.

Table 2-2 Subsoil (Teagasc)

Subsoil Category		
Made Ground		
Mesc - Estuarine silts and clays		
TLs - Till derived from limestones		
TNSSs - Till derived from Namurian sandstones and shales		
Rck - Bedrock outcrop or subcrop		

The both sites, marine and Durnish are shown to be covered in marine/estuarine sediments, of silts and clays (Mesc). Glacial tills, mainly of limestone in originare present in the south of the Durnish site, as well as outcrops of the bedrock.

Karst activies were found in 2 boreholes in less than 3k from Foynes Port in the Walsortian Limestone and Rathkeale Formation, .

The bedrock determines the regional behavior of groundwater and can be visualized in Figure 2-5. The site area is located on two aquifer domains: Poor Aquifer (PU) and Locally Important Aquifer (LI). Adjacent to the site area is a Regionally Important Aquifer Karstified – conduit (Rkc).

GSI database has a list of minerals locality, also it has mine records disposal in shapefile. The data generated from this data is available in Figure 2-6. Pyrite is a record found very close to the site. Also is shown in the map a calcite and a limestone locality. The limestone point is also the Barrigone Quarry.

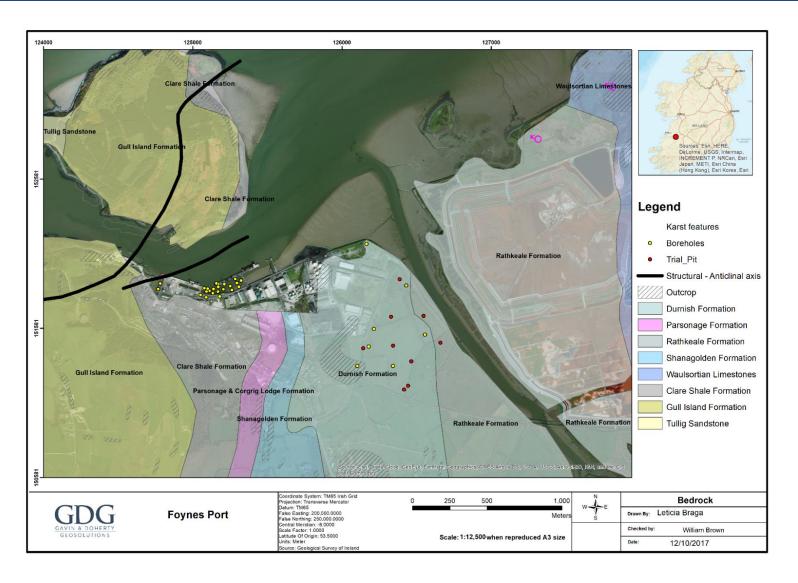


Figure 2-3 Bedrock Map 1:100 resolution (GSI)

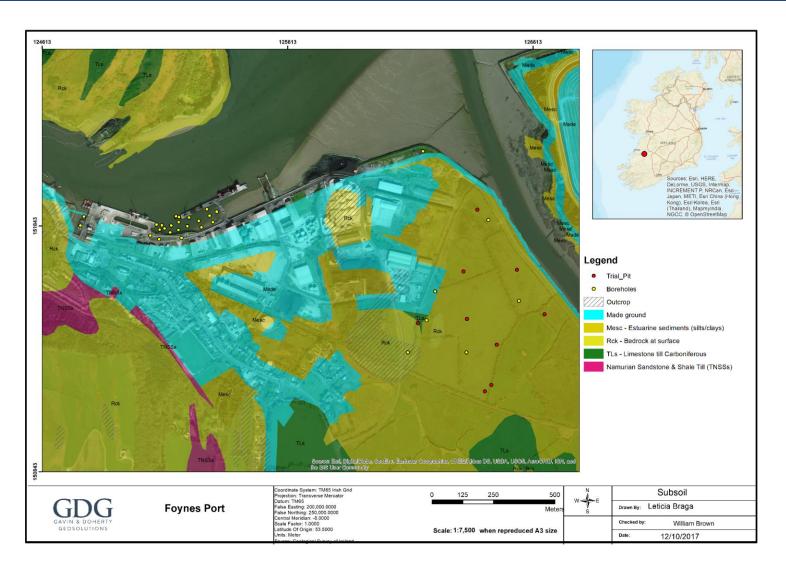


Figure 2-4 Subsoil Map (GSI)

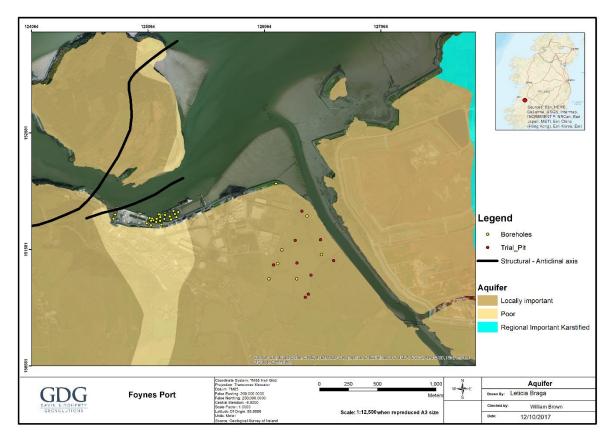


Figure 2-5 Groundwater Bedrock Aquifers (GSI)

Figure 2-6 Mineral location

3 Ground investigations

3.1 Previous ground investigations

There are no records of previous ground investigations at our project sites. We are aware that previous ground investigations have been carried out within the port near to our project site, but have not been made available at this time.

3.2 Exploratory holes

A number of exploratory holes have been carried out within the project sites. Table 3-1 presents details of the type and number of exploratory locations on each site.

Table 3-1 Number of exploratory holes dug on site

Exploratory hole	Number of exploratory locations on site		
type	Durnish site	Jetty extension site	
Land Boreholes	6	8	
Marine Boreholes	0	15	
Trial Pits	10	8	
Marine CPTs	0	8	

Locations of the exploratory holes are presented in Figure 3-1 and Figure 3-2, and in a borehole location plan drawing by RPS, presented in Appendix 4.

Figure 3-1 Durnish site boreholes

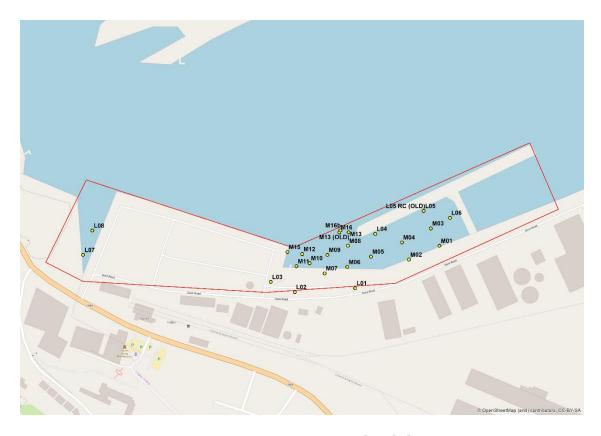


Figure 3-2 Jetty extension site boreholes

3.3 Drilling

Boreholes were drilled by means of a combination of cable percussion (CP) drilling with rotary core (RC) follow on.

The CP drilling was carried out using the Dando 2000 CP rig. CP drilling, also known as shell and auger, is carried out using a shell in non-cohesive soils and a clay cutter in cohesive soils, operated by a wire cable and trip. The core is then extruded from the shell for logging. Due to the nature of the drilling method some mixing of thinly laminated soils occurs and therefore thin granular layers may not have been logged as such.

As the borehole was extended through very soft estuarine clay, gravel and highly fractured rock, it was necessary to line the borehole with 200mm diameter steel casing to prevent collapse. Effort was made to extend the casing as deep as possible by using CP drilling before moving to RC follow on.

The boreholes were extended into dense gravel and rock by RC drilling method using a track mounted T44 Beretta rig. The T44 Beretta utilised a conventional double barrel system with a semi-rigid inner plastic liner, operated using a wireline drilling process. The outer barrel has a coring bit attached to the lower end and is rotated by the drill rods. The inner barrel does not rotate during drilling. The liner retains the core intact as much as reasonably possible. The core is cut by the coring bit and passes to the inner liner. The core is recovered within the inner barrel by a wire rope, and is then placed into a core box in order of recovery. Water flush drilling fluid was used. RC drilling using water flush can wash away fine grained material during coring. The recovery achieved is recorded on the borehole logs and core photographs are provided.

3.4 In situ testing

3.4.1 SPT

SPT tests were carried out in accordance with BS 1377:1990. In cohesive soils a split spoon sampler was used, and in granular soils a solid cone penetrometer is used. Any penetration of the sampler under self-weight was recorded. The test included seating drive, equal to 150mm penetration or 25 blows, whichever is first, and four increments of 75mm with the blows for each 75mm increment being recorded. The test is terminated after the total length of 300mm, or 50 blows, have been reached.

SPT testing was generally carried out at 1m intervals to 5m bgl and at 1.5m intervals thereafter, until refusal. However, within the marine boreholes at the site of the proposed jetty extension and reclamation, the SPT generally gained full penetration under self-weight, therefore the SPT testing was limited within this stratum maximise piston and tube sampling.

3.4.2 Shear Vane

Geonore H-10 shear vane borer instrument was used to carry out the shear vane testing in the soft silty clay deposits encountered in the marine boreholes. Testing was generally carried out at 0.5m above and at 0.5m below each piston sample. In the following boreholes:

- L02,
- L04,
- L05,
- L07,
- L08,
- M01,
- M02,
- M03,
- M04,
- M05,
- M06,
- M07,
- M08,
- M10,
- M11, and
- M12.

Whereas, shear vane testing was carried out in the trial pits at the Durnish site using a Pilcon hand held shear vane. Testing was generally carried out at 0.5m bgl, 1m bgl and at 1m intervals thereafter, or at a change of stratum, at the following ground investigation locations:

- TP01,
- TP02,
- TP03,
- TP04,
- TP05,
- TP06,
- TP07,
- TP08,
- TP09, and
- TP10.

3.4.3 CPT

Static Cone Penetration Testing was carried out by In Situ Site Investigation. The testing and reporting were carried out in accordance with BS EN ISO 22475-1:2012. The factual report is appended to this report while the test results are included in the attached AGS data.

3.5 Sampling

3.5.1 Disturbed Samples

Small disturbed samples and bulk disturbed samples were generally taken in all trial pits and boreholes in each new stratum, at 0.5m depth, at 1.0m intervals to 5.0m and at 1.5m intervals thereafter, or as directed by the investigation supervisor/Engineer. They were generally taken midway between successive open tube samples/SPTs.

3.5.2 Undisturbed Samples

In cohesive deposits U100 open tube samples were generally taken at 1.0m depth intervals to 5.0m and at 1.5m intervals thereafter, or as directed by the investigation supervisor/Engineer.

Piston tube samples, of minimum 1.0m length, were recovered at 1.5m increments in very soft cohesive subsoils, or as directed by the investigation supervisor/Engineer.

All undisturbed samples were inspected and waxed before drilling recommenced.

All samples were immediately logged as per BS 5930:2015 and IS EN ISO 22475-1.

3.6 Laboratory testing

Soil and rock samples were selected for geotechnical and environmental laboratory testing. Geotechnical laboratory testing was carried out by Geo site & Testing Services Limited (GSTL), Carmarthenshire, while environmental contamination testing was carried out by Exova Jones Environmental, Deeside, Wales and City Analysts limited, Environmental laboratories Ringsend Dublin 4.

The following geotechnical laboratory tests were carried out.

Table 3-2 Geotechnical Laboratory Testing Summary

Test	Quantity	Boreholes
Density Test	11 boreholes (69 tests)	L01, L02, L03, L06, L07, L08, LD01, LD02, LD04,
Density rest	11 borelloles (03 tests)	LD06, M09
		L01,L02,L03,L04,L05,L06,L07,L08,LD01,LD02,LD04,
Atterberg Limits	25 boreholes (199 tests)	LD06,M01,M02,M03,M04,M05,M06,M07,M08
		,M09,M10,M11,M12,M15
		L01, L02, L03, L04, L05, L06, L07, L08, LD01, LD02 ,
Moisture Content	26 boreholes (236 tests)	LD04 , LD06 , M01 ,M02,M03 ,M04, M05, M06 ,
		M07, M08, M09, M10, M11, M12, M13, M15

Test	Quantity	Boreholes
Bulk and dry density by water immersion or displacement	12 boreholes (36 tests)	L04, L05, M01, M02, M03, M04, M05, M06, M08, M11, M13, M15
Particle Size Distribution - Wet sieving	23 boreholes (157 tests)	L03, L04, L05, L06, L07, L08, LD01, LD02, LD04, LD06, M01, M02, M03, M04, M05, M06, M07, M08, M09, M10, M11, M12, M15
Particle Size Distribution - hydrometer	9 boreholes (12 tests)	L01, L05, L06, L07, LD01, LD02 , M04, M06, M09
One dimensional consolidation	21 boreholes (63 tests)	L01, L02, L04, L05, L06, L07, LD01, LD02, LD04, LD06, M01, M02, M03 M04, M05, M06, M08, M09, M11, M13, M15
Laboratory Vane Test – Sher strength	17 boreholes (38 tests)	L01, L02, L04, L05, L06, L07, LD01, LD02, LD04, LD06, M01, M02, M03, M04, M05, M06, M08, M09, M11, M15
Direct shear test	16 boreholes (36 tests)	L04, L05, M01, M02, M03, M04, M05, M06, M08, M11, M13, M15
Large direct shear	4 boreholes (4 tests)	L07, LD02, LD05, LD07
Shear strength by undrained triaxial 14 boreholes (19 tests)		L01, L04, L05, L06, L07, M03, M04, M05, M06, M08, M09, M11, LD02, LD04
Consolidated undrained triaxial with pwp	9 boreholes (12 tests)	LD01, L04, L05, M04, M06, M08, M11, LD01, LD06

Table 3-3 Summary of failed geotechnical laboratory testing

Test	Sample	Depth (m)	Comment
Shear Box	L04	12.50	Samples too soft to test, sample was leaking out shear box when consolidating and submerged with water.
	M04	13.00	Samples too soft to test, sample was leaking out shear box when consolidating and submerged with water.
	L04	12.50	Sample too soft to obtain a CUT test (slumped)
	M03	1.00	CUT sample slumped when being extruded (very soft)
	M03	3.00	CUT sample slumped when being extruded (very soft)
Triaxial	M03	5.00	CUT sample slumped when being extruded (very soft)
	L05	14.00	CUT Sample too soft to obtain a CUT specimen (Slumped)
	M11	5.00	QUT sample too soft to obtain a QUT test (Slumped)
	M11	11-11.50	QUT sample too soft to obtain a QUT test (Slumped)
UCS	LD03	6.80-7.08	Fractured upon inspection

The following environmental contamination laboratory tests were carried out.

Table 3-4 Soil Environmental Contamination Laboratory Testing Summary

Test	Quantity	Boreholes
Metals 8	·	L01, LD01, LD02, LD03, LD04, LD05, LD06, TP01, TP02, TP03, TP04, TP05, TP06, TP07, TP08, TP09, TP10, G01, G01, G03, G04, G05, G06, G07, G08

Test	Quantity	Boreholes
VOC	7 boreholes, 10 test pits (33 tests)	LO1, LD01, LD02, LD03, LD04, LD05, LD06, TP01, TP02, TP03, TP04, TP05, TP06, TP07, TP08, TP09, TP10
svoc	7 boreholes, 10 test pits (33 tests)	L01, LD01, LD02, LD03, LD04, LD05, LD06, TP01, TP02, TP03, TP04, TP05, TP06, TP07, TP08, TP09, TP10
PAHs	7 boreholes, 10 test pits, 8 grab samples (41 tests)	L01, LD01, LD02, LD03, LD04, LD05, LD06, TP01, TP02, TP03, TP04, TP05, TP06, TP07, TP08, TP09, TP10, G01, G01, G03, G04, G05, G06, G07, G08
TPH-CWG	7 boreholes, 10 test pits (33 tests)	L01, LD01, LD02, LD03, LD04, LD05, LD06, TP01, TP02, TP03, TP04, TP05, TP06, TP07, TP08, TP09, TP10
ВТЕХ	7 boreholes, 10 test pits (33 tests)	L01, LD01, LD02, LD03, LD04, LD05, LD06, TP01, TP02, TP03, TP04, TP05, TP06, TP07, TP08, TP09, TP10
PCBs	7 boreholes, 10 test pits, 8 grab samples (26 tests)	LO1, LD01, LD02, LD03 LD04, LD05, LD06, TP01, TP02, TP03, TP04, TP05, TP06, TP07, TP08, TP09, TP10, G01, G01, G03, G04, G05, G06, G07, G08
Asbestos screen	7 boreholes, 10 test pits (33 tests)	LO1, LD01, LD02, LD03, LD04, LD05, LD06, TP01, TP02, TP03, TP04, TP05, TP06, TP07, TP08, TP09, TP10
Phenols	7 boreholes, 10 test pits (33 tests)	L01, LD01, LD02, LD03, LD04, LD05, LD06, TP01, TP02, TP03, TP04, TP05, TP06, TP07, TP08, TP09, TP10
Cyanide	7 boreholes, 10 test pits (33 tests)	LO1, LD01, LD02, LD03, LD04, LD05, LD06, TP01, TP02, TP03, TP04, TP05, TP06, TP07, TP08, TP09, TP10
Sulphur	7 boreholes, 10 test pits (33 tests)	L01, LD01, LD02, LD03, LD04, LD05, LD06, TP01, TP02, TP03, TP04, TP05, TP06, TP07, TP08, TP09, TP10
SulphurTotal	7 boreholes, 10 test pits (33 tests)	L01, LD01, LD02, LD03, LD04, LD05, LD06, TP01, TP02, TP03, TP04, TP05, TP06, TP07, TP08, TP09, TP10

Test	Quantity	Boreholes
рН	7 boreholes, 10 test pits (33 tests)	L01, LD01, LD02, LD03, LD04, LD05, LD06, TP01, TP02, TP03, TP04, TP05, TP06, TP07, TP08, TP09, TP10
SOM	7 boreholes, 10 test pits (33 tests)	L01, LD01, LD02, LD03, LD04, LD05, LD06, TP01, TP02, TP03, TP04, TP05, TP06, TP07, TP08, TP09, TP10
WAC	5 test pits (5 tests)	TP01, TP03, TP05, TP07, TP10
ТВТ	5 boreholes, 8 grab samples (13 tests)	L01, LD02, LD03, LD04, LD06, G01, G01, G03, G04, G05, G06, G07, G08
DBT	5 boreholes, 8 grab samples (13 tests)	L01, LD02, LD03, LD04, LD06, G01, G01, G03, G04, G05, G06, G07, G08
Total organic content	8 grab samples (8 tests)	G01, G01, G03, G04, G05, G06, G07, G08
HCH	8 grab samples (8 tests)	G01, G01, G03, G04, G05, G06, G07, G08
Aliphatic/Aromati c EPHs	8 grab samples (8 tests)	G01, G01, G03, G04, G05, G06, G07, G08
Carbonates	8 grab samples (8 tests)	G01, G01, G03, G04, G05, G06, G07, G08
Toxicity testing	8 grab samples (8 tests)	G01, G01, G03, G04, G05, G06, G07, G08

Table 3-5 Water Sample Environmental Contamination Laboratory Testing Summary

Test	Quantity	Boreholes
рН	6 test pits (6 tests)	LD01, LD02, LD03, LD04, LD05, LD06
Major Ions	6 test pits (6 tests)	LD01, LD02, LD03, LD04, LD05, LD06
Metals and Minor lons	6 test pits (6 tests)	LD01, LD02, LD03, LD04, LD05, LD06
PAHs	6 test pits (6 tests)	LD01, LD02, LD03, LD04, LD05, LD06
TPH-CWG	6 test pits (6 tests)	LD01, LD02, LD03, LD04, LD05, LD06
BTEX	6 test pits (6 tests)	LD01, LD02, LD03, LD04, LD05, LD06

Test	Quantity	Boreholes
SVOCs ex PAHs	6 test pits (6 tests)	LD01, LD02, LD03, LD04, LD05, LD06
PCBs	6 test pits (6 tests)	LD01, LD02, LD03, LD04, LD05, LD06
Phenols Speciated	6 test pits (6 tests)	LD01, LD02, LD03, LD04, LD05, LD06

3.7 Reporting

This Factual report is accompanied by AGS format data. The AGS data includes all ground investigation logging, co-ordinates and ground levels , in-situ test results and laboratory test results.

All coordinates are reported according to Ordnance Survey Ireland Irish Grid, while all elevations are reported according to Foynes Shannon Port Chart Datum. Foynes Shannon Port Chart Datum is 3m below Malin Ordnance Datum (commonly taken as the Irish national datum).

Copies of all ground investigation logging, in-situ test results and laboratory test results are appended to this report.

4 Ground summary

4.1 Ground model

The ground conditions for the Durnish land site vary across the site but generally comprise of a thin layer of top soil over thick estuarine/alluvial deposits and glacial tills, overlying the bedrock. The Bedrock of the Durnish land site is a limestone which is exposed at the surface in certain locations of the site. The ground investigations have generally confirmed the anticipated geology described in the GIR. The sequence and type of geological strata generally identified in the ground investigations are summarised in Table 4-1, starting with the most recent deposits.

Table 4-1 General ground profile summary for Durnish land site

Material Name	Typical Description	Depth	Holebase stratum		
		To top	To bottom	code	
Drift Deposits					
Topsoil	Soft to firm sandy gravelly clay/silt	0.0	0.3	Tsl	
Estuarine/Alluvial - Cohesive	Soft sandy silty gravelly CLAY with low	0.0	3.1	Al-c	
Estuarine/Alluvial - Granular	Silty GRAVEL	2.0	11.0	Al-c	
Glacial - Granular	Cobbles and boulders	0.0	14.5	Gl-c	
Solid Geology : Rathkeale Formation					
Limestone	Strong to very strong grey bedded crystalline Limestone	0.0	17.3	Lms	

The onshore area of the jetty extension site has thick layer of made ground which forms the current quay. This is above a thick layer of very soft estuarine/alluvial cohesive clays and silts, which becomes coarser with depth, towards estuarine/alluvial granular gravel and cobbles. The Bedrock for this location is a fine grained limestone.

Table 4-2 General ground profile summary for Jetty Extension Site Onshore

Material Name	Typical Description	Depth	Holebase	
		To top	To bottom	stratum code
Made Ground				
Made Ground	Silty sandy Gravel with occasional cobbles placed as fill (Current quay)	0.0	5.0	MGd
Drift Deposits				
Estuarine/Alluvial - Cohesive	Very soft sandy CLAY	3.3	7.0	Al-c
	Very soft sandy SILT with shell fragments	4.0	18.0	Al-c
Estuarine/Alluvial - Granular	From clayey sandy GRAVEL to gravel and cobbles	18.0	27.0	Al-g
Solid Geology : Clar	Solid Geology: Clare Shale Formation			
Limestone	Strong dark, fine to medium grained crystalline Limestone	22.2	25.8	Lms

The offshore area of the jetty extension has soft estuarine clays, above gravel that contains some boulders. The area has a bedrock of mostly limestone, with occasional interbeds of siltstone and mudstone. The ground investigations have generally confirmed the anticipated change in geological formation described in the GIR.

Table 4-3 General ground profile summary for Jetty Extension Site Offshore

Material Name	Typical Description	Depth	Holebase stratum		
		To top	To bottom	code	
Drift Deposits					
Estuarine/Alluvial - Cohesive	Very soft silty CLAY to sandy gravelly CLAY	0	1.2	Al-c	
Estuarine/Alluvial - Granular	From GRAVEL to boulder GRAVEL	0.2	25.0	Al-g	
Solid Geology : Clar	e Shale Formation				
Limestone	Strong dark, fine to coarse grained crystalline Limestone	9.0	25.0	Lms	
Siltstone	Strong thinly laminated black Siltstone	14.1	21.3	Stst	

4.1.1 Made Ground

The Made Ground as seen in the Onshore part of the Jetty extension, belongs to the pre-existing quay. The depth of made ground stratum varies from 3.3m to 5.0m. the made ground consists of a silty sandy gravel with the occasional cobble. The gravel is angular and subangular. The sand is fine to coarse grained, the cobbles are surrounded limestone The made ground is firm and stiff.

4.1.2 Topsoil

Soft to firm top layer mainly consisting of clay or silt, with some sand and gravel. This stratum layer ranges in thickness from 0.2m to 0.3m.

4.1.3 Estuarine/Alluvial Deposits

Deposits from the river estuary dominates all of the localities. The majority of the estuarine deposits are the cohesive sandy clay/silts. However, at greater depths there are the coarser grained more granular deposits of sandy gravels. The finer grained deposits are very soft, especially the deposits in the marine site which have undergone no consolidation. The estuarine deposits do include shell fragments in parts.

4.1.4 Glacial Deposits

Glacial deposits are found in the Durnish land site consisting of a glacial till. The deposits are granular in nature, consisting predominantly of cobbles and boulders. The cobbles and boulders consist of clasts of limestone. Within the site they are overlain by later estuarine deposits. The glacial deposit is classed as stiff.

4.1.5 Limestone

Limestone is the predominate bedrock of all sites. It is exposed at the surface within the Durnish site but is at greater depths for the jetty extension, ranging in depths from 0.0m to >25m. The limestone has a dark appearance and varies in strength from weak to very strong. The limestone has differing thickness of lamination and is highly fractured with areas of ironstaining.

4.1.6 Siltstone

The siltstone is strong and thinly laminated. It forms interbeds within the limestone beneath the offshore jetty extension site. The thickness of the siltstone interbeds vary from 0.7m to 2.1m.

4.2 Groundwater

4.2.1 Waterstrikes

Groundwater strikes were recorded in the test pits carried out in the Durnish site. The measurements are presented in Table 4-2.

Waterstrike **Ground level** Borehole Waterstrike **Date** Remark (m CD) (m CD) (m bgl) **TP01** 4.26 4.0 0.24 31/03/2017 Slightseepage 31/03/2017 Slightseepage TP02 4.68 4.0 0.68 TP03 4.78 4.0 31/03/2017 Slightseepage 0.78 TP06 4.55 1.3 3.25 31/03/2017 Very fast TP08 4.93 2.0 2.93 31/03/2017 Fast **TP09** 4.25 1.5 2.75 31/03/2017 Very fast

Table 4-2 Groundwater measurements at Durnish site

4.2.2 Groundwater monitoring

Groundwater monitoring wells were installed in boreholes LD01 to LD06 at the Durnish site. Groundwater measurement were recorded on 10th August 2017. The groundwater measurements are presented in Table 4-3.

Table 4-3 Groundwater measurements at Durnish site

Borehole	Ground level (m CD)	Water depth (m bgl)	Water level (m CD)	Date	Time
LD01	11.8	1.2	10.6	10/08/2017	15:10:00
LD02	17.9	1.3	16.6	10/08/2017	13:00:00
LD03	8	1.5	6.5	10/08/2017	16:00:00
LD04	8.8	1.7	7.1	10/08/2017	11:50:00
LD05	7.7	2.2	5.5	10/08/2017	09:05:00
LD06	6.3	1.9	4.4	10/08/2017	10:45:00

References

British Standard BS5930:2015, Code of Practice for Site Investigations. British Standards Institution, London.

British Standard BS1377:1990, Methods of Test for Soils for Civil Engineering Purposes. British Standards Institution.

British Standard BS10175:2011+A1:2013. Code of Practice for Investigation of Potentially Contaminated Sites. British Standards Institution.

Engineers Ireland. 2016. Specification and Related Documents for Ground Investigation in Ireland. 2nd Edition. Ballsbridge, Dublin; Geotechnical Society of Ireland.

EN-ISO 14688-1, 2002. Geotechnical Investigation and Testing - Identification and classification of soil. Part 1: Identification and description. British Standards Institution, London.

EN-ISO 14688-2, 2004. Geotechnical Investigation and Testing - Identification and classification of soil. Part 2: Principles for a classification. British Standards Institution, London.

EN-ISO 14689-1, 2003. Geotechnical Investigation and Testing – Identification and classification of rock. Part 1: Identification and description. British Standards Institution, London.

Geological Survey of Ireland.

Site Investigation Steering Group. 2012. UK Specification for Ground Investigation. ICE Publishing Limited.

APPENDIX 1

BOREHOLE AND TRIAL PIT LOGS

					Borehole No.	
GDG GAVIN & DOHERTY		E	Borehole Log			
GEOSOLUTION	S				Sheet 1 of 3	
Project Name:	Foynes Port - Jetty Phase 2	Project No.	Co-ords:	125226E - 151760N	Hole Type	
Project Name.	Foynes Port - Jetty Phase 2	17022	Co-orus.	123220E - 131760N	CP+RC	
Location:	Former Dort	·	Lavali	5.81 m CD	Scale	
Location:	Foynes Port		Level:	5.81 III CD	1:50	
Client:	RPS		Dates:	25/05/2017 - 28/06/2017	Logged By	
Ciletti.	KF3		Dates.	25/05/2017 - 26/06/2017	CL +LB	

Client:		RPS					Dates:	25/05/2017 - 28/06/2017	CL +LB	y
Well	Water	Sampl	Sample and In Situ Testing		Depth			Stratum Description		
	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend			
		0.50	В					MADE GROUND: Firm to stiff grey bro gravelly CLAY fill with occasional mixe Gravel is angular to subangular, fine to is fine to coarse. Cobbles are subangu	ed cobbles. o coarse. Sand	
		1.00 1.00 1.00 1.00	B D ES SPT	N=14 (2,3/2,3,5,4)						1 -
		2.00 2.00 2.00	B D SPT	N=12 (4,3/3,4,3,2)						2 -
		2.70	В		2.70	3.11		MADE GROUND: Soft to firm brown n	nottled grev silty	
		2.70 3.00	D B		3.10	2.71		sandy gravelly CLAY with occasional of is subangular to subrounded mixed lith	cobbles. Gravel nology. Sand is	3 -
		3.00 3.00 3.00 3.10	D ES SPT B	N=6 (3,2/2,1,2,1)	0.110			fine to medium. Cobbles are subround Very soft dark grey very sandy CLAY of fragments and rare gravel. Sand is fine	with rare shell	
		4.00 4.00 4.00 - 4.45	B D UT							4 -
		4.50	SPT	N=4 (2,1/1,1,1,1)	4.50	1.31		Very soft grey sandy slightly gravelly S shell fragments. Sand is fine. Gravel		
		5.00 5.00 5.00 5.00 - 5.45 5.50	B D ES UT SPT	N=3 (1,1/1,0,1,1)				subrounded, fine to medium.	is subungular to	5 -
		6.00 6.00 6.00 - 6.45 6.50	B D UT SPT	N=2 (1,0/1,0,1,0)						6 -
		0.00	011	14-2 (1,0/1,0,1,0)			$\begin{array}{c} \times \times$			
		7.00 7.00 7.00 7.00 - 7.45 7.50	B D ES UT SPT	N=2 (1,0/1,0,1,0)						7 -
		8.00 8.00	B D							8 -
		8.50 - 8.95	UT		8.50	-2.69		Very soft grey slightly sandy SILT with	rare shells and	-
		9.00 9.00 9.00	B D SPT	N=2 (1,0/1,0,0,1)				shell fragments.		9 -
		10.00	В				$\times \times $			10 -
		10.00						Continued on Next Sheet		10

Remarks

Vertical datum: Chart datum. Horizontal datum: Irish grid reference coordinates system. CP drilling carried out on 25/05/2017. Casing left in place until RC was completed on 28/06/2017.

		G							Borehole No	0.		
GAVII	N & DOH	J						Bo	reho	ole Log	L01	
	SOLUTI									J	Sheet 2 of	3
Projec	t Name:	Foynes	Port	Jetty P	hase 2		roject No. 7022		Co-ords:	125226E - 151760N	Hole Type CP+RC	;
Locati	on:	Foynes	Port						Level:	5.81 m CD	Scale 1:50	
Client:		RPS							Dates:	25/05/2017 - 28/06/2017	Logged By CL +LB	/
Well	Water Strikes	Sample		n Situ			Depth (m)	Level (m)	Legend	Stratum Description	1	
	Otrikos	Depth (m) 10.00	Type D		Resul	is	(111)	(111)	× × × ×	Very soft grey slightly sandy SILT with	rare shells and	_
		10.00 - 10.45	UT						:	shell fragments.		=
		10.50	SPT	N=3	3 (1,0/0,	1,1,1)						11 -
		11.00 11.00	B D						× × × × × × × × × × × ×			11 =
		11.50 - 11.95	UT						X X X X X X X X X X X X X X X X X X X			- I
		12.00 12.00	B D						*			12
		12.00	SPT	N=2	2 (1,0/1, T	0,1,0)	12.40	-6.59	X X X X X	SWITCH TO ROTARY CORE		=
							12.10	5.55		No recovery		13
		12.40 - 15.80		0	0							14
												15 -
							15.80	-9.99	× × -×	Very soft, grey, very slightly coarse s	andy slightly	
		15.80 - 17.30		100	1.5.55		× × × × × × × × × × × × × × × × × × ×	silty CLAY. Sand is white. Rare tiny s	hell conch.	16		
							17.30	-11.49	××-	No recovery		
						17.45	-11.64	×_×_×	Very soft, grey, very slightly coarse silty CLAY. Sand is white. Rare tiny s			
		17.30 - 18.80		90			18.00	-12.19		High fractured limestone recovered a Medium dense, discontinuities are exto very closely. Grey clayey medium GRAVEL, angular and flat.	tremely closely	18
		18.80 - 20.30		53			18.80	-12.99		Medium dense, slightly sandy GRAV COBBLE. Gravels are dark grey and mottled and angular, cobbles are ligh angular.	orange	19
		T (5) TOD COD DO			RQD	-		\$ \$ 0 ° 0.			20 =	
Pemar	<u> </u>	Type/FI TCR SCR R				KUD	1					L

Vertical datum: Chart datum. Horizontal datum: Irish grid reference coordinates system. CP drilling carried out on 25/05/2017. Casing left in place until RC was completed on 28/06/2017.

Borehole No. **Rotary Core Log** L01 Sheet 3 of 3 Project No. Hole Type Foynes Port - Jetty Phase 2 Co-ords: 125225.82 - 151760.02 Project Name: 17022 CP+RC Scale Foynes Port 5.81 m CD Location: Level: 1:50 Logged By **RPS** Client: Dates: 25/05/2017 - 28/06/2017 CL Water Depth Type Coring Depth Level Well Legend Stratum Description Strikes /FΙ (m) (m) (m) TCR SCR RQD Medium dense, slightly sandy GRAVEL and COBBLE. Gravels are dark grey and orange 20.30 -14.49 mottled and angular, cobbles are light grey and sub-Medium dense, light grey with orange mottled, slightly sandy clayey GRAVEL with occasional 21 20.30 - 21.80 100 cobbles. Gravels and cobbles are sub-angular. 21.80 -15.99 Very soft, grey mottled yellow, sandy gravelly CLAY 22 with rare sub-angular cobble and numerous tiny pyrite nodules. 21.80 - 23.30 80 23 23.30 -17.49 Medium dense, slightly sandy clayey GRAVEL and COBBLE. Gravels are dark grey and orange mottled and angular, cobbles are light grey and subangular. 24 23.30 - 24.80 87 24.60 -18.79 No recovery 24.80 -18.99 Grey and light grey mottled brownish orange, slightly sandy gravelly sub-angular COBBLE. 25 24.80 - 26.30 80 26.00 -20.19 26 No recovery -20.91 26.72 Dense, light grey to grey, sandy clayey sub-angular GRAVEL with occasional cobble. 27 26.30 - 27.80 72 27.80 -21.99 No recovery 27 95 -22 14 Dense, light grey to grey brownish yellow, sandy 28 clayey angular GRAVEL and COBBLE with occasional tiny pyrite nodules. 27.80 - 29.30 90 29 29 30 -23 49 End of Borehole at 29.300m 30

Remarks

Vertical datum: Chart datum. Horizontal datum: Irish grid reference coordinates system. CP drilling carried out on 25/05/2017. Casing left in place until RC was completed on 28/06/2017.

GAVI	N & DOH	ERTY		Во	reh	ole Log	Borehole No L02 Sheet 1 of 3
Projed	ct Name:	Foynes Port - Jetty Phase 2	Project No. 17022		Co-ords:	125134E - 151754N	Hole Type CP+RC
Locat	ion:	Foynes Port			Level:	6.00 m CD	Scale 1:50
Client:	:	RPS			Dates:	26/06/2017 - 28/06/2017	Logged By CL+LB
Well	Water	Sample and In Situ Testing	Depth	Level	Legend	Stratum Description	

Client:		RPS					Dates:	26/06/2017 - 28/06/2017	CL+LB	/	
Well	Water	Sampl	e and li	n Situ Testing	Depth	Level	Legend	Stratum Description			_
	Strikes	Depth (m)	Туре	Results	(m)	(m)	9			L	
		0.50 0.50 1.00 1.00	B D B					MADE GROUND: Firm to stiff grey bro gravelly CLAY fill with occasional mixe Gravel is angular to subangular, fine t is fine to coarse. Cobbles are subang	ed cobbles. o coarse. Sand	1	
		1.00 1.00	ES SPT B	N=22 (3,5/4,5,7,6)						2	-
		2.00 2.00 2.00 2.60	D ES SPT B	N=14 (3,4/4,3,4,3)	2.50	3.50		MADE GROUND: Brown and grey silt GRAVEL with occasional cobbles. Gr		_	-
		3.00 3.00	B D		2.90	3.10		to subangular, fine to coarse. Sand is Cobbles are subangular to angular.		3	
		3.00 3.00 3.30	ES SPT B	N=3 (2,2/1,1,1,0)	3.30	2.70	× × × × ×	Very soft dark grey sandy gravelly CL Very soft to soft grey very sandy SILT	/		1
		4.00	В					shell fragments.	with occasional	4	
		4.00 4.00 - 4.45 4.00 4.50	D UT SPT	HVP=15 N=3 (2,1/0,1,1,1)							_
		5.00 5.00 5.00 5.00 5.50	B D ES	HVP=14 N=5 (1,2/1,1,2,1)	5.00	1.00	× × × × × × × × × × × × × × × × × × ×	Soft to very soft grey sandy SILT with fragments.	rare shell	5	; -
		6.00 6.00	B D							6	
		7.00 7.00 7.00	B D ES							7	
		7.50 - 7.95 7.50	UT	HVP=10			× × × × × × × × × × × × × × ×				3
		8.00 8.00 8.00	B D SPT	N=1 (1,0/1,0,0,0)	8.00	-2.00		Very soft grey slightly sandy SILT.		8	
		9.00 9.00 9.00 - 9.45 9.50	B D UT SPT	N=0 (1,0/0,0,0,0)						9	
		10.00	В				×××××	Continued on Next Sheet		10	

Vertical datum: Chart datum. Horizontal datum: Irish grid reference coordinates system. Shear Vane testing was carried out on UT samples at 12.00-12.45m and 13.50-13.95m using hand held Pilcon shear vane.

	GDG								Borehole No.			
U		U						Ro	reho	ole Log	L02	
	N & DOH							50	. 0110	olo Log	Sheet 2 of	3
Projec	t Name:	Foynes	Port - c	Jetty Pl	hase 2		Project No. 17022		Co-ords:	125134E - 151754N	Hole Type CP+RC	
Locati	on:	Foynes	Port						Level:	6.00 m CD	Scale 1:50	
Client:		RPS							Dates:	26/06/2017 - 28/06/2017	Logged By CL+LB	/
Well	Water	Sample	and I	n Situ	Testing		Depth	Level	Legend	Stratum Description	1	
	Strikes	Depth (m) 10.00	Type D		Results	;	(m)	(m)				
		10.50 - 10.95 10.50	UT		HVP=17				X	Very soft grey slightly sandy SILT.		ulmmin
		11.00 11.00 11.00	B D SPT	N=5	5 (1,1/1,2	,1,1)						11 -
		12.00 12.00 12.00 - 12.45 12.00 12.50	B D UT SPT	N=4	HVP=19 1 (1,2/1,1				X X X X X X X X X X X X X X X X X X X			12
		13.00 13.00	3.00 D 0 - 13.95 UT									13
		13.50 - 13.95 13.50				;			*			
		14.00 14.00 14.00	B D SPT	N=3	3 (1,1/1,0	,1,1)						13
		15.00 15.00 15.00 - 15.45 15.50	B D UT SPT	N=2	2 (1,1/0,1	,0,1)			X X X X X X X X X X X X X X X X X X X			15 -
		16.00 16.00	B D						*			16
		16.32 - 17.30		0			16.30	-10.30		SWITCH TO ROTARY CORE. No recovery	/	17 -
		17.30 - 18.80		100			17.30	-11.30	× × × × × × × × × × × × × × × × × × ×	Very soft, grey, slightly sandy silty CL tiny shell conch.	AY with rare	17
							18.50 ————————————————————————————————————	-12.50 -12.80	× ×	Dense, fissured: breaks into blocks a unpolished discontinuities, grey, anguto coarse GRAVEL.		19
		18.80 - 20.30		67	3		19.30	-13.30		Medium loose, grey, clayey angular n coarse GRAVEL. Grey, sandy clayey sub-angular COB	/	19 -
			Type/FI	TCR	SCR	RQE	19.80	-13.80	0 0 0 0 0 0	No recovery		20 —
Remar	ks						•				8	-00

Vertical datum: Chart datum. Horizontal datum: Irish grid reference coordinates system. Shear Vane testing was carried out on UT samples at 12.00-12.45m and 13.50-13.95m using hand held Pilcon shear vane.

	T DG							Borenole No.				
GAVIN	N & DOHI							Rota	ary (Core Log	L02	
	ct Name		s Port	- Jetty	Phase		roject No. 7022		Co-ords:	125134.34 - 151754.10	Sheet 3 of a Hole Type CP+RC	
.ocat	ion:	Foynes	Port						Level:	6.00 m CD	Scale 1:50	
Client	:	RPS							Dates:	26/06/2017 - 28/06/2017	Logged B	у
Nell	Water Strikes	Depth (m)	Type /FI		Coring		Depth (m)	Level (m)	Legend	Stratum Description		
				TOIX		1102				No recovery		
		20.30 - 21.80		73	20	20	20.70	-14.70		Fissured: breaks into blocks along un discontinuities, grey yellow mottled, s sandy clayey, bouldery COBBLE. Bou cobbles are angular to sub-angular.	ub-angular,	21 -
							21.80	-15.80		No recovery		22
		21.80 - 23.30		73			22.20 22.30	-16.20 -16.30		Strong, laminated, black when wet, fir grained LIMESTONE with rare pyrite Discontinuities are very closely, rough smooth stepped, aperture from very ti moderately wide. Strong, very thinly laminated, grey, m grained LIMESTONE with rare pyrite Discontinuities are closely, roughness	nodules. iness is ght to edium fine nodules.	23 —
		23.30 - 24.80		100	13					undulating, aperture from partly open Surface staining orange.		24
		24.80 - 25.80 25.60	С	100	16		- 24.80	-18.80		Strong, thinly laminated, dark grey LII with rare tiny pyrite nodules. Discontic closely to closely, smooth undulating, partly open to open, fine sandy soil in surfaces staining orange.	nuities are very apertures	25 —
							25.80	-19.80		End of Borehole at 25.800	m	26
												27 —
												28 -
												29

Vertical datum: Chart datum. Horizontal datum: Irish grid reference coordinates system. Shear Vane testing was carried out on UT samples at 12.00-12.45m and 13.50-13.95m using hand held Pilcon shear vane.

Sheet 1 of 2 Sheet 1 of 2 Sheet 1 of 2 Sheet 1 of 2	G	D	G				Βo	reho	nle I na	Borehole N	lo.
Project Name: Polymer Port - Jerly Phase 2 17/022 12/03961: 12/03961: 12/07/039 15/00 15/0									oic Log		2
Clocation Foynes	Projec	ct Name:	Foynes	Port	lefty Phase 2	•		Co-ords:	125098E - 151770N		Э
Mark Stratus	Locati	on:	Foynes	Port				Level:	6.38 m CD		
Strikes	Client:		RPS					Dates:	18/05/2017		у
AADE GROUND Medium dense brownish prey very sub-rounded.	Well							Legend	Stratum Descripti	ion	
3.00		GIINES	1.00 1.00 1.00 1.00 2.00	B D ES SPT	N=38 (7,9/38 for 0m	m) 1.40			silty GRAVEL. Gravel is fine to coal sub-rounded. MADE GROUND: Medium dense bl Gravel is fine to coarse, angular to s	rse, subangular to	· -
4.50 - 4.95 UT 5.00 B 5.00 ES 5.00 ES 5.00 ES 6.00 D 6.00 ES 6.00 ES 6.00 ES 6.00 ES 7.00 ES 7.00 ES 7.00 B 7.00 ES 7.00 ES 7.00 ES 7.00 B 7.00 B 8.00 B 8.			3.00 3.00 3.00 4.00 4.00	3.00 D ES 3.00 SPT N=21 (4,4/5,6,5, 4.00 B D 4.00 SPT N=8 (3,3/2,3,2,							
Solution Set			4.50 - 4.95 5.00 5.00	00 D N=8 (3,3/2,3,2,1) - 4.95 UT 00 B					GRAVEL. Gravel is angular to suba	ly CLAY/clayey ingular fine to	5 —
Continued on Next Sheet Reserved to the continued on Next Sheet Re			5.00 5.50 - 5.95 6.00	SPT UT B	N=5 (1,1/1,2,1,1)	5.30	1.98		Very soft dark grey very sandy CLA	Y.	6 —
7.00			6.00 6.00 6.50 - 6.95	ES SPT UT	N=2 (1,1/0,1,0,1)						
8.00 B B N=1 (1,0/0,0,1,0) 9.00 B 9.00 B 9.00 ES 9.00 SPT UT 10.00 B N=0 (1,0/0,0,0,0) 8.50 - 8.95 UT N=1 (1,0/0,0,1,0) 9.00 -0.92			7.00 7.00	7.00 D 7.00 ES	7.30	1.08	×××× ××××	Soft, grey, sandy SILT. Sand is fine		7 —	
9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00			8.00 B 8.00 SPT N=1 (1,0/0,0,1,0) 8.50 - 8.95 UT 9.00 B 9.00 D 9.00 ES 9.00 SPT N=0 (1,0/0,0,0,0)						8 —		
10.00 B Continued on Next Sheet				9.00	-0.92		Soft, grey, clayey SILT.		9 -		
Remarks			10.00	В				^_^_X	Continued on Next She	eet	10 -

Vertical datum: Chart datum. Horizontal datum: Irish grid reference coordinates system. Chiselled for 1 hour at 18.3m. Client confirmed OK to pull off hole.

G	D	G				Bo	reho	ole Log	Borehole N	lo.
	N & DOH						1011	olo Log	Sheet 2 of	2
Projec	t Name:	Foynes	Port - J	etty Phase 2	Project No. 17022		Co-ords:	125098E - 151770N	Hole Type CP	€
Locati	on:	Foynes	Port				Level:	6.38 m CD	Scale 1:50	
Client:		RPS					Dates:	18/05/2017	Logged B CB	у
Well	Water Strikes			Situ Testing	Depth (m)	Level (m)	Legend	Stratum Descripti	ion	
	Ounco	Depth (m) 10.00	Type D	Results	()	(111)	$\times \times \times \times$	Soft, grey, clayey SILT.		
		11.00 11.00 11.00 11.00	B D ES SPT	N=0 (1,0/0,0,0,0 N=1 (1,0/0,0,1,0	11.00	-2.62		Very soft to soft grey slightly silty CL occasional shells	.Ay with	- 11
		11.50 - 11.95 UT 12.00 B 12.00 D 12.00 SPT N=1 (1,0/0,1,0,0 12.50 UT 13.00 B 13.00 D 13.00 ES 13.00 SPT N=1 (1,0/1,0,0,0			12.00	-4.62	× - × - × - × - × - × - × - × - × - × -	Very soft grey slightly silty CLAY wit timber like fragments.	h rare organic	12 —
		13.00 B 13.00 D 13.00 ES 13.00 SPT 13.50 UT		13.00	-5.62	X X X X X X X X X X X X X X X X X X X	Soft grey sandy clayey SILT. Sand	is fine.	13 —	
		14.00 14.00 14.00 14.50	13.50 UT 14.00 B 14.00 D 14.00 SPT N=1 (1,0/1,0,0,0)		14.00	-6.62	X X X X X X X X X X X X X X X X X X X	Soft grey slightly silty CLAY with rar	e shell fragments.	14 —
		15.00 15.00 15.00 15.00	B D ES SPT	N=2 (1,0/1,0,1,0)		X X X X X X X X X X X X X X X X X X X			15 —
		16.00 16.00 16.00	16.00 B 16.00 D)		X X X X X X X X X X X X X X X X X X X			16 —	
		17.00 B 17.00 D 17.00 ES 17.00 SPT N=5 (1,0/1,1,1,2))		X X X X X X X X X X X X X X X X X X X			17 —		
		18.00 18.00 18.00	B D SPT	N=50 (5,5/50 for 150mm)	18.00	-7.62 -11.62	× × × × × × × × × × × × × × × × × × ×	Medium dense brownish grey and b GRAVEL. End of Borehole at 18.3	,	18 —
										19 —

Vertical datum: Chart datum. Horizontal datum: Irish grid reference coordinates system. Chiselled for 1 hour at 18.3m. Client confirmed OK to pull off hole.

Gl		G				Ro	roha	ole Log	Borehole N	lo.
	& DOHI					טט		de Log	Sheet 1 of	
Project I			Port - Jet	ty Phase 2	Project No. 17022		Co-ords:	125256E - 151842N	Hole Type	Э
_ocation	ո:	Foynes	Port				Level:	1.82 m CD	Scale 1:50	
Client:	/ell Water	RPS					Dates:	07/04/2017 - 08/04/2017	Logged By CL	у
				Situ Testing	Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
	DIIINGS	Depth (m)	Туре	Results	(111)	(111)	₩ . — X	Very soft to soft grey silty, slightly san	dy CLAY	-
		0.50 0.50 1.00 1.00 1.00 1.00 2.00 2.00 2.00 2.00 - 2.45 3.00	B D B D ES UT B D ES P UT	Ublow=6 HVP=30 HVP=36						

5.00 5.00 - 5.45

> 5.50 5.50

6.50 - 6.95

7.00 7.00

8.00

8.50 8.50

9.00 9.00

9.50 - 9.95

10.00

ES UT

> B D

UT

B D

SPT

B D

B D

UT

В

Ublow=9

Ublow=6

N=0 (0,0/0,0,0,0)

Ublow=9

Vertical datum: Chart datum. Horizontal datum: Irish grid reference coordinates system.

At 9.0m possible fragment of compressed peat block with faint writing embossed.

Continued on Next Sheet

6

7

8

9

10 -

		G					–				Borenole No.		
GAVII	N & DOH							Во	reho	ole Log	L04 Sheet 2 of	3	
rojec	t Name:	Foynes	Port - c	Jetty P	hase 2		Project No. 17022		Co-ords:	125256E - 151842N	Hole Type CP+RC	,	
ocati	on:	Foynes	Port						Level:	1.82 m CD	Scale 1:50		
lient:		RPS							Dates:	07/04/2017 - 08/04/2017	Logged By CL	,	
Well	Water Strikes	Sample	e and I	n Situ			Depth	Level	Legend	Stratum Description			
	Strikes	Depth (m) 10.00	Type D		Result	ts	(m)	(m)	XX			=	
		11.00 11.50 11.50 12.50 - 12.95 13.00 13.00 14.00 14.50 14.50	SPT B D UT SPT B D		0 (0,0/0, Ublow=	13	13.30	-11.48		Blow 12.5m slightly sandier with occ shell fragments noted. Medium dense, fine to coarse GRAVE		13 14 15 15 16 17 18 18 18 18 18 18 18	
		15.50 - 15.70		100	0	0	15.50	-13.68		SWITCH TO ROTARY CORE	/		
		15.70 - 17.20		87						Medium dense, fine to coarse GRAVI	EL of limestone	16	
		17.20 - 18.70		100								18	
		18.70 - 20.20		80								19	
			Type/FI	TCR	SCR	RQD	<u> </u>					20 =	
				_					_				

	CDC											0.
GAVII	N & DOH	ERTY						Rota	ary (Core Log	L04	
GEC	SOLUTIO										Sheet 3 of	
roje	ct Name	: Foynes	Port -	- Jetty	Phase		oject No. '022		Co-ords:	125256.15 - 151842.30	Hole Type CP+RC	9
.ocat	ion:	Foynes	Port						Level:	1.82 m CD	Scale 1:50	
Client	:	RPS							Dates:	07/04/2017 - 08/04/2017	Logged B CL	У
Nell	Water Strikes	Depth (m)	Type /FI		Coring		Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
		()		TCR	SCR	RQD	,	,		Medium dense, fine to coarse GRAVI	EL of limestone	=
												=
		20.20 - 21.70		80								
		20.20 - 21.70		00								21
												22 -
		21.70 - 23.20		100								
		21.70 - 23.20		100								
												23
		23.20 - 24.70		100								
		23.20 - 24.70		100								24
												=
												. 3
												25
		24.70 - 26.20		100								=
		24.70 - 20.20		100								
												1 =
							26.20	-24.38				26
								_ 1.50	, , , 0, 2, 5, 0, 0,	Sub angular to subrounded fine to co black limestone, with occasional grav	el of light grey/	
									0 0 0 0 0 0	white limestone, and cobbles of black	limestone.	
		26.20 - 27.70		100					,			27
									0,00000	Between 27.0 & 27.2m gravelly cla	у	27 =
									, , , , , , , ,			
							27.70	-25.88	0 0 0 0 0 0			
										Strong to very strong, very thinly to the black, fine grained LIMESTONE. Frac	ctures are sub	28
										horizontal to sub vertical & clean. Bul intact.	k of mass non	20 =
		27.70 - 29.20		100	23	0						
												29
							29.20	-27.38		All motorial blook LIMEOTONIE	m r laimbler	29 =
				,		_			 	All material black LIMESTONE but ve fractured.	ry mgmy	
		29.20 - 29.90		100	14	0						
							29.90	-28.08	<u> </u>	End of Borehole at 29.900)m	30 =
												30 —

GD GAVIN & DO GEOSOLUT					Во	reho	ole Log	Borehole No. L05 Sheet 1 of	
Project Name	: Foynes	Port - J	letty Phase 2	Project No. 17022		Co-ords:	125329E - 151877N	Hole Type CP+RC	
Location:	Foynes	Port				Level:	1.09 m CD	Scale 1:50	
Client:	RPS					Dates:	10/04/2017 - 11/04/2017	Logged By CL	′
Well Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Descriptio	on	
Strikes	0.50 0.50 1.00 1.00 1.00 1.50 1.50 2.00 2.50 2.50 3.00 3.00 3.50 3.75 4.00 5.00 5.00 5.00 5.00 5.00 6.50 7.00 7.00 8.00	Type B D B D ESUT B D ESUT B D P B D ESUT B D UT B D ESUT B D SPT B D UT B	Results HVP=18 N=0 (0,0/0,0,0,0)	(m)	(m)	Egglid	Very soft grey silty CLAY		1 2 3 4 5 6 7 8 9
	9.50 9.50 10.00	B SPT B	N=0 (0,0/0,0,0,0)			X	Continued on Next Shee	t	10

)G							Borehole No.			
GAVII	N & DOH	ERTY						Bo	reho	ole Log	L05	
GEC	SOLUTIO	SNC									Sheet 2 of	
Projec	t Name:	Foynes	Port - 、	Jetty P	hase 2		Project No. 17022		Co-ords:	125329E - 151877N	Hole Type CP+RC	!
Locati	on:	Foynes	Port						Level:	1.09 m CD	Scale 1:50	
Client:		RPS							Dates:	10/04/2017 - 11/04/2017	Logged By CL	/
Well	Water Strikes	Sample Depth (m)			Testing Result		Depth (m)	Level (m)	Legend	Stratum Description	ı	
		10.00	Type D		Resuit	5		` '	×_^_×	Very soft grey silty CLAY		
		11.00 11.50 11.50 11.50 12.50	UT B D SPT	N=0	0 (0,0/0,0	0,0,0)	12.20	-11.11		Very soft to soft, light grey, silty, slightly Occasional small shell fragments noted	/ sandy CLAY. d.	11
			10 D UT 10 B								14	
		15.50 15.50 16.00 16.00	B SPT B D	SPT N=50 (7,8/50 for 160mm) B D N=50 (9,14/50 for 160mm)			15.40	-14.31 -16.11		Very stiff, slightly sandy, indistinctly lan CLAY.	ninated, black	16
	17.20 - 18.70 17.20 - 20.20		93	135mm 53	0	17.20	17.20 -16.11		SWITCH TO ROTARY CORE Strong, very thinly to thinly bedded, b grained, LIMESTONE. Fractures sub parallel to bedding, with secondary st Fractures sub horizontal (bedding o extremely to very closely spaced, cl set sub vertical, very closely spaced of fractures) with slight ironstaining. (18.55-18.7) becoming NI, probably Strong, very thinly to thinly bedded, grained, LIMESTONE. Fractures su parallel to bedding, with secondary	horizontal, lo vertical set. rientated), ean. Secondary I (parallel to line At base of run drill induced. black, fine b horizontal,	18 —	
			Type/FI	TCR	SCR	RQI	ر					

GAVII GEO	N & DOH					Rotary Core Log					L05 Sheet 3 of 3	
	ct Name		s Port	- Jetty	Phase		Project No.		Co-ords:	: 125329.45 - 151877.00	Hole Type CP+RC	
ocat	ion:	Foynes	Port						Level:	1.09 m CD	Scale 1:50	
Client	t:	RPS							Dates:	10/04/2017 - 11/04/2017	Logged By CL	/
Well	Water Strikes	Depth (m)	Type /FI		Corin	g RQE	Depth (m)	Level (m)	Legend	Stratum Description	1	
		20.20 - 21.70		93	80	0				Fractures sub horizontal (bedding on extremely closely spaced. Sub vertic tight and clean but in combination wiresult in core being highly fractured. Fractures generally sub horizontal, borientated. Fractures sub horizontal (bedding on extremely to very closely spaced, cle	al fractures th first set edding ientated),	21 -
		21.70 - 23.20 93 27 (0				set sub vertical, very closely spaced of fractures) clean. Non Intact	(parallel to line	22 -			
24.20	23.20 - 24.20		100						Core liner split, core recoverd as Nor on core box. Fractures sub horizontal (bedding on		24 -	
	24.20 - 24.70 24.70 - 26.20		100	6	0				extremely to very closely spaced, cle set sub vertical, very closely spaced of fractures) clean. Non Intact	an. Secondary	25 –	
						26.20	-25.11		Fractures sub horizontal to sub vertice bedding orientated), extremely to ver spaced, clean. End of Borehole at 26.200r	ry closely	26 -	
											27	
											28 -	
												29 -

		\overline{C}					Borehole No	о.		
GAVI	N & DOH	IERTY				Bo	reho	ole Log	L06	
	SOLUTI						1		Sheet 1 of	
Projec	t Name:	Foynes	Port - J	letty Phase 2	Project No. 17022		Co-ords:	125369E - 151867N	Hole Type CP+RC	
Locati	on:	Foynes	Port				Level:	6.54 m CD	Scale 1:50	
Client:		RPS					Dates:	03/07/2017 - 06/07/2017	Logged By LB	'
Well	Water	Sample	and l	n Situ Testing	Depth	Level	Legend	Stratum Description		
*****	Strikes	Depth (m)	Туре	Results	(m)	(m)	Logona	Drilled straight to 9.00 m to drill through 6	existing hard	
										1 1 1 1 1 1 1 1 1 1
										2 -
										1111111
										3
										4
										4 —
										_
										5
										7
										6
										IIIIIIIIIII
										7 -
										8 =
		9.00 9.00	B SPT	N=9 (1,2/2,2,3,2	9.00	-2.46	X X X X	Very soft, grey mottled dark grey, slightly CLAY with rare sub-rounded cobbles and	sandy silty I gravels.	9
		10.00	В		10.00	-3.46	×	Continued on Next Sheet		10
Pamai										

GAVI	N & DOH	ERTY		Во	reho	ole Log	Borehole No L06 Sheet 2 of 4
Projed	ct Name:	Foynes Port - Jetty Phase 2	Project No. 17022		Co-ords:	125369E - 151867N	Hole Type CP+RC
Locati	ion:	Foynes Port			Level:	6.54 m CD	Scale 1:50
Client:		RPS			Dates:	03/07/2017 - 06/07/2017	Logged By LB
Well	Water Strikes	Sample and In Situ Testing Depth (m) Type Results	Depth (m)	Level (m)	Legend	Stratum Description	n

Client:		RPS					Dates:	03/07/2017 - 06/07/2017	LB	
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	n	
	Ollikes	Depth (m)	Туре	Results	(111)	(111)				
		10.00 11.00 11.00	SPT B SPT	N=10 (1,1/2,3,2,3) N=3 (1,0/1,1,0,1)	11.00	-4.46	X - X - X - X - X - X - X - X - X - X -	Very soft, grey mottled dark grey, slight CLAY with rare angular gravels. Very soft, mottled dark grey, slightly sa		11 -
		12.00 12.00	B SPT	N=2 (0,0/0,1,0,1)	12.00	-5.46	X X X	Very soft, dark grey, slightly sandy silt sub-angular gravels and occasional sl	y CLAY with rare nell conch.	12 -
		13.00 13.00 13.00 - 13.40	B D UT	Ublow=19	13.00	-6.46	X	Very soft, grey black stripped, slightly CLAY, with occasional tiny shell conch	sandy silty	13 -
		14.00 14.00 14.00 - 14.50	B D UT	Ublow=6			X X X X X X X X X X X X X X X X X X X			14 -
		15.00 15.00 - 15.50	B UT	Ublow=7						15 -
		16.00 16.00 - 16.50	B UT	Ublow=9	16.00	-9.46	X X X X X X X X X X X X X X X X X X X	Very soft, grey, slightly sandy silty CL/ occasional tiny shell conch.	AY, with	16 -
		17.00 17.00 - 17.50	B UT	Ublow=13						17 -
		18.00 18.00 - 18.50	B UT	Ublow=16						18 -
		19.00 19.00 - 19.50	B UT	Ublow=12	19.00	-12.46	X X X X X X X X X X X X X X X X X X X	Very soft, grey, slightly sandy silty CL/	AY.	19 ·
		20.00	В		20.00	-13.46	<u> </u>	Continued on Next Sheet		20 -

		\overline{C}							Borehole No	о.		
GAVI	N & DOH							Bo	reho	ole Log	L06	
GEC	SOLUTI	SNC					' ()		1	_	Sheet 3 of	
Projec	t Name:	Foynes	Port - J	letty P	hase 2		oject No. 022		Co-ords:	125369E - 151867N	Hole Type CP+RC	
Locati	on:	Foynes	Port			·			Level:	6.54 m CD	Scale 1:50	
Client:		RPS							Dates:	03/07/2017 - 06/07/2017	Logged By LB	,
Well	Water	Sample	and l	n Situ	Testing		Depth	Level	Legend	Stratum Description		
****	Strikes	Depth (m)	Туре		Results		(m)	(m)	Logona			
		21.00 21.00 - 21.50	UT B UT		Ublow=14					Very soft, grey, slightly sandy silty CLAY occasional tiny shell conch and rootlets	, with	21 -
							21.40	-14.86		SWITCH TO ROTARY CORE		=
		21.40 - 23.30		0						No recovery		22
							22.20	16.76				1
							23.30	-16.76	××	Firm, dark grey, silty CLAY		3
							23.56	-17.02		No recovery		3
		23.30 - 24.80		17								24
							24.80	-18.26	0.00.00	Limestone recovered as cobbles. Dark	arev slightly	3
							25.47	-18.93		gravely sub-angular and flat COBBLE occasional tiny pyrate nodules. Gravel angular.	with	25
		24.80 - 26.30		45			25.47	-10.93		No recovery		3
												🗐
							- 26.30	-19.76		No recovery		26
												1
		26.30 - 27.80		53			27.00	-20.46		Limestone recovered as cobbles. Dark sub-angular and flat COBBLE.	grey, gravely	27
							27.80	-21.26		No recovery		1
												28
		27.80 - 29.30		60	60		28.40	-21.86		Medium dense, dark grey, sub-angular with some occasional clayey infilling	GRAVEL	29
							29.30	-22.76		Limestone recovered as cobbles. Dark	grey, gravely	1
		29.30 - 30.10		50					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	sub-angular and flat COBBLE.	J J. grandly	30
Pemai	<u> </u>		Type/FI TCR SCR R									30

GDG								_		Borenole N	10.	
GAVII	N & DOHER	RTY						Rota	ary C	Core Log	L06	
GEC	SOLUTION	S									Sheet 4 of	
roje	ct Name:	Foyne	s Port	- Jetty	Phase 2		roject No. 7022		Co-ords:	125369.14 - 151866.64	Hole Type CP+RC	
.ocat	ion:	Foynes	s Port						Level:	6.54 m CD	Scale 1:50	
Client	t:	RPS							Dates:	03/07/2017 - 06/07/2017	Logged B	у
	Water	Depth	Туре		Coring		Depth	Level			LB	
Vell	Water Strikes	(m)	/FI	1	SCR F	≀QD	(m)	(m)	Legend	Stratum Descriptio		
							30.10	-23.56	.4.0.	Limestone recovered as cobbles. Dar sub-angular and flat COBBLE. End of Borehole at 30.100	·k grey, gravely	1
										Lift of Borefiole at 50.100	""	<u> </u>
												31
												31 -
												32
												-
												33 -
												34
]
												35
												36
												37 -
												38 -
												39 -
												40 -
ema	rke										75	

							Borehole No	0.		
GAVI	N & DOH	J EDTY				Во	reho	ole Log	L07	
GEO	SOLUTIO							3	Sheet 1 of	2
Projec	t Name:	Foynes	Port - c	Jetty Phase 2	Project No. 17022		Co-ords:	124814E - 151810N	Hole Type CP+RC	•
Location	on:	Foynes	Port				Level:	1.29 m CD	Scale 1:50	
Client:		RPS					Dates:	30/05/2017 - 31/05/2017	Logged By CB	/
Well	Water Strikes	Sample		n Situ Testing	Depth	Level	Legend	Stratum Description		
	Strikes	Depth (m) 0.00	Type B	Results	(m)	(m)	×	Very soft dark blackish grey silty CLAY	•	
		0.00	D					Very soit dark blackish grey silty OLAT		
		0.50 0.50	B D							
		1.00 1.00 - 1.45	ES UT	Ublow=7			× - × - × - × - × - × - × - × - × - × -			1 -
		1.50 1.50	B D				XX	rare organic timber fragments		
		2.00	SPT				XX			2 -
		2.50 2.50	B D				XX			
		2.75		HVP=44			XX_			=
		3.00 3.00	ES UT				XX			3 =
		3.00 - 4.00	Р				××			
						×			=	
							XX			. =
		4.05		111/0-54			×——×			4 =
		4.25 4.50		HVP=51			×——×			=
		4.50	B D					slight increase in stiffness		=
		5.00	ES							5 -
		5.00 - 5.45	UT	Ublow=9			× × ×			3 =
		5.50	В							=
		5.50	D				×_×_×			=
							××_			6 =
							××			
		6.50	SPT	N=1 (0,0/0,0,0,1)		××			=
							×			
		7.00	В				××			7 =
		7.00	D				XX_			=
					7.50	-6.21	×	Medium dense very clayey black fine t	o coarse	=
		7.80	В					angular some tabular GRAVEL (of blace	ck fine graned	
		7.80	SPT	N=50 (4,6/50 for 45mm)	7.90	-6.61	OXO S	limestone), clay is grey		8 =
							ovo s	SWITCH TO ROTARY CORE Extremely highly weathered rock reco	avered as very	=
		7.90 - 9.20		54			0,×0, \$	dense blackish grey silty GRAVEL wi	th boulders,	=
							0,×0, \$	gravel is fine to coarse subangular		=
							0, 0, 8			9 =
	-		1		9.20	-7.91	× × × ×	Extremely highly weathered rock reco		
		9.20 - 10.70		87			× × × ×	gravel is fine to coarse subangular, or	obbles are	
							× × × ×	grey subrounded		
	Type/FI TCR SCR RQ)D		0			10 -	
Remar	ks			<u> </u>					8	

10.70 - 12.20 87 12.00 -10.71 Strong grey slightly weathered fractured fine grained LIMESTONE. Fractures are closely spaced, generally subhorizonal with solen and planar rough with clay infil. 13 - 13.70 - 15.20 100 15.20 - 16.50 100 16.90 C 17.10 C 15.01 18.00 -16.71 End of Borehole at 18.000m 18									_ ,	_	_	Borenole N	υ.
Project Name: Foynes Port - Jetty Phase 2 Project No. 17022 Co-ords: 124814.05-151810.37 Cherk Reps Location: Foynes Port - Level: 1.29 m CD	GAVI	N & DOH	ERTY						Rota	ary (Core Log	L07	
CP-RC	GEC	SOLUTIO	NS				_			T			
Cilient: RPS Coring Dates: 3005/2017 - 31/05/2017 Dagged By CB	Proje	ct Name	: Foynes	s Port	- Jetty	Phase 2				Co-ords:	124814.05 - 151810.37		
Weel Water Depth Type Coring Depth Strikes Coring Tipe Tork Scr ROD Coring C	Locat	ion:	Foynes	Port						Level:	1.29 m CD		
Strikes	Clien	t:	RPS							Dates:	30/05/2017 - 31/05/2017		У
10.70 10.71 10.70 10.71 10.70 10.71 10.70 10.71 10.70 10.71 10.70 10.71 10.70 10.71 10.70 10.71 10.70 10.71 10.70 10.71 10.70 10.71 10.70 10.70 10.71 10.70 10.71 10.70 10.71 10.70 10.71 10.70 10.71 10.70 10.7	Well	Water Strikes	Depth (m)		1	_	10D	Depth (m)		Legend	Stratum Descriptio	n	
12.00 -10.71 Strong grey slightly weathered fractured fine grained LMESTONE. Fractures are closely spaced, generally subnoral with some subvertical, open, surfaces are undulating smooth and planar rough with clay infill. 13.70 - 15.20		_	()		TCR	SCR F	(QD				dense blackish grey silty GRAVEL wit gravel is fine to coarse subangular, or grey subrounded Highly fractured rock recovered as de	th cobbles, obbles are	=======================================
12.20 - 13.70 93 13 -			10.70 - 12.20		87			12.00	-10.71				11 -
13.70 - 15.20	15.2	12.20 - 13.70	_	93			12.00	-10.71		grained LIMESTONE. Fractures are spaced, generally subhorizontal with subvertical, open, surfaces are undul and planar rough with clay infill.	closely some	13	
16.90 C 17.10 C 18.00 -16.71 End of Borehole at 18.000m 18 -		13.70 - 15.20		100								14 -	
17.10 C 18.00 -16.71 End of Borehole at 18.000m 18 -		15.20 - 16.50	-	100								16	
19 -												17	
								18.00	-16.71		End of Borehole at 18.000	ım	18 -
	Dom:-	rke						_					20 —

									Borehole No	0.		
	יעו	U						Bo	reho	ole Log	L08	
GAVII	N & DOH SOLUTIO								. •	3.0 _09	Sheet 1 of	2
Projec	t Name:	Foynes	Port - J	Jetty P	hase 2		Project No.		Co-ords:	124828E - 151847N	Hole Type	
			Б.				17022			0.40	CP+RC Scale	
Locati	on:	Foynes	Port						Level:	0.18 m CD	1:50	
Client:		RPS							Dates:	31/05/2017 - 01/06/2017	Logged By CB	/
Well	Water Strikes			n Situ	Testing		Depth (m)	Level (m)	Legend	Stratum Description	1	
	Cumoo	Depth (m) 0.00	Type B		Results	3	()	()	× ~ ~×	Very soft dark grey silty CLAY		=
		0.00	D						×-×-×	, , ,		
		0.50 0.50	B D						<u> </u>			
		1.00	ES						×X			1 -
		1.00 - 1.45	UT		Ublow=5	5			XX			1 =
		1.50	В						×			=
		1.50 1.75	D		HVP=41	ı			××			
		2.00	P		ΠVΓ-41	ı			×——×			2 =
									×_×_×_			=
									× × ×			=
		3.00	ES						× × ×			3 =
		3.25			HVP=26	6			×_×_×			=
		3.50	В				3.50	-3.32	× × ×	Soft dark grey very silty CLAY to very	clavey SILT	=
		3.50	D						×	Cont dank grey very sinty OL/11 to very	olaycy olei	=
		4.00	SPT	N=6	6 (1,0/1,1	,2,2)			<u> </u>			4
									××			=
		4.50	В				4.50	-4.32	× × ×	Soft silty gravelly CLAY , gravel is blace	ck fine to coarse	=
		4.50	D							angular some tabular (of black fine gra	aned limestone)	
		5.00	ES									5 =
												=
		5.50	SPT	N=1	3 (2,3/3,3	3,4,3)						=
		6.00 6.00	B D									6 =
		0.00										=
		6.80	В		, ,		6.80	-6.62	· - · - · - · - · · · · · · · · · · · ·	Madium dama hiiiiii	en a namula :	
							6.90	-6.72		Medium dense black silty fine to coar some tabular GRAVEL (of black fine	grained	7 =
										limestone), possibly extremely weath	lerea rock	
		6.90 - 8.20		38			7.70	-7.52		SWITCH TO ROTARY CORE No recovery		8
										Stong dark grey highly fractured LIM fractures are subhorizontal extremely	/ closely	=
		8.08	С				_			spaced planar rough with some light orange staining and some silt infill	brownish	8 -
		8.20 - 9.70		100								9 =
			-				\dashv					
			TOD OOD DOD			\dashv					10 =	
Pemar	<u>. </u>		Type/FI TCR SCR RQE				י					

GAVI	GDG GAVIN & DOHERTY GEOSOLUTIONS						Rota	ary (Core Log	Borehole No	0.	
GEC	SOLUTIO	NS				Pr	oject No.			-	Sheet 2 of : Hole Type	
Proje	ct Name:	: Foyne:	s Port	- Jetty	Phase		7022		Co-ords:	124828.29 - 151847.19	CP+RC	,
Locat	tion:	Foynes	Port						Level:	0.18 m CD	Scale 1:50	
Clien	t:	RPS							Dates:	31/05/2017 - 01/06/2017	Logged B	у
Well	Water Strikes	Depth (m)	Type /FI	TCR	Coring SCR	RQD	Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
		10.31	С							Stong dark grey highly fractured LIME fractures are subhorizontal extremely spaced planar rough with some light lorange staining and some silt infill	closely	
		10.87	С									11 -
		11.40 11.47	C									
							11.80	-11.62		End of Borehole at 11.800	m	12
												13
												14
												15
												16 —
												16 17 18 19 19 19 19 19 19 19
												18
												19 -

GDG											Borehole No	ο.
GAVIN &	DOHERTY							Rota	ary (Core Log	LD01	
GEOSO	LUTIONS								_	_	Sheet 1 of 2	2
Project N	Name: F	oynes F	ort	Jetty I	Phase 2		roject No. 7022		Co-ords:	126209.57 - 152112.41	Hole Type RC	;
Location	ı: F	oynes P	ort						Level:	5.81 m CD	Scale 1:50	
Client:	F	RPS							Dates:	05/05/2017	Logged By	у
W	ater De	oth T	уре		Coring		Depth	Level		2		
Well	rikes (m		, L		SCR F	RQD	(m)	(m)	Legend	Stratum Descriptio	n	
	0.5 0.5 1.0 1.0	00	D ES B D ES				0.30	5.51 4.51		MADE GROUND Firm, slightly sandy, silty, gravelly CL fine to medium sub angular. Driller no of cobbles. Soft to very soft, grey silty CLAY.		1 -
	2.0 2.0 2.0 2.5	00	B D ES									2 —
	3.0	3.00 B 3.00 D 3.00 ES						× × ×			3 -	
	4.0	00	D						× × × × × × × × × × × × × × × × × × ×			4 -
	5.0 5.0 5.0	00	B D ES						X X X X X X X X X X X X X X X X X X X	At 5.0m wet orange-brown silty, sar coarse sub angular to sub rounded limestone.		5 —
	6.0 6.0 6.0	00	B D ES						X X X X X X X X X X X X X X X X X X X			6 -
	7.0 7.0 7.0 7.5	00	B D ES				7.70	-1.89	× × × × × × × × × × × × × × × × × × ×	Water strike, rose to 4.8m in 20 min Between 7.1m and 7.7m driller note	es peat bands.	7 -
	8.0 8.0 8.0	00	B D ES				-	-1.09		COBBLES over claybound BOULDE glacial till with much of fines/clay lost	RS. Assumed in flush.	8 —
	8.50 -	9.50		100			- 9.50	-3.69				9 —
					-	2.30		Strong, grey, thinly to medium bedde LIMESTONE with occasional small fo and small calcite veins.	d, fine grained pssil fragments	10 —		
Remarks	3										10	

									Borehole N	0.		
GAVIN & DOHERTY								Core Log	LD01			
GEOS	OLUTIO										Sheet 2 of	
rojec	t Name	e: Foynes	s Port	- Jetty	Phas		roject No. 7022		Co-ords:	126209.57 - 152112.41	Hole Type RC	Э
ocatio	on:	Foynes	Port						Level:	5.81 m CD	Scale 1:50	
lient:		RPS							Dates:	05/05/2017	Logged B CL	у
Vell ,	Water Strikes	Depth	Type /FI		Corin		Depth	Level	Legend	Stratum Descriptio		
	suikes	(m)	/୮۱	TCR	SCR	RQD	(m)	(m)		Vertical calcite vein, 50-70mm thick.		-
		9.50 - 11.00		93	60	40				Intact but highly fractured.		- -
												-
	-								1111			11 —
										Fracture with clay infill.		=
		11.00 - 12.50 12.01	С	93	80	60			1 1 1			12 —
		12.01										'- -
	_						12.50	-6.69	1,1,1	End of Borehole at 12.500	m	=
												13 -
												=
												- -
												14 -
												- -
												=
												15 —
												-
												16 —
												- -
												17 -
												- -
												=
												18 -
												-
												-
												19 -
												20 —
emar	ks										85	

GDC GAVIN & DOHERT GEOSOLUTIONS	·Y				Rota	ary C	ore Log	Borehole No. LD02 Sheet 1 of 2
Project Name:	Foynes I	Port -	Jetty Phase 2	Project No. 17022		Co-ords:	126475.50 - 151833.27	Hole Type RC
Location:	Foynes F	Port				Level:	4.60 m CD	Scale 1:50
Client:	RPS					Dates:	06/04/2017	Logged By CL
Well Water Strikes	Depth (m)	Type /FI	Coring	Depth (m)	Level (m)	Legend	Stratum Description	on

Well Wilder Class		L.	KFS	T. Comings D. II						Dates. 00/04/2017			
0.50	Well	Water Strikes	Depth (m)	Type /FI				Depth (m)	Level (m)	Legend		'n	
0.50								0.20	4.40				
0.50				1_				0.20			Brownish grey slightly sandy CLAY w	ith rootlets	
1.00 B 1.00 ES 1.50 UT 2.40 2.20			0.50 0.50	D ES									
1.00													
1.00			1.00	В									1
2.00 B D D D D D D D D D D D D D D D D D D			1.00	ES									
2.00 ES 2.50 UT 3.00 B 3.00 B 3.00 ES 4.00 B 4.00 D 5.00 B 5.00 B 5.00 B 5.00 ES 6.00 B 6.00 ES 6.50 UT 7.00 B 7.00 ES 8.00 B 7.00 ES 8.00 B 8.00 D 8.00 D 9.00 ES 8.00 B 8.00 D 9.00 ES 8.00 B 8.00 D 8.00 D 9.00 ES 8.00 B 8.00 D 8.0			1.50	UT									
2.00 ES 2.50 UT 3.00 B 3.00 B 3.00 ES 4.00 B 4.00 D 5.00 B 5.00 B 5.00 B 5.00 ES 6.00 B 6.00 ES 6.50 UT 7.00 B 7.00 ES 8.00 B 7.00 ES 8.00 B 8.00 D 8.00 D 9.00 ES 8.00 B 8.00 D 9.00 ES 8.00 B 8.00 D 8.00 D 9.00 ES 8.00 B 8.00 D 8.0													
2.00 ES 2.50 UT 3.00 B 3.00 B 3.00 ES 4.00 B 4.00 D 5.00 B 5.00 B 5.00 B 5.00 ES 6.00 B 6.00 ES 6.50 UT 7.00 B 7.00 ES 8.00 B 7.00 ES 8.00 B 8.00 D 8.00 D 9.00 ES 8.00 B 8.00 D 9.00 ES 8.00 B 8.00 D 8.00 D 9.00 ES 8.00 B 8.00 D 8.0			2.00	В									2
2.50 UT 3.00 B 3.00 ES 4.00 B 4.00 B 4.00 ES 4.50 UT 5.00 B 5.00 D 5.00 ES 6.00 B 6.00 D 7.00 ES 8.00 B 8.00 D 7.00 ES 8.00 B 8.00 D 7.00 ES 8.00 B 8.00 D 7.00 ES 8.00 ES 8.50 UT			2.00	D									
3.00 B 3.00 ES								2.40	2.20		Grev SILT		
3.00 B 3.00 D S 3.00 ES XXXX XXXX XXXX XXXX XXXX XXXX XXXX			2.50	01						$\times \times \times \times \times$			
3.00 B													
A.00			3.00 3.00	B						$\times \times \times \times \times$			3
4.00 B 4.00 D 4.00 ES 4.50 UT 5.00 B 5.00 B 5.00 ES 6.00 B 6.00 D 6.00 ES 6.50 UT 7.00 B 7.00 D 7.00 ES 8.00 B 8.00 B 8.00 B 8.00 ES 8.50 UT 9.00 B 9.00 ES			3.00	ES						$\times \times \times \times \times$			
4.00 B 4.00 D 4.00 ES 4.00 ES 4.50 UT 5.00 B 5.00 D 5.00 ES 6.00 B 6.00 B 6.00 ES 6.50 UT 7.00 B 7.00 B 7.00 B 7.00 ES 8.00 D 8.00 D 8.00 ES 8.50 UT										$\times \times \times \times \times$			
4.00 B										$\times \times \times \times \times$			
4.00			4.00	В						$\times \times \times \times \times$			4
4.50 UT 4.50 UT			4.00	l D									
5.00 B 5.00 D 5.00 ES 6.00 B 6.00 ES 6.00 ES 6.50 UT 7.00 B 7.00 D 5.00 ES 8.00 B 8.00 B 8.00 B 8.00 ES 8.50 UT										$\times \times \times \times \times$			
5.00 B 5.00 B 6.00 B 6.00 D 6.00 ES 6.50 UT 7.00 B 7.00 D 7.00 ES 8.00 B 8.00 ES 8.50 UT			4.50	01						$\times \times \times \times \times$			
5.00										$\times \times \times \times \times$			
5.00 ES			5.00 5.00	В						$\times \times \times \times \times$			5
6.00 B 6.00 ES 6.00 D 6.00 ES 6.50 UT 7.00 B 7.00 D 7.00 ES 8.00 B 8.00 D 8.00 ES 8.50 UT 9.00 B 9.00 D 9.00 ES			5.00	ES						$\times \times \times \times \times$			
6.00 B C C C C C C C C C C C C C C C C C C										$\times \times \times \times \times$			
6.00 B C C C C C C C C C C C C C C C C C C										$\times \times \times \times \times$			
6.00			6.00	В						$\times \times \times \times \times$			6
6.50 UT 7.00 B 7.00 D 7.00 ES 8.00 B 8.00 D 8.00 D 8.00 ES 8.50 UT 9.00 B 9.00 D 9.00 ES			6.00	D						$\times \times \times \times \times$			ľ
7.00 B 7.00 D 7.00 ES 8.00 B 8.00 D 8.00 D 8.00 ES 8.50 UT 9.00 B 9.00 D 9.00 ES													
7.00 B 7.00 D 7.00 ES 8.00 B 8.00 B 8.00 D 8.00 ES 8.50 UT 9.00 B 9.00 D 9.00 ES			6.50	01						$\times \times \times \times$			
7.00										$\times \times \times \times$			
7.00 ES 8.00 B 8.00 D 8.00 ES 8.50 UT 9.00 B 9.00 D 9.00 ES 9.00 ES			7.00	В						$\times \times \times \times$			7
8.00 B 8.00 D 8.00 ES 8.50 UT 9.00 B 9.00 D 9.00 ES 8.50 D 9.00 D 9.00 ES										$\times \times \times \times \times$			
8.00 B 8.00 D 8.00 ES 8.50 UT 9.00 B 9.00 D 9.00 ES													
8.00 B 8.00 ES 8.00 UT 9.00 B 9.00 D 9.00 ES 9.00 ES 9.00 D 9.00 ES										$\times \times \times \times \times$			
8.00			8 00	B						$\times \times \times \times \times$			8
8.50 UT 9.00 B 9.00 D 9.00 ES 9.00 S 9.00			8.00	D						$\times \times \times \times \times$			ľ
9.00 B 9.00 D 9.00 ES 9.90 -5.30 ****										$\times \times \times \times \times$			
9.00 B 9.00 D 9.00 ES 9.90 -5.30 XXXX			8.50	UT									
9.00 B D S S S S S S S S S S S S S S S S S S										$\times \times \times \times \times$			
9.00 ES										$\times \times \times \times$			9
9.90										$\times \times \times \times$			
9.90										$\times \times \times \times \times$			
9.90 -5.30 💢 💢 💢										$\times \times \times \times \times$			
10.00			10.00					9.90	-5.30	$\times \times \times \times \times$			10
			10.00										10

GAVI	DON & DON							Rota	ary (Core Log	LD02	
	SOLUTIC					Pı	roject No.				Sheet 2 of Hole Type	
Proje	ct Name	: Foynes	S Port	- Jetty	Phase		7022		Co-ords:	126475.50 - 151833.27	RC	
Locat	ion:	Foynes	Port						Level:	4.60 m CD	Scale 1:50	
Clien	t:	RPS							Dates:	06/04/2017	Logged B CL	у
Well	Water Strikes	Depth (m)	Type /FI	1	Coring	RQD	Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
		10.00 10.00	D ES				10.20	-5.60	× × × × × × × × × × × × × × × × × × ×	Greyish white slightly gravelly SILT w	ith peat	-
		11.00 11.00 11.00	B D ES				11.10	-6.50	X X X X X X X X X X X X X X X X X X X	Greyish white slightly gravelly SILT Grey fine to coarse angular the subro	unded silty	11 -
							12.00	-7.40		BOULDERS and COBBLES of limest	one.	12
		13.00 B D D ES 13.00 - 14.50 93					1. O.			13		
	-	14.50 - 14.80		100	67	67	14.50	-9.90		Strong, grey, thinly to medium bedder	d, fine grained	- -
		14.95	С	100	0,					LIMESTONE.		
		14.80 - 16.30 15.70	С	100	93	80				50mm sub vertical fracture with bro	wn clay infill.	15 —
		16.30 - 17.80		100	77	73	47.00	40.00		fractures generally sub horizontal.		17 -
							- 17.80	-13.20		End of Borehole at 17.800)m	18
Rema										20 —		

GDG											Borehole N	0.
GAVIN & DOHERTY								Rota	ary (Core Log	LD03	
GEC	SOLUTIO	ONS									Sheet 1 of	
roje	ct Name	: Foyne:	s Port	- Jetty	Phase		roject No. 7022		Co-ords:	126600.50 - 151503.52	Hole Type RC	Э
ocat	ion:	Foynes	Port			·			Level:	4.68 m CD	Scale 1:50	
lient	:	RPS							Dates:	10/05/2017	Logged B	у
Vell	Water	Depth	Туре		Coring		Depth	Level	Legend	Stratum Description		
	Strikes	(m)	/FI	TCR	SCR	RQD	(m)	(m)		Grass over stiff brown CLAY (estimate		_
										(,	-
		0.50	ES						====			_
							0.80	3.88	× ×	Soft to firm brown silty CLAY.		-
									××			1 -
									××			-
									××_			-
									××			-
		2.00	ES						××			2 -
									××			-
									×——×			-
		0.00 - 6.00		17								3 -
		0.00										-
												_
									×_×_×			-
									×_×_×			4 -
									××			-
									<u> </u>			_
									×			-
									××_			5 -
									×			-
									×			-
												-
		6.00	ES				6.00	-1.32	-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	Stiff brown CLAY over limestone BOU	ILDER	6 -
		6.00 - 6.50 6.37	С	100			6.50	-1.82	-2-2-7			-
		0.00					0.50	-1.02		Strong to very strong, medium bedded LIMESTONE with thin calcite veins ar	nd fossil	-
		6.80	С							fragments. Fractures generally sub ho rough and clean.		7 -
		6.50 - 8.00		100	80	73			 	Very thinly spaced sub horizontal fra associated slight to moderate weath	actures with	
										Weathering has resulted in loss of s		_
										discolouration. Very thinly spaced sub horizontal fra	actures with	=
			-				-			associated slight to moderate weath Weathering has resulted in loss of s	ering.	8 -
										discolouration.		-
												-
		8.00 - 9.50		100	100	97						
		0.40	С									9 -
		9.19										-
							9.50	-4.82		End of Borehole at 9.500r	n	-
												10
											1	10 —
ema	rks										80	

GDG GAVIN & DOHERTY GEOSOLUTIONS								ole Log	LD04 Sheet 1 of 1					
Projec	t Name:	Foynes	Port - J	letty P	hase 2		Project No. 7022		Co-ords:	126259E - 151542N	Hole Type CP+RC			
Locati	on:	Foynes	Port				7022		Level:	4.51 m CD	Scale 1:50			
Client:		RPS							Dates:	03/05/2017	Logged By	1		
Well	Water Strikes			n Situ	Testing		Depth (m)	Level (m)	Legend	Stratum Description				
	Cumoo	Depth (m)	Туре		Results		0.20	4.31		TOPSOIL	e and aball	=		
		0.50 0.50	D ES							Brown slightly sandy CLAY with rootlet fragments	s and shell			
		1.00 1.00 1.00 1.00 1.50	B D ES SPT UT	N=1	3 (1,2/2,3	,3,5)						1		
		2.00 2.00 2.00	B D SPT	N=8	3 (1,2/1,2,	2,3)						2		
		3.00 3.00 3.00 3.50 3.50 4.00 4.00	D ES UT B SPT D ES B SPT		N=8 (1,2/1,2,2,3) N=33 (1,3/6,5,9,13) N=0 (2,7/0 for 0mm		2.60	1.91		Brown slightly gravelly SILT with rootle fragments. Gravel is fine to coarse sub subrounded	ts and shell -angular to	3 4		
		4.00	OI I	14-0	<u></u>	J.I.I.I.)	5.10 -0.59		* * * * * * * * * * * * * * * * * *	SWITCH TO ROTARY CORE				
		5.29 5.10 - 6.00	С	100	89	44	5.15	0.00		Strong, grey, thinly to medium bedded LIMESTONE with discrete calcite veil sub horizontal and sub vertical. Fractures smooth with slight white (staining.	ns. Fractures	6		
		6.22	С	93						Slightly to moderately weathered zo associated with sub vertical fracture has resulted in discolouration and re strength	. Weathering	7		
		7.50 - 9.00 8.61	С	93 93 93				At 8.2m 120mm wide sub vertical ca	alcite vein.	8 -				
							9.00	-4.49		End of Borehole at 9.000	m	9		
		Type/FI TCR SCR RQI		RQD						10				

GDG											Borehole No	0.
GAVIN & DOHERTY								Rota	ary (Core Log	LD05	
GEO:	SOLUTIO										Sheet 1 of	
rojec	t Name	: Foynes	s Port	- Jetty	Phase		roject No. 7022		Co-ords:	126147.70 - 151294.15	Hole Type RC	•
ocatio	on:	Foynes	Port			·			Level:	4.39 m CD	Scale 1:50	
lient:		RPS							Dates:	10/05/2017	Logged By	у
Vell ,	Water	Depth	Туре		Coring		Depth	Level	Legend	Stratum Description		
,	Strikes	(m)	/FI	TCR	SCR	RQD	(m)	(m)		Recovered as COBBLES and GRAVE		
		0.00 - 6.50		12			6.50	-2.11				1
		6.50 - 8.00		100	73	73	0.50	-2.11		Strong to very strong, medium bedded LIMESTONE with thin calcite veins an fragments. Fractures generally sub horough and clean. Fractured zone Fractures associated with 2 horizont Brown/black clay within fractures.	d fossil rizontal,	7
		8.20 8.60 8.00 - 9.50 9.20	C C	100	100	100				Fracturing associated with sub horiz Fractures are rough with slight irons	ontal fractures. taining.	8 — - - - - - - - - - - - - - - - - - - -
							9.50	-5.11		End of Borehole at 9.500r	n	10 —
emar	ks										*	

CDC											Borehole N	0.
GAVIN	N & DOH	FRIY						Rota	ary (Core Log	LD06	
GEO	SOLUTIO										Sheet 1 of	
Proje	ct Name	: Foynes	s Port	- Jetty	Phase		roject No. 7022		Co-ords:	126386.61 - 151294.15	Hole Type RC	9
Locat	ion:	Foynes	Port						Level:	4.78 m CD	Scale 1:50	
Client	:	RPS							Dates:	10/05/2017	Logged B	У
Well	Water	Depth	Туре		Coring		Depth	Level	Legend	Stratum Descriptio		
VVCII	Strikes	(m)	/FI	TCR	SCR	RQD	(m)	(m)	Logona	TOPSOIL		
		0.50 0.50 1.00 1.00 1.00	D ES D ES UT				0.20	4.58		Brown grey slightly sandy gravelly CL rootlets	.AY with	1 —
	1.50	В				1.60	3.18	× × · × · × · × · × · × · × · × · × · ×	Grey fine to coarse sub-angular to su GRAVEL with cobbles and boulders	b-rounded silty	2 —	
	2.00	ES B			2.20	2.58	Grey gravelly SILT with cobble medium to coarse sub-angula		vel is fine -rounded	- - - - -		
	3.00 3.00 3.40	D ES				3.40	1.38				3 —	
		3.40 - 4.90	0 В		80				Strong to very strong, medium bedde LIMESTONE with thin calcite veins at fragments. Fractures generally sub horough and clean. Broken zone, rockhead?	nd fossil	4 —	
	4.90 - 6.40 6.30	C	100	100	93	6.40	-1.62		Sub vertical 60mm calcite vein with running down centreline.	open fracture	5 6 -	
						0.40	-1.02		End of Borehole at 6.400	m	7	
											8	
						_					10 —	

GDG											Borehole N	0.
GAVII	N & DOH	ERTY						Rota	ary (Core Log	LD07	
GEC	SOLUTIO) N S									Sheet 1 of	
Proje	ct Name	: Foynes	s Port	- Jetty	Phas		oject No. 022		Co-ords:	126224.10 - 151424.52	Hole Type RC	9
Locat	ion:	Foynes	Port						Level:	9.63 m CD	Scale 1:50	
Client	:	RPS							Dates:	10/05/2017	Logged B CL	у
Well	Water Strikes	Depth (m)	Type /FI		Corin		Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
Well	Water Strikes	Depth (m) 0.00 - 1.60 1.90 1.60 - 3.10 2.50 3.16.38.60 3.41	Type /FI C C C			80 RQD	Depth (m)	6.03		Grass over strong to very strong, med grey LIMESTONE with thin calcite very fragments. Fractures generally sub his rough and clean. Broken zone associated with sub his fracture overlying 60mm calcite veir is second broken zone with clay. Damp brown clay with fractured rock. Broken rock with brown clay overlying ironstained rock. Beneath this rock weathered and thinly laminated, we resulted in loss of strength and discontact limestone. Two horizontal/sub horizontal fracture brown (clay?) staining. At 3.35 stylowintact limestone. End of Borehole at 3.600	dium bedded, ins and fossil prizontal, prizontal n. Beneath vein k. In g fractured, is slightly athering has plouration. The with some lites within	1 2 3 4 5 6 7 8 9 9
												10 —

CDC	ı				Borehole No.
GDG GAVIN & DOHERTY		Во	reho	le Log	M01
GEOSOLUTIONS					Sheet 1 of 3
Project Name:	Foynes Port - Jetty Phase 2	Project No.	Co-ords:	125353E - 151824N	Hole Type
Project Name.	Foynes Port - Jetty Phase 2	17022	Co-ords.	125555E - 151624N	CP+RC
Location:	Fournes Bort		Level:	3.52 m CD	Scale
Location.	Foynes Port		Level.	3.52 III CD	1:50
Client:	RPS		Dates:	12/04/2017 - 13/04/2017	Logged By
Ciletit.	KF3		Dates.	12/04/2017 - 13/04/2017	CL

lient:		RPS					Dates:	12/04/2017 - 13/04/2017	CL	
Well	Water			n Situ Testing	Depth	Level	Legend	Stratum Description		
	Strikes	Depth (m)	Туре	Results	(m)	(m)				
							××	Very soft, grey, slightly silty CLAY. Occ fragments noted from bed level believe deposited material.	asional shell ad to be recently	
		0.50 0.50	B D					·		
		1.00 1.00 1.00	B D ES				×			1
		1.50 1.50	B D				× × ×			
		2.00 2.00 - 2.45	ES UT	Ublow=5			× × ×			2
		2.50 2.50	B D				× × ×			
		3.00 3.00 - 3.45	ES UT	Ublow=6			× × ×			3
		3.50 3.50	B D				× × ×			
		4.00 - 4.45	UT	Ublow=7						4
		4.50 4.50	B D							
		5.00 - 5.45	UT	Ublow=9						5
		5.50 5.50 5.75	B D	HVP=30			xx			
		6.00 6.00	P UT				X X X X X X X X X X X X X X X X X X X			1 2 3 4 5 6 6 7
		7.00	В				XXX			7
		7.25 7.50	В	HVP=20			XX			
		7.50	D				XX XX XX			9
		8.50 - 8.95	UT	Ublow=8			××			
		9.00 9.00	B D				×			9
							×——×			
		10.00	В				××	Continued on Next Sheet		10

GAVI	N & DOH							Во	reh	ole Log	M01	
	t Name:	Foynes	Port	Jetty P	hase 2		Project No. 17022		Co-ords:	125353E - 151824N	Sheet 2 of 3 Hole Type CP+RC	
Locati	on:	Foynes	Port				17022		Level:	3.52 m CD	Scale 1:50	
Client:		RPS							Dates:	12/04/2017 - 13/04/2017	Logged By CL	/
Well	Water Strikes	Sample	e and I	n Situ	Testin	g	Depth	Level (m)	Legend	Stratum Description		
	Jukes	Depth (m) 10.00 - 10.50	B SPT B D		Resul		(m)	(111)	×	Very soft, grey, slightly silty CLAY. Occasi fragments noted from bed level believed t deposited material.		
		11.50 - 11.95 UT Ublow 12.00 B 12.00 D		Ublow=	-8			x - x - x - x - x - x - x - x - x - x -			11 -	
				N=0 (0,0/0,0,0,0)					X X X X X X X X X X X X X X X X X X X			13 -
		13.50 13.50	B D						x _ x x _ x x _ x x _ x x _ x x _ x x _ x x _ x x _ x _ x x _ x _ x x _ x			14 —
		14.50 - 14.95 15.00 15.00	15.00 B				× × × × × × × × × × × × × × × × × × ×			15 -		
		16.00 16.00	B SPT	N=2	5 (3,4/5	,5,7,8)	15.90 16.15	-12.38 -12.63	X X X X X X _ X _ X	Slightly clayey fine to medium angular GF black limestone. Possible fractured rock, Weak, very thinly laminated, black, LIMES	rockhead.	16 -
		16.00 SPT N=25 (3,4/5,5,7,8) 16.40 - 17.90 67 13 0	0	16.40	-12.88		highly weathered. SWITCH TO ROTARY CORE Very stiff to hard, thinly laminated, black, completely weathered LIMESTONE. Restructure visible.	, highly to mnant	17 -			
		17.90 - 19.40				18.20	-14.68		Strong, very thinly to thinly bedded, blac grained LIMESTONE. Fractures sub hor parallel to bedding, with secondary sub veractures sub horizontal (bedding ories occasionally sub vertical, clean. Non intact, drill induced?	izontal, vertical set.	18 -	

Vertical datum: Chart datum. Horizontal datum: Irish grid reference coordinates system.

Type/FI TCR SCR RQD

CDC											Borehole N	0.
GAVII	N & DOH	LERTY					ļ	Rota	ary (Core Log	M01	
GEC	SOLUTIO										Sheet 3 of	
Proje	ct Name	e: Foynes	s Port	- Jetty	[,] Phase		roject No. 7022		Co-ords:	125353.49 - 151824.25	Hole Type CP+RC	Э
Locat	ion:	Foynes	Port						Level:	3.52 m CD	Scale 1:50	
Client	:	RPS							Dates:	12/04/2017 - 13/04/2017	Logged B	У
Well	Water	Depth	Туре		Coring	g	Depth	Level	Legend	Stratum Descriptio	n	
	Strikes	(m)	/FI	TCR	SCR	RQD	(m)	(m)				
		19.40 - 20.90		90	40	0				20.3-22.4 Fractures sub horizontal (orientated), occasionally sub vertica 21.35-21.55m core intact but numer vertical to vertical fractures. 21.55-2	al, clean. rous sub	
		20.90 - 22.40		97	83	0				intact but 2 sub vertical to vertical fr		21
		22.40 - 23.90 23.60	С	100	87	35		-21.88				23
		23.90 - 25.40		80	73	53	- 25.40			23.9-24.5 Spacing (If) as recorded a pyrite present on open (bedding orie horizontal fractures and sub vertical noted as small lenses within intact of bedding.	entated) sub I fractures, also core parallel to	24
										End of Borehole at 25.400	"	26
												27
												28
												29 -
												30 -

GDG GAVIN & DOHERTY						Bo	reho	ole Log	Borehole No. M02		
	N & DOH				Boronolo Log			Sheet 1 of 3			
					Project No. 17022		Co-ords:	125307E - 151803N	Hole Type CP+RC		
Locatio	on:	Foynes	Port				Level:	3.64 m CD	Scale 1:50		
Client:		RPS					Dates:	26/04/2017	Logged By CL		
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Descrip	otion		
	Strikes	Depth (m)	Туре	Results	(111)	(111)	XX	Very soft, grey, silty CLAY			
		1.00 1.00 1.00 - 1.45 1.50 1.50 1.75 2.00 2.00 - 3.00 2.25 3.00 4.00 - 4.45 4.50 4.75 5.00 5.00 5.00 - 6.00 5.75 6.50 6.50 7.50 7.50 8.00 8.00 9.00 - 9.45	B D ES P B D UT P ES B D UT B D D SPT B D UT B D	Ublow=3 HVP=12 HVP=18 Ublow=6 HVP=19 HVP=39 N=0 (0,0/0,0,0,0)	5.00	-1.36		Soft, grey, silty CLAY.	1 2 3 4 5 6 7 7 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
							<u>xx</u>	Continued on N. 10	10		
Remark	ke							Continued on Next S	illeet		

									Borehole N	0.
GAVIN & DOHERTY GEOSOLUTIONS					Borehole Log				M02	
GEOS	SOLUTIO	ONS							Sheet 2 of	
Project	Name:	Foynes	Port - J	letty Phase 2	Project No. 17022		Co-ords:	125307E - 151803N	Hole Type CP+RC	;
Location	n:	Foynes	Port		17022		Level:	3.64 m CD	Scale	
									1:50 Logged By	/
Project Name Location: Client:		RPS					Dates: 26/04/2017		CL	
Well	Water Strikes			n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	1	
		Depth (m)	Туре	Results	. ,	, ,				=
		10.50 10.50 11.00	D SPT B	N=0 (0,0/0,0,0,0)			X X X	Below 10.90m very small shells not	ed.	11 -
		11.00	D	Ublow=11			× × _ × _ × _ × _ × _ × _ × _ × _ ×			
		12.00 - 12.45 12.50	UT B	Ublow=11			×× ××			12
		12.50	D				×——×——×——×——×——×——×——×——×——×——×——×——×——			13
		13.50 13.50	D SPT	N=0 (0,0/0,0,0,0)	1		xx			
		14.00 14.00	B D				× × × × × × × × × × × × × × × × × × ×			14
		15.00 - 15.45	UT	Ublow=11			× × ×			15
		15.50 15.50	B D				× - × - × - × - × - × - × - × - × - × -	At 15.50m occasional fibres notes a firm.	and becoming	16
		16.40 16.40 16.40 16.40-407.00	SPT	6 7) =16 (4,4/3,3,5,5	16.40 16.65	-12.76 -13.01	×	Angular, tabular GRAVEL of black lim possible rockhead. SWITCH TO ROTARY CORE	estone,	
		17.00 - 18.50		13				Dense, black, fine to coarse, tabular, GRAVEL of black limestone. Many fra surfaces ironstained, possible highly the All recovered material comprises black LIMESTONE.	acture fractured rock.	17
					18.50	-14.86		No Recovery		18
		18.50 - 20.00								19
			Type/FI	TCR SCR RQ	20.00	-16.36				20 =
Remark	s				•				83	-01

							Rotary Core Log				Borehole No.	0.
									ary (Joie Log	Sheet 3 of 3	
							oject No.		Co-ords:	125307.08 - 151803.30	Hole Type	
						'			Level:	3.64 m CD		
Clien	t:	RPS							Dates:	26/04/2017	Logged B	у
Well	Water Strikes	Depth (m)	Type /FI	Coring TCR SCR RC			Depth (m)	Level (m)	Legend	Stratum Description		
	20.00 - 21.50	0.00 - 21.50	60						Dense, black, fine to coarse, tabular, angular GRAVEL of black limestone. Many fracture surfaces ironstained, possible highly fractured rock. Some possibly in situ bedding present. SPT at 20m, refusal.		21	
		21.50 - 23.00		93	27	27 0	24.50			Strong, thinly bedded, black LIMESTONE. Sub horizontal (bedding orientated) fractures and 2 sulvertical fractures. Ironstaining on fractures.		22 -
		23.00 - 24.50		80	17	0						24
								-20.86		End of Borehole at 24.500r	m	25 ⁻
												26 ⁻
												27
												28 -

Vertical datum: Chart datum. Horizontal datum: Irish grid reference coordinates system.

30 -

GDG									Borehole No	D.
GAVII	GAVIN & DOHERTY GEOSOLUTIONS					Bo	reho	ole Log	M03	
									Sheet 1 of	3
Projec	t Name:	Foynes	Port - J	etty Phase 2	Project No. 17022		Co-ords:	125340E - 151851N	Hole Type CP+RC	
Locati	on:	Foynes	Port				Level:	3.05 m CD	Scale 1:50	
Client:		RPS					Dates:	18/04/2017 - 19/04/2017	Logged By CL	,
\A/-II	Water	Sample	and Ir	n Situ Testing	Depth	Level	1	Charles December		
Well	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description		
							<u> </u>	Very soft grey/dark grey silty CLAY		1
		0.50	В				××			1
		0.50	D				XX			1
		1.00	В				×——×			1 =
		1.00 1.00	D ES							=
		1.00 - 1.45 1.50	UT B							4
		1.50	D							1
		2.00 - 2.45	UT				× × ×			2 =
							<u> </u>			=
		2.50	В				×_×_×			4
		2.50	D				<u> </u>			=
		3.00	ES				××			3 =
		3.00 - 3.45	UT				<u>×</u>			1
		3.50 3.50	B D				××			1
		3.30					××			1
		4.00 - 4.45	UT				× ×			4
							XX			1
		4.50 4.50	B D				××			1
		4.75		HVP=23			×			=
		5.00 5.00	ES UT							5
		5.00 - 6.00 5.10	Р	HVP=25						=
										1
							× × ×			
		6.25		HVP=22			×_×_×			6
		6.50		HVP=4			×××			3
		0.00					××			1
		7.00	В				××			7 =
		7.00	D				×			1
		7.50	SPT	N=0 (0,0/0,0,0,0)			× × ×			4
							× × ×			1
		8.00	В				×x-			8 =
		8.00	D				XX			1
							× — × — ×			=
										1
		9.00	UT				× × ×			9 =
							× × ×			1
		9.50 9.50	B D				× × ×			1
							× × ×			🖠
								Continued on Next Sheet		10 -
Remar	ks								70	65

GDG											Borehole N	0.
GAVII	N & DOH	ERTY						Bo	reh	ole Log	M03	
GEC	SOLUTIO	ONS								9	Sheet 2 of	3
Projec	t Name:	Foynes	Port - J	letty Pl	nase 2		Project No. 17022		Co-ords:	125340E - 151851N	Hole Type CP+RC	•
Locati	on:	Foynes	Port						Level:	3.05 m CD	Scale 1:50	
Client:		RPS							Dates:	18/04/2017 - 19/04/2017	Logged By CL	/
Well	Water	Sample	and l	n Situ	Testing	l	Depth	Level	Legend	Stratum Description		
	Strikes	Depth (m)	Туре		Result	3	(m)	(m)	3	<u>'</u>		
		10.50 11.00 11.00	SPT B D	N=0	0 (0,0/0,0	,0,0)			X			11 —
		12.00 - 12.45	UT B						x _ x x _ x x _ x x _ x x _ x x _ x _ x _ x _ x x _ x			12
		12.50 13.50	D	N=0	N=0 (0,0/0,0,0,0)				× × × × × × × × × × × × × × × × × × ×	Very soft to soft grey silty CLAY		13
		14.00	В						× × ×			14 —
		14.00	D						xx xx			14
		15.00 - 15.45	UT						×——×			15
		15.50 15.50	B D						×			
		15.80 - 17.30		93	67	0	15.80	-12.75		SWITCH TO ROTARY CORE Strong, thickly laminated to very thinl black, fine grained LIMESTONE. Slig with 2 fracture sets: 1 bedding orienta 30 degrees and second sub vertical degrees. Weathering has s resulted i discolouration along sub vertical fract opening of bedding orientated fractur	htly weathered ated at about at about 75 n slight ures and	16
		17.30 - 18.80		100	93	0						18
		18.80 - 20.30		93	80	13				Open vertical fracture. As above but thickly laminated to the	inly bedded.	19 -
Pomor	1		Type/FI TCR SCR F				D					20

GDG										Borenole in	0.
AVIN & DOHERTY GEOSOLUTIONS							Rota	ary C	Core Log	M03	
GEOSOLUTION	15							T		Sheet 3 of	
Project Name:	Foyne	s Port	- Jetty	y Phase		Project No. 17022		Co-ords:	125340.37 - 151850.60	Hole Type CP+RC	
ocation:	Foynes	s Port						Level:	3.05 m CD	Scale 1:50	
Client:	RPS							Dates:	18/04/2017 - 19/04/2017	Logged By	у
Water Strikes	Depth (m)	Type /FI		Coring		Depth (m)	Level (m)	Legend	Stratum Descriptio		
			TCR	SCR	<u>₹QD</u>	20.30	-17.25		Strong, thickly laminated to very thinly black, fine grained LIMESTONE. Slig with 2 fracture sets: 1 bedding orienta 30 degrees and second sub vertical a degrees. Weathering has s resulted in discolouration along sub vertical fracture pening of bedding orientated fracture. End of Borehole at 20.300	htly weathered ated at about at about 75 n slight cures and	21
emarks			<u></u>							21	30 -

	N & DOH					Во	reho	ole Log	Borehole No M04 Sheet 1 of 3	
Projec	ct Name:	Foynes	Port - J	etty Phase 2	Project No. 17022		Co-ords:	125297E - 151829N	Hole Type CP+RC	
Locati	on:	Foynes	Port				Level:	2.44 m CD	Scale 1:50	
Client:		RPS					Dates:	28/04/2017 - 02/05/2017	Logged By CL	′
Well	Water			Situ Testing	Depth (m)	Level	Legend	Stratum Description		
	Strikes	1.50 1.50 1.50 2.50 2.50 3.50 - 3.95 3.75 4.00 4.00 - 5.00 5.25	B D D UT B UT P D SPT	Results HVP=10 HVP=31	(m)	(m)		Very soft grey slightly silty CLAY.		1 2 3 4 5 6 7 8 9
		9.50 - 9.95	UT				xx			111111111111111111111111111111111111111
Remai		10.00	В				<u>x</u>	Continued on Next Sheet		10 =

	N & DOH							Во	reho	ole Log	M04 Sheet 2 of	
Projec	t Name:	Foynes	Port - J	letty Pl	nase 2		roject No. 7022		Co-ords:	125297E - 151829N	Hole Type CP+RC	,
Locati	on:	Foynes	Port						Level:	2.44 m CD	Scale 1:50	
Client:		RPS							Dates:	28/04/2017 - 02/05/2017	Logged By CL	/
Well	Water Strikes			n Situ	Testing		Depth (m)	Level (m)	Legend	Stratum Description	1	
	Guikes	Depth (m) 10.00 11.00 - 11.45 11.00 13.00 - 13.45 13.50 13.50	D D SPT	N=0	Results			()		Very soft grey slightly silty CLAY.		11 12 13 14 14
		14.50 - 15.16 14.50 15.00 15.00	D SPT B D	N=0) (0,0/0,0,	0,0)	45.00	40.00				15
		15.80 15.80 16.00 - 16.45 16.00	B D D SPT B	N=1 ⁻	1 (3,4/4,3	,3,1)	15.80	-13.36 -14.06		Dark grey, black, fine to medium SANI CLAY with a little fine angular gravel o limestone.	f black	16
		16.50 16.80	D				16.80	-14.36		(Dense) sandy fine to coarse sub angrounded GRAVEL with low cobble con sub rounded.	ular to sub tent, cobbles	
		16.80 - 17.30 17.30 17.30 - 18.80	В	20			-	-14.30		SWITCH TO ROTARY CORE Poor recovery of medium to coarse, sub rounded GRAVEL.	sub angular to	17
	ks	18.80 - 20.30 67 13 0 Type/FI TCR SCR RQD	-	18.80	-16.36		Strong, thickly laminated to very thinl black, LIMESTONE. Generally non ir ironstaining on fracture surface.	y bedded, ntact, with	19			

CDG											Borehole N	0.
GAVII	N & DOH							Rota	ary C	Core Log	M04	
GEC	SOLUTIO	NS									Sheet 3 of	
roje	ct Name	: Foynes	Port	- Jetty	Phase	2 P	roject No. 7022		Co-ords:	125296.53 - 151829.34	Hole Type CP+RC)
.ocat	ion:	Foynes	Port						Level:	2.44 m CD	Scale 1:50	
Client	:	RPS							Dates:	28/04/2017 - 02/05/2017	Logged B CL	у
Vell	Water	Depth (m)	Type /FI		Coring		Depth (m)	Level	Legend	Stratum Descriptio	n	
VelI	Strikes	20.30 - 21.80 21.80 - 23.30 23.30 - 24.10	/FI		0 80 0			-19.66 -20.86	Legend	Strong, thickly laminated to very thinly black, LIMESTONE. Generally non in ironstaining on fracture surface. Strong, very thinly bedded, black, LIM Fractures sub horizontal (bedding orie sub vertical with some ironstaining, m on sub vertical fractures. Strong, thickly laminated to very thinly black, LIMESTONE. Generally non in some ironstaining on fracture surface End of Borehole at 24.100	EESTONE. Entated) and ore prominent	21 22 23 24 25 26 27 27 28 29 29
												30 —

	DI & DOH					Во	reho	ole Log	M05 Sheet 1 of	
Project	Name:	Foynes	Port - J	etty Phase 2	Project No. 17022		Co-ords:	125250E - 151808N	Hole Type CP+RC	
Locatio	n:	Foynes	Port				Level:	2.60 m CD	Scale 1:50	
Client:		RPS					Dates:	08/05/2017 - 09/05/2017	Logged By CL	/
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
	Julie's	1.00 1.00 1.00 1.00 1.00 1.00 2.00 2.50 2.50 2.50 3.00 3.00 - 3.45 3.50 4.00 4.00 4.50 4.50 5.00 5.00 - 5.45 5.50 5.50 6.50 6.75 7.00 7.00 - 8.00 8.25 8.50 8.50 9.00 - 9.45	Type B D S T B D S T B D S T B D B D UT P B D UT	Results Ublow=3 N=0 (0,0/0,0,0,0) Ublow=6 N=0 (0,0/0,0,0,0) Ublow=7 HVP=19 HVP=34 Ublow=9				Very soft to soft, grey, silty CLAY		1 2 3 4 5 6 7 8 9
		9.50	UT				XX X X	Continued on Next Sheet		10 —
 Remark								Continued on Next Sheet		

									Borehole N	0.
	N & DOH					Bo	reh	ole Log	M05	_
	t Name:		Port - c	letty Phase 2	Project No. 17022		Co-ords:	125250E - 151808N	Sheet 2 of Hole Type CP+RC	
Location	on:	Foynes	Port		-		Level:	2.60 m CD	Scale	
Client:		RPS					Dates:	08/05/2017 - 09/05/2017	1:50 Logged By CL	у
Well	Water	Sample	and I	n Situ Testing	Depth	Level	Legend	Stratum Description		
	Strikes	Depth (m)	Туре	Results	(m)	(m)	~ ~ ~	Very soft to soft, grey, silty CLAY		
		10.50	SPT	N=0 (0,0/0,0,0,0)		× × × × × × × × × × × × × × × × × × ×	very sort to sort, grey, sirry CEAT		
		11.00 11.00	BLK D				× - × - × - × - × - × - × - × - × - × -			11 -
		12.00 - 12.45	UT	Ublow=11			X X X			12
		12.50 12.50	B D				× × × × × × × × × × × × × × × × × × ×			13
		13.50	SPT	N=0 (0,0/0,0,0,0)		× × × ×			
		14.00 14.00	B D		14.40	-11.80	× × × × × × × × × × × × × × × × × × ×			14
		14.70 14.70	B SPT	N=18 (5,5/7,4,3,4				Fine to coarse SAND and fine to coarse GRAVEL. Gravel is predominantly of g with lesser orange brown sandstone a limestone. Low cobble content.	rey limestone	15
					16.00	-13.40		Refusal of CP		16
								SWITCH TO ROTARY CORE		
		16.00 - 17.90						No recovery 200mm of gravel and cobbles, bagg	ged.	17 -
		17.90 - 22.40	С		17.90 18.20	-15.30 -15.60	00000	Sub angular to sub rounded, fine to n GRAVEL of grey limestone.	nedium	18
		17.90 - 19.40		80	18.80	-16.20		COBBLES of light grey limestone.	gulor to sub	
								Slightly sandy, slightly clayey, sub an rounded, occasionally tabular, fine to GRAVEL of black and grey limestone occasional red brown sandstone with medium cobble content.	medium and	19
		Type/FI TCR SCR R			QD		** **** o ;**			20 -
Remar	ks								*	_

GDG											Borehole No	٥.
GAVIN & DOHERTY GEOSOLUTIONS								Rota	ary (Core Log	M05	
GEC	SOLUTIO	ONS									Sheet 3 of	3
Proje	ct Name	e: Foynes	s Port	- Jetty	Phase		oject No. 022		Co-ords:	125249.72 - 151807.80	Hole Type CP+RC	
ocat	ion:	Foynes	Port						Level:	2.60 m CD	Scale 1:50	
Client	:	RPS							Dates:	08/05/2017 - 09/05/2017	Logged By CL	у
Well	Water Strikes	Depth (m)	Type /FI	1	Coring		Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
		19.40 - 20.90		93	SCR	KQD				Black fine to coarse SAND Below 22.9m medium cobble conter	nt	21
		20.90 - 22.40		87						Firm to stiff grey brown CLAY and C		22
		22.40 - 22.90	В									
		22.90 - 23.90	С					-21.30		End of Borehole at 23 900m		23
							23.90	-21.30		End of Borehole at 23.900	m	25 –
												26 -
												28 -
												29
omo												30 -

GDG									Borehole N	0.
GAVII	N & DOH	J				Во	reho	ole Log	M06	
GEC	SOLUTIO							9	Sheet 1 of	3
Projec	t Name:	Foynes	Port - J	etty Phase 2	Project No. 17022		Co-ords:	125214E - 151792N	Hole Type CP	;
Locati	on:	Foynes	Port				Level:	1.64 m CD	Scale 1:50	
Client:		RPS					Dates:	06/05/2017	Logged By	/
Well	Water	Sample	e and Ir	n Situ Testing	Depth	Level	Legend	Stratum Description		
VVCII	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend			
		0.00	В				××	Very soft to soft, dark grey, silty CLAY.		
		0.50	В				×——×			
							×——×			
		1.00	ES							1 —
		1.00 - 2.00	Р							
							<u>×</u> ×			
							××			
		2.00	B D				<u> </u>			2 -
		2.00	ES				××			
		2.00 - 3.00	Р				<u>×</u>			
							<u> </u>			
		3.00 3.00	B D				××			3 —
		3.00 3.00 - 4.00	ES P				XX			
		0.00					××			
		4.00								
		4.00 4.00	B D							4 —
		4.50 - 4.95	UT	Ublow=8						
		1.00 1.00		obion o			<u> </u>			
		5.00	В				××			5 —
		5.00 5.00	D ES				××			
							<u> </u>			
							×			
		6.00 - 6.45	D	N-0 (0 0/0 0 0 0			×			6 =
		6.00	SPT	N=0 (0,0/0,0,0,0))		XX			=
		6.50 6.50	B D				××			
		0.50								
										7 —
		7.50 - 7.95	UT				× × ×			
		0.00					<u> </u>			_
		8.00 8.00	B D				××			8 —
		8.25 8.50	UT	HVP=50			××	Below 8.25m firm.		
		8.50 - 9.50	P				×			=
							××_			9 —
							××			
		9.50	В				××			=
		9.50 9.75	D	HVP=54						
							×—————————————————————————————————————	Continued on Next Sheet		10 —
Remar	rks					1			77	

									Borehole No.	
GAVIN	N & DOH	ERTY				Bo	reho	ole Log	М06	
GEO	SOLUTIO	SNS							Sheet 2 of 3	
Projec	t Name:	Foynes	Port - J	etty Phase 2	Project No. 17022		Co-ords:	125214E - 151792N	Hole Type CP	
Location	on:	Foynes	Port				Level:	1.64 m CD	Scale 1:50	
Client:		RPS					Dates:	06/05/2017	Logged By CL	
Well	Water Strikes			n Situ Testing	Depth	Level (m)	Legend	Stratum Description	n	
	Suikes	Depth (m)	Туре	Results	(m)	(111)				
		10.50 - 10.95 11.00 11.00	UT B D	Ublow=13			X	Very soft to soft, dark grey, silty CLAY.		11 —
		12.00 - 12.45 12.00 12.50 12.50	D SPT B D	N=0 (0,0/0,0,0,0)						12 —
		13.50 - 13.95 13.50 14.00 14.00	D SPT B D	N=20 (2,2/3,7,7,3	13.50	1.64	× × × × × × × × × × × × × × × × × × ×	Sandy to very sandy, fine to coarse su occasionally tabular, GRAVEL of mixe predominantly limestone. Between 13.50m and 14.00m some and cobbles sized fragments of hig black thinly laminated limestone no	d lithology, e medium gravel hly weathered	- - - - - - 14 — - - -
		15.00	SPT	N=15 (4,5/4,4,4,3	3)				1	- - 15 — - -
		15.50	SPT	N=20 (3,4/4,5,6,5	16.00	-11.86		Fine to coarse SAND and fine to coars to rounded GRAVEL with low cobble of predominantly grey limestone.	se sub rounded content, gravel is	16 —
Pemar								Continued on Next Sheet	2	20 —

GDG									Borehole N	lo.
GAVIN & DOHERTY GEOSOLUTIONS						Bo	reho	ole Log	M06	
GEC	SOLUTIO	ONS						•	Sheet 3 of	3
rojec	t Name:	Foynes	Port	Jetty Phase 2	Project No. 17022		Co-ords:	125214E - 151792N	Hole Type CP	Э
ocati	on:	Foynes	Port				Level:	1.64 m CD	Scale 1:50	
lient:		RPS					Dates:	06/05/2017	Logged B	у
	Water	Sample	and I	n Situ Testing	Depth	Level			•	
Well	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description	1	
								Fine to coarse SAND and fine to coars to rounded GRAVEL with low cobble or predominantly grey limestone.		=
					20.50	-14.36		Sandy to very sandy, fine to coarse, so GRAVEL of mixed lithology, predomina with low cobble content.	ubrounded antly limestone,	
		21.00	SPT	N=50 (25 for				with low copple content.		21 —
				145mm/50 for 230m	ım)					=
										1 -
										_
										22 —
										-
									1	
									=	
									23 —	
]
										1 3
		24.00	SPT	N=50 (25 for	24.00	-18.86		End of Borehole at 24.00m		24 —
				140mm/50 for 160m	nm)			End of Borenoie at 24.00m		
										=
]
										25 —
										- =
]
										=
										26
										20 =
										=
										=
										27 —
										21 -
										=
										28 —
										=
										29 —
						1				30 —

											Borehole N	0.
GAVIN	N & DOH							Bo	reh	ole Log	M07	
GEO	SOLUTIO	ONS									Sheet 1 of	
Project	t Name:	Foynes	Port - c	Jetty P	hase 2	, ,	Project No. 17022		Co-ords:	125179E - 151782N	Hole Type CP+RC	;
Location	on:	Foynes	Port						Level:	1.90 m CD	Scale 1:50	
Client:		RPS							Dates:	03/05/2017 - 04/05/2017	Logged By CL	/
Well	Water	Sample	e and I	n Situ	Testin	ng	Depth		Legend	Stratum Description		
	Strikes	Depth (m)	Туре		Resul	lts	(m)	(m)	,			
		0.50 0.50 1.00 1.00 1.00 2.00 2.00 2.00 2.00 3.00	B D B D ES P B D P ES				3.20	-1.30		MADE GROUND: driving and fracturing possible boulder from collapse of neart Chiselling through obstruction. At 3.2m Obstruction.		2 3 4 4
		5.20 5.20	B D				5.20	-3.30		MADE GROUND : material recovered a medium to coarse, limestone gravel.	as angular,	5
		5.50	SPT		1=50 (2: 11/50 for		m) 5.60	-3.70		SWITCH TO ROTARY CORE		
		5.60 5.60 5.60 - 6.50	B B	67			0.00	0.70		O 1:		6
		6.50 - 8.00	В	20			6.50	-4.60	X	Assumed back into clay based on per but nil recovered due to 0.3m gravel ir barrel. Probable CLAY nil recovery due to 3 gravel in barrel. Saved as bag samp	n bottom of 800mm of	7
		8.20 - 8.50 8.50 8.50 8.00 - 9.50	B D B	80			8.00	-6.10	X X X X	Soft dark grey slightly silty CLAY, poss slightly gravelly below 12.75m (see va 1.2m clay, sub sampled to tub 8.5-8. sample as liner had been split.	ne result).	9
		9.50 - 11.00	UT Type/FI	TCR	SCR	RQI	<u> </u>			End of liner capped and sealed.		10
Remarl	ks										10	_

		\overline{C}									Borehole No	٥.
GAVII	N & DOH	& DOHERTY SOLUTIONS						Rota	ary (Core Log	M07	
GEC	SOLUTIO	ONS								•	Sheet 2 of 3	3
Proje	ct Name	e: Foynes	s Port	- Jetty	Phase		roject No. 7022		Co-ords:	125179.47 - 151782.41	Hole Type CP+RC	;
ocat	ion:	Foynes	Port			·	-		Level:	1.90 m CD	Scale 1:50	
Client	t:	RPS							Dates:	03/05/2017 - 04/05/2017	Logged By	У
Well	Water Strikes		Туре		Coring		Depth	Level	Legend	Stratum Description		
	Strikes	(m)	/FI	TCR	SCR	RQD	(m)	(m)		<u> </u>		
		9.50 - 11.00 11.00	в	100					× × × × × × × × -			11 —
		11.00 - 12.50		0					*	No recovery 11.0-12.5m. In run from 0.3m clay overlying 0.4m gravel.	12.5-14.0:	12
		12.50 - 14.00		40			13.60	-11.70		Dense GRAVEL, very poor recovery. "slipping" from barrel so lost plus pres washout of finer material.	Material sumed	13
		14.00 - 15.50		7						No recovery.		14 -
		15.50 - 17.00		53						Medium to coarse GRAVEL (light gr assumed finer material not recovere	ey limestone) d.	16
		17.00 17.00 - 18.50	В	40								17
		18.50	В				-					-
		18.50 - 20.00		27								19
		20.00	В									20 -

										Borehole N	10.
JU GAVIN & DO	HERTY						Rota	ary C	ore Log	M07	
GEOSOLUT	IONS									Sheet 3 of	
Project Nam	ne: Foynes	s Port	- Jetty	Phase 2	Pr 17	oject No. 7022		Co-ords:	125179.47 - 151782.41	Hole Typ CP+RC	
ocation:	Foynes	Port						Level:	1.90 m CD	Scale 1:50	
Client:	RPS							Dates:	03/05/2017 - 04/05/2017	Logged E CL	Sy
Wate Strike	Depth	Type /FI		Coring	200	Depth (m)	Level	Legend	Stratum Descriptio	n	
Veil Strike	s (m) 20.00 - 21.50 21.50 - 23.00 23.00 - 24.10)FI B		SCR F	RQD	(m) - 24.10	-22.20	Logoliu	Dense GRAVEL, very poor recovery. "slipping" from barrel so lost plus pres washout of finer material. End of Borehole at 24.100	Material sumed	21 - 22 - 23 - 23 - 25 - 26 - 27 -
						-					30 -

		\overline{C}					Borehole N	0.		
GAVIN	N & DOH					Во	reho	ole Log	M08	
	SOLUTIO				Project No.				Sheet 1 of Hole Type	
Projec	t Name:	Foynes	Port - J	etty Phase 2	17022		Co-ords:	125215E - 151824N	CP+RC Scale	
Location	on:	Foynes	Port				Level:	0.40 m CD	1:50	
Client:		RPS					Dates:	20/04/2017 - 22/04/2017	Logged By CL	/
Well	Water Strikes			n Situ Testing	Depth (m)	Level	Legend	Stratum Description		
	Strikes	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.50 1.5	Type B D SS UT B D B SS UT B D UT B D SPT B D	Ublow=5 Ublow=5 Ublow=6 HVP=28 HVP=24 HVP=10 HVP=20 HVP=21 N=0 (0,0/0,0,0,0)		(m)		Very soft, grey, slightly sandy, silty CLA	Y	1 2 3 4 5 6 7 8 8
		9.00 9.00	UT B D	Ublow=11						9
Remar	1	10.00 - 10.95	D				X	Continued on Next Sheet		10 —

	N & DOH							Во	reh	ole Log	Borehole No M08 Sheet 2 of 4	
Projec	t Name:	Foynes	Port	letty P	hase 2		oject No.		Co-ords:	125215E - 151824N	Hole Type CP+RC	
Locati	on:	Foynes	Port						Level:	0.40 m CD	Scale 1:50	
Client:		RPS							Dates:	20/04/2017 - 22/04/2017	Logged By CL	′
Well	Water Strikes			n Situ	Testing		Depth (m)	Level (m)	Legend	Stratum Description		
		Depth (m) 10.00 10.50 10.50	Type SPT B D	N=0	Results 0 (0,0/0,0,0	0,0)			X	Very soft, grey, slightly sandy, silty CLA	Υ.	11
		11.50 - 11.95 12.00 12.00	B D					X			12	
		13.00 - 13.45 13.00 13.50 13.50		N=8 (0,0/0,2,2,4) N=17 (2,3/4,4,4,5)		2,4)	12.80	-12.40	X	Soft, grey, slightly sandy, slightly silty Cl fine tabular gravel of black limestone.	LAY with a little	13
		13.80 13.80 13.80 14.50	B D SPT			4,5)	13.80	-13.40		SAND & GRAVEL, sand is medium to c is fine to coarse sub angular and sub ro of limestone.		14 111 11
		15.70 - 16.90	15.00 D			15.70	-15.30		BOULDER (T. S. RQD of complete b	stone.	16	
		16.90 - 18.40		100			17.20	-16.80		Sandy fine to coarse sub angular to su GRAVEL. Gravel is predominantly blac with occasional light grey limestone an brown sandstone.	ck limestone	17 17 18 18 18 18 19 19 19 19
		18.40 - 19.90			18.40	-18.00		Sandy, in parts slightly clayey, fine to c angular to sub rounded GRAVEL with I content. Gravel is predominantly black with occasional light grey limestone an brown sandstone. Cobbles of light grey 20.2-20.6 boulder of light grey limestor	low cobble limestone id orange- y limestone.	19		
Pemar			Type/FI	TCR	SCR	RQD						

											Borehole No	٥.
JAVII	N & DOH	ERTY					ľ	Rota	ary C	Core Log	M08	
GEC	SOLUTIO										Sheet 3 of	
roje	ct Name	: Foynes	s Port	- Jetty	/ Phase 2		oject No. 7022		Co-ords:	125214.75 - 151824.40	Hole Type CP+RC)
.ocat	ion:	Foynes	Port						Level:	0.40 m CD	Scale 1:50	
Client	:	RPS							Dates:	20/04/2017 - 22/04/2017	Logged By CL	у
Nell	Water Strikes	Depth (m)	Type /FI		Coring		Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
	Strikes		/ - 1	TCR	SCR R	<u>QD</u>	(111)	(111)	*	Sandy, in parts slightly clayey, fine to	coarse sub	
		19.90 - 21.40 21.40	В	87			21.40	-21.00		angular to sub rounded GRÁVEL with content. Gravel is predominantly blac with occasional light grey limestone a brown sandstone. Cobbles of light grey 20.2-20.6 boulder of light grey limestone.	low cobble k limestone nd orange- ey limestone.	21 -
		21.40					21.40	-21.00		No Recovery		=
		21.40 - 22.90		13								22 –
			_				_					23 —
		22.90 - 24.40		0								24 —
	-	24.40	В				24.40	-24.00	· ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	Medium dense, fine to coarse GRAVE with medium cobble content.	EL. Gravel is	
		24.40 - 25.90		100								25 -
	-						- 25.90	-25.50		No Recovery		26
		25.90 - 27.40		53			26.60 26.90 27.40	-26.20 -26.50		Fine to coarse sub angular to sub rou of light grey limestone, assume fines Slightly clayey SAND & GRAVEL. Gracoarse sub angular to sub rounded of black limestone.	washed out. avel is fine to light grey and	27 —
		27.40 - 28.90		87			27.40	-27.00		Sandy fine to coarse sub angular to s GRAVEL. Gravel is predominantly bla with occasional light grey limestone a brown sandstone with low to medium content. Ironstaining on some of the blimestone. At base some fresh pyrite	ck limestone nd orange- cobble black	28
		28.90 - 30.40		73								29
							†		***********			30 —

Shere Project Name: Foynes Port - Jetty Phase 2 Project No. 17022 Co-ords: 125214.75 - 151824.40 CF	108 et 4 of 4 e Type P+RC	
Project Name: Foynes Port - Jetty Phase 2 Project No. 17022 Co-ords: 125214.75 - 151824.40 CF	е Туре	
ocation: Fouries Port - Jetty Priase 2 17022 C0-01ds. 123214.75 - 131024.40 CF		
OCSTION: FOLIAGE PORT		
	cale l:50	
	ged By CL	
Well Water Depth Type Coring Depth Level Legend Stratum Description		
Stirkes (m) /FI TCR SCR ROD (m) (m) Sandy fine to coarse sub angular to sub rounder GRAVEL. Grave is predominantly black limestor with coassinal light gety impression and crange-content. I romataining on some of the black limestore. At lass some feets predominantly black limestore and crange-content. I romataining on some of the black limestore and the black limestore. At lass some feets predominantly black limestore. At lass some feets predominantly black limestore and crange-content. I romataining on some of the black limestore. At lass some feets predominantly black limestore. At last s	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	333

G	D	G			Borehole Log				Borehole N M09	0.
	N & DOH					DO		old Log	Sheet 1 of	4
Projec	t Name:	Foynes	Port - Je	etty Phase 2	Project No. 17022		Co-ords:	125184E - 151810N	Hole Type CP+RC	
Locati	on:	Foynes	Port				Level:	0.47 m CD	Scale 1:50	
Client:		RPS					Dates:	10/05/2017 - 11/05/2017	Logged By CL	/
Well	Water Strikes			Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
	Ottikos	Depth (m) 0.00 - 0.50	Type B	Results	(111)	(111)	X_^X	Very soft grey silty CLAY		
		0.00 - 0.50	D				<u> </u>			
		0.50 0.50 - 1.00	B D				<u> </u>			
		1.00 1.00 - 2.00	ES P				××			1 -
		1.00 - 2.00					<u> </u>			
							<u>×</u> ×			
		2.00	В				XX^			2 =
		2.00 2.00 - 3.00	D P				××			
							<u> </u>			
		3.00	В				<u> </u>			3 =
		3.00 3.00	D ES				××			
		3.00 - 4.00	Р				<u> </u>			
							XX			
		4.00 4.00	B D							4 =
		4.50	U				×××			
		4.50 4.50 - 5.50	UT P				××			
		5.00 5.00	B D				×			5 =
		5.00	ES				<u> </u>			
							× × ×			
							<u> </u>			6 =
							XXX			
		6.50 6.50	B D				×			
		6.50 - 6.95	SPTL S				××			7 =
							<u>xx-</u>			'
							××			
							×——×			
					8.00	-7.53		Soft grey, slightly fine sandy, silty CLA	Υ.	8 =
		8.50	В				<u> </u>			
		8.50	D							
							× × ×			9 =
		9.50 - 9.95	В				<u> </u>			
		9.50 - 9.95 9.50 - 9.95	SPTL S				××			
		10.00	В				××	Continued on Next Sheet		10
Remar	·ks					1			2	

		(G					Danahalalas					Borehole No.	
GAVIN	I & DOH						Bo	reho	ole Log	M09			
GEO	SOLUTIO	SNS							П		Sheet 2 of		
Projec	t Name:	Foynes	Port - c	Jetty Pl	hase 2		roject No. 7022		Co-ords:	125184E - 151810N	Hole Type CP+RC	•	
Locatio	on:	Foynes	Port						Level:	0.47 m CD	Scale 1:50		
Client:		RPS							Dates:	10/05/2017 - 11/05/2017	Logged By CL	/	
Well	Water Strikes	Sample		n Situ			Depth (m)	Level (m)	Legend	Stratum Description			
	Ottikos	Depth (m) 10.00	Type D		Result	:S	(111)	(111)	× ^ -×	Soft grey, slightly fine sandy, silty CLA	<i>(</i> .	=	
		11.00 11.50 11.50 12.50 - 12.95 12.50 - 12.95 13.00 13.50 14.00 15.50	B B D B B D UT B B				13.90	-13.43		Medium dense, fine to coarse SAND a coarse subrounded and tabular GRAV cobble content. Gravel is mainly grey li rounded) and black limestone (tabular) amounts of orange brown sandstone.	nd fine to EL with low mestone (sub	11 ———————————————————————————————————	
		18:28 18:20 - 18:70 18:70	B B				18.20	-17.73		SWITCH TO ROTARY CORE Dense sandy fine to coarse sub angu subrounded and tabular GRAVEL witt cobble content. Gravel is predominan limestone with lesser (tabular) black I rare orange brown sandstone.	n medium tly grey	19 -	
			Type/FI	TCR	SCR	RQD						20 =	

											Borehole N	0.
GAVIN	L & DOH	J EDTY						Rota	ary C	ore Log	M09	
GEO	SOLUTIO									•	Sheet 3 of	4
Projec	t Name	e: Foynes	s Port	- Jetty	Phase	2 Pr	oject No. 7022		Co-ords:	125183.97 - 151810.44	Hole Type CP+RC	
ocati	on:	Foynes	Port			·			Level:	0.47 m CD	Scale 1:50	
Client	:	RPS							Dates:	10/05/2017 - 11/05/2017	Logged B CL	у
Well	Water Strikes	Depth (m)	Type /FI		Coring		Depth (m)	Level (m)	Legend	Stratum Descriptio		
	Ollines		/	TCR	SCR	RQD	(111)	(111)		Dense sandy fine to coarse sub angu	lar.	
		20.20 18.70 - 23.20 21.70	В							subrounded and tabular GRAVEL with cobble content. Gravel is predominar limestone with lesser (tabular) black I rare orange brown sandstone.	n medium tly grey	21 -
	-						-					23 -
	İ	23.40 - 23.65					1					
							1					
		23.20 - 24.70		80								24
	<u>_</u>	24.55 - 24.70					_					25 -
		24.70 - 26.00		62								
		26.00 26.00 - 26.20	В				_					26
		26.00 - 26.20		100			_					
		26.20 - 27.70		33								27 -
		27.70 - 28.90		92								28 -
		28.90 - 30.10		92								29
							1					30 -

Silent: RPS	GDG									Borehole N	0.		
Project Name: Foynes Port - Jety Phase 2 Project No. 17022 Co-ords: 12518.3.97 - 151810.44 Hole Type Open Coation: Foynes Port Level: 0.47 m D Scale 1.50 Scal						Rota	ary C	Core Log	M09				
Contain Cont							\perp						
Dilent: RPS Dates Dates Dilent RPS	Project N	lame:	Foynes	Port	- Jetty	Phase	2 Pr 17	oject No. '022		Co-ords:	125183.97 - 151810.44	CP+RC	
Well Water Depth Strikes (In) Type Coring TCR SCR RQD (In) TCR SCR RQD (In	ocation:		Foynes	Port						Level:	0.47 m CD	1:50	
Strikes (n)	Client:		RPS							Dates:	10/05/2017 - 11/05/2017		у
Dense sandy fine fine coarse sub-area was unaccompleted and based on the coarse sub-area was unaccompleted and based on the coarse sub-area was unaccompleted and based on the coarse sub-area was unaccompleted and the coarse sub-area was una	Well Wa	ater ikes		Type /FI						Legend	Stratum Descriptio	n	
31 32 33 34 35 36 37 38 39					TCK	SCR	RQD			**************************************	subrounded and tabular GRAVEL with cobble content. Gravel is predominan limestone with lesser (tabular) black li	n medium tly grey	
34 35 36 37 38 39											End of Borehole at 30.100	im	31
36 37 38 39													33 -
36 37 38 39													34
37 38 39 40													35
38													36 -
39													37
40													38
													39 —
													40

CDC								_		Borenole No	0.	
GAVIN & DOHERTY GEOSOLUTIONS								Rota	ary C	Core Log	M09B	
GEC	SOLUTION	S				_			1		Sheet 1 of	
roje	ct Name:	Foyne	s Port	- Jetty	Phase 2	17	oject No. 7022		Co-ords:	125183.97 - 151810.44	Hole Type RC	9
ocat	ion:	Foynes	s Port						Level:	0.47 m CD	Scale 1:50	
lient	t:	RPS							Dates:	27/05/2017 - 28/05/2017	Logged By LB	у
Vell	Water Strikes	Depth	Type /FI	1	Coring		Depth	Level	Legend	Stratum Description		
	Suikes	(m)	/FI	TCR	SCR R	QD_	(m)	(m)		Open hole Boring (See BH M09 for de	etails)	_
												-
												-
												1 -
												-
												_
												2 —
												-
												-
												3 —
												-
												4 —
												- -
												_
												_
												5 —
												-
												-
												6 -
												=
												7 —
												-
												-
												8 -
												9 _
												-
				<u> </u>			-					10 —
ema	rke		1					<u> </u>				1

											Borenole N	0.
GAVIN & DOHERTY GEOSOLUTIONS								Rota	ary C	Core Log	M09B	
GEC	SOLUTION	S				Ļ			Г		Sheet 2 of	
roje	ct Name:	Foyne	s Port	- Jetty	Phase 2	Pr 17	oject No. 7022		Co-ords:	125183.97 - 151810.44	Hole Type RC	Э
ocat	ion:	Foyne	s Port						Level:	0.47 m CD	Scale 1:50	
lien	:	RPS							Dates:	27/05/2017 - 28/05/2017	Logged B LB	у
 Vell	Water Strikes	Depth	Туре		Coring		Depth	Level	Legend	Stratum Description		
	Strikes	(m)	/FI	TCR	SCR R	QD	(m)	(m)	Logona	Open hole Boring (See BH M09 for de		
												_
												11 —
												_
												12 —
												-
												13 —
												13
]
												14 —
												-
												-
												15 —
												=
												16 —
												-
												-
												17 -
												_
												-
												18
												19 _
												-
												-
							-					20 —
ema	rke						I	<u> </u>			20	07

											Borehole No	0.
GAVIN & DOHERTY							l	Rota	ary (Core Log	M09B	
GEC	SOLUTIO									•	Sheet 3 of	
roje	ct Name	: Foynes	s Port	- Jetty	Phase	2 Pro	oject No. 7022		Co-ords:	125183.97 - 151810.44	Hole Type RC	Э
ocat	ion:	Foynes	Port						Level:	0.47 m CD	Scale 1:50	
lient	t:	RPS							Dates:	27/05/2017 - 28/05/2017	Logged B	у
Vell	Water	Depth	Туре		Coring		Depth	Level	Legend	Stratum Description		
	Strikes	(m)	/FI	TCR	SCR	RQD	(m)	(m)		Open hole Boring (See BH M09 for de		$\vdash \exists$
							22.70	-22.23		No recovery Switched to Rotary Core		21 —
												24 —
												26 -
												28 —
		29.10 - 30.60		100	0	0	29.10	-28.63	× × × × × × × × × × × × × × × × × × ×	Very dense, grey, occasionally brown, GRAVEL of limestone and sandstone cobble and boulder content. Gravel is subrounded, fine to coarse.	with low	29 —
omo					oxdot							

											Borehole No	0.
GAVII	N & DOH	ERTY						Rota	ary C	ore Log	M09B	
GEC	SOLUTIO) N S									Sheet 4 of	
roje	ct Name	: Foynes	Port -	- Jetty	Phase	2 Pi	roject No. 7022		Co-ords:	125183.97 - 151810.44	Hole Type RC	9
.ocat	ion:	Foynes	Port						Level:	0.47 m CD	Scale 1:50	
Client	t:	RPS							Dates:	27/05/2017 - 28/05/2017	Logged B	у
Nell	Water Strikes	Depth	Type /FI		Coring		Depth (m)	Level	Legend	Stratum Description		
	Suikes	(m)	/୮۱	TCR	SCR	RQD	(111)	(m)	· · · · · · · · · · · · · · · · · · ·	Very dense, grey, occasionally brown	, silty sandy	_
	_								× × × × × × × × × × × × × × × × × × ×	GRAVEL of limestone and sandstone cobble and boulder content. Gravel is subrounded, fine to coarse.	s angular to	
									× × × ×			31 —
		30.60 - 32.10		100	0	0			* * * * * * * *			
				ļ					× × × ×			=
	_						-		* * * * * * * * *			32 —
									× × × ×			=
		32.10 - 33.60		87	0	0			* * * * * * * * *			22 —
									× × × ×			33 —
	-						-		× × × ×			
									× × × ×			34 —
		33.60 - 35.10		87	0	0			× × × × ×			
				ļ					× × × ×			-
	=						_		× × × × ×			35 =
									× × × ×			
		35.10 - 36.60		94	0	0			× × × × ×			
									× × × ×			36 —
									× × × × × ×			
							36.70	-36.23		Hard grey slightly sandy gravelly CLA cobble content. Gravel is angular to s	subangular,	37 —
		36.60 - 38.10		100	0	0				fine to coarse limestone. Sand is fine	to medium.	37
		00.00					37.50	-37.03		Strong grey slightly weathered highly LIMESTONE. Fractures are extreme	fractured	
										spaced, randomly orientated, open, winfill and rare quartz vein.	rith sandy clay	38 —
		38.10 - 39.40		115	19	0						
												39 —
							-					
		39.40 - 40.50		0	0	0						
												40 —

Rotary Core Log M998 Sheats of 5 Project Name: Foynes Port - Jetty Phase 2 Project No. 17022 Clocation: Foynes Port Level: 0.47 m CD Scale Scal												Borehole N	0.
Project Name: Foynes Port - Jetty Phase 2 Project No. 17022 Co-ords: 125183.97 - 151810.44 Hole Type Co.	GAVIN	N & DOH	ERTY						Rota	ary (Core Log	M09B	
Cooling	GEO	SOLUTIO	ONS				-	5		T			
Level Carlon Feynes Port Level Carlon	Proje	ct Name	e: Foynes	s Port	- Jetty	Phase				Co-ords:	125183.97 - 151810.44		Э
Well Water Depth Strikes Depth Strikes Coring TCR SCR ROD	Locat	ion:	Foynes	Port						Level:	0.47 m CD	1:50	
Strikes (m) F	Client	:	RPS							Dates:	27/05/2017 - 28/05/2017		У
41.20 - 42.70	Well			Type /FI				, ,		Legend	Stratum Descriptio	n	
41.20 - 42.70					TOIX	JOIN	TTQL						_
41.20 - 42.70		-											-
41 20 - 42 70 90 25 0 Becoming stronger and more competent. Fractures extremely closely spaced to closely spaced, 20°, planar, rough that orange brown staining and cocasional sandy clay infill. 42 70 - 44 20 100 77 0 43 - 35 - 36 - 36 - 36 - 36 - 36 - 36 - 3			40.50 - 41.20		86	37	0]
### Becoming stronger and more competent.		-											41 —
### Becoming stronger and more competent.													_
## Becoming stronger and more competent.			41.20 - 42.70		90	25	0						12 -
## Fractures extremely closely spaced to closely appeared to closely spaced to closely appeared to closely													-
\$\$\text{saped}\$, \$\text{20}\$ \$\text{laming}\$, \$\text{2nd set}\$, \$\text{very closely spaced}\$, \$\text{70}\$', \$\text{stepped}\$, rough with orange brown staining and occasional sandy clay infill.} \\ 44 - \text{44.60} \text{20} \text{C} \text{80} \text{60} \text{C} \text{80} \text{60} \text{C} \text{80} \text{60} \text{C} \text{80} \text{60} 60											Becoming stronger and more comp	etent.	_ _ -
\$\$\text{stepped, rough with orange brown staining and occasional sandy clay infill.}}\$\$\$44.480 \\ 44.2\text{practs} \\ 44.2\text{practs} \\ 45.20 \\ 45.20 \\ 44.73 \\ \text{End of Borehole at 45.200m}\$\$\$\$45 \\ 47 \\ 48 \\ 49 \\ The performance of the per											spaced, 20°, planar, rough with orai	nge brown	43 —
44.4.60 20 C 80 60 0 45.20 -44.73 End of Borehole at 45.200m 46 - 47 - 48 - 48 - 49 - Remarks											stepped, rough with orange brown s	ea, 70 , staining and	
44.20 45.20 C 80 60 0 45.20 End of Borehole at 45.200m			42.70 - 44.20		100	77	0			<u> </u>	occasional sandy clay min.		
44.20 45.20 C 80 60 0 45.20 End of Borehole at 45.200m													44 —
44.24; 46.20 C 30 60 0 45.20 44.73 End of Borehole at 45.20om		-											=
45.20 -44.73 End of Borehole at 45.200m 46 - 47 - 47 - 47 - 49 - 50 - 80 - 80 - 80 - 80 - 80 - 80 - 80			44.60 44.2045.20	С	80	60	0						
45.20 -44.73 End of Borehole at 45.200m 46			11-244.05-20				Ū						45 —
47 - 48 - 49 - 50 - Remarks		-						45.20	-44.73	1,1,1	End of Borehole at 45.200)m	
47 - 48 - 49 - 50 - Remarks													-
48 — 49 — 50 — Remarks													46 —
48 — 49 — 50 — Remarks													
48 — 49 — 50 — Remarks													_ - -
49													47 —
49													=
49													-
Remarks													48 =
Remarks													- - -
Remarks													
Remarks													49 =
Remarks													
Remarks													
													50
			n: Chart datu	m Ho	rizont	al datu	m· Irio	sh arid refere	ence coo	rdinates s	system		

GAVI	N & DOH					Во	reh	ole Log	Borehole M10 Sheet 1 o	
rojec	t Name:	Foynes	Port - J	etty Phase 2	Project No.		Co-ords:	125157E - 151798N	Hole Typ CP+RC	е
_ocati	on:	Foynes	Port		1		Level:	0.66 m CD	Scale 1:50	
lient:		RPS					Dates:	14/05/2017 - 16/05/2017	Logged E CL	Зу
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
		Depth (m) 0.00	Type B	Results	()	()	*************************************	Soft to very soft grey silty CLAY with so	ome fine sand	
		0.00 - 0.50	D				× × ×	, , , , ,		
		0.50	В				×-×			
		0.50 - 1.00	D							
		1.00 1.00	B D							.
		1.00	ES				X-X-X			
		1.00 - 2.00	P				X_X_X			
		2.00	В				XX_X			
		2.00 2.00	D ES							
		2.00 - 3.00	P							
							X_X_X			
		3.00	В				X_X_X			;
		3.00 3.00	D ES				X_X_X			
		3.00 - 4.00	P				X_X_X			
							××_			4
							X_X_X			
		4.50	В							
		4.50	D				X_X_X			
							XX			
		5.25		HVP=37			XX			'
		0.20		1101 -07			XX			
							XX			
							XX			Ι,
		6 50	D							
		6.50	0	⊔\/D=40						
		6.75		HVP=42						
			_							
		7.50 7.50	D SPTL				XX			
		7.50	S SPT	0 (0,0/0,0,0,)			XX			
		8.00	В	0 (0,0,0,0,0,)			XX			
		8.00	D							

9.50 9.50 B D

Vertical datum: Chart datum. Horizontal datum: Irish grid reference coordinates system.

Continued on Next Sheet

10 -

GAVI GEO	N & DOH					Во	reho	ole Log	Borehole N M10 Sheet 2 of	
	ct Name:		Port - J	etty Phase 2	oject No.		Co-ords:	125157E - 151798N	Hole Type	
.ocati		Foynes		17	022		Level:	0.66 m CD	CP+RC Scale	
.ocat		Foynes	FUIL				Level.	0.00 III CD	1:50 Logged B	
lient:		RPS					Dates:	14/05/2017 - 16/05/2017	CL	у
Vell	Water	Sampl	e and Ir	n Situ Testing	Depth	Level	Legend	Stratum Description	1	
	Strikes	Depth (m)	Туре	Results	(m)	(m)		Soft to very soft grey silty CLAY with s		_
Well Strikes	10.50 10.50 11.00 11.00 12.50 12.50 13.30 13.30 13.50 14.00	D SPT B D B D SPT B D	N=0 (0,0/0,0,0,0) N=15 (2,2/3,4,4,4)	12.50	-11.84		Soft grey with white and black streaks CLAY, gravel is fine to coarse sub ang some tiny conch shells present Medium dense brownish grey sandy 0 some cobbles. Gravel is fine to coars angular with some flat	ular GRAVEL, with	112	
		15.00 15.50 16.50 17.00	SPT B SPT B	N=20 (3,4/4,6,5,5) N=34 (6,7/7,8,10,9)	15.50	-14.84		Medium dense to dense brownish gre GRAVEL, with cobbles and boulders. coarse, angular to sub angular with so and boulders are sub angular to sub r	Gravel is fine to me flat. Cobbles	15

Vertical datum: Chart datum. Horizontal datum: Irish grid reference coordinates system.

N=31 (3,3/4,6,11,10)

N=50 (6,8/50 for 240mm)

20.00

-19.34

18.00

18.50

19.50

20.00

SPT

В

SPT

В

Continued on Next Sheet

19

20 -

											Borehole N	0.
GAVII	N A DOH	U FRTY						Bo	reho	ole Log	M10	
GEC	SOLUTIO								_	.	Sheet 3 of	4
Projec	t Name:	Foynes	Port - 、	Jetty P	hase 2	- 1	oject No. 7022		Co-ords:	125157E - 151798N	Hole Type CP+RC)
.ocati	on:	Foynes	Port			·			Level:	0.66 m CD	Scale 1:50	
lient:		RPS							Dates:	14/05/2017 - 16/05/2017	Logged By CL	/
Well	Water Strikes	Sample					Depth (m)	Level (m)	Legend	Stratum Description	1	
		Depth (m)	Туре		Result	S	()	()	6.00	Very dense blackish grey very sandy (GRAVEL, with	 -
										cobbles and boulders. Sand is coarse, to coarse, angular. Cobbles and bould angular to sub rounded.	Gravel is fine	
		21.00	SPT	N=5	50 (9,11/s 230mm	50 for ı)						21 -
		2 1: 4 8	B				21.40	-20.74	0 0	SWITCH TO ROTARY CORE		-
										Very dense blackish grey GRAVEL, w and boulders. Gravel is coarse, angu and boulders are sub angular to sub Gravels, cobbles and boulders are pr fine grained limestone.	lar. Cobbles rounded.	22
		23.00	В									23 -
		21.40 - 26.00										24 -
		24.50	В						0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.			25 -
									000			
		26.00 - 27.50	C									26
		26.00 - 27.30		77								27 -
		27.30 - 27.50 27.50 - 29.00	С	100			27.20	-26.54		Strong, very thinly bedded, black, fine grained, LIMESTONE, dicontinuities spaced, open to wide, surfaces are p	are closely lanar rough	
		27.50 - 29.00		87	49	16				and generally stained brownish orang infilling with silty gravel.	ge, some	27 -
												29
		29.00 - 30.50	С				29.00	-28.34		Highly fractured LIMESTONE rock as recovered as gravel and cobbles.	above,	29
		29.00 - 30.50		80								
			T '	TOP	005	DOD	29.90	-29.24	* *			30 -
			Type/FI	TCR	SCR	RQD						

											Borehole No	0.
CAVII	N & DOH	U						Rota	ary (Core Log	M10	
GEC	SOLUTIO									J	Sheet 4 of	4
Proje	ct Name	e: Foynes	s Port	- Jetty	Phase		roject No. 7022		Co-ords:	125156.98 - 151797.96	Hole Type CP+RC	9
Locat	ion:	Foynes	Port						Level:	0.66 m CD	Scale 1:50	
Client	t:	RPS							Dates:	14/05/2017 - 16/05/2017	Logged By CL	y
Well	Water	Depth	Туре		Coring	ı	Depth	Level	Legend	Stratum Descriptio	n	
VVCII	Strikes	(m)	/FI	TCR	SCR	RQD	(m)	(m)	Legend	•		
		- 30.50 - 31.80	С				30.30	-29.64		Very dense blackish grey and grey Gi is coarse, sub angular to sub rounded Very dense blackish grey GRAVEL, w Gravel and cobbles are coarse, angu and cobbles are predominantly fine g limestone.	d. vith cobbles. lar. Gravels	31
		30.50 - 31.80		100			31.30	-30.64		Very dense grey limestone GRAVEL, abgular to sub rounded.	coarse, sub	31
		32.05 31.80 - 32.60	С				31.80	-31.14		Limestone boulder at 31.7m Fractured rock recovered as gravel as Strong, very thinly bedded, black, fine grained, LIMESTONE, dicontinuities a spaced, open to wide, surfaces are pland generally stained brownish orang	e to medium are closely anar rough	32 -
		32.87	С									33
							34.10	-33.44		Fractured rock recovered generally as cobbles. Rock is very thinly bedded, the medium grained, LIMESTONE, diconclosely spaced, open to wide, surface rough and generally stained brownish	plack, fine to tinuities are es are planar	34 -
							35.80	-35.14		End of Borehole at 35.800)m	36
												37
												38
												39
							_					40 -

G	D	G				Rο	reho	ole Log	Borehole No.	O.
GAVII	N & DOH							oic Log	Sheet 1 of	3
Projec	t Name:	Foynes	Port - J	etty Phase 2	Project No. 17022		Co-ords:	125137E - 151793N	Hole Type CP+RC	
Locati	on:	Foynes	Port				Level:	0.84 m CD	Scale 1:50	
Client:		RPS					Dates:	23/04/2017 - 25/04/2017	Logged By CL	,
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
	Ounco	Depth (m)	Туре	Results	(111)	(111)	x_^_ _x	Very soft, grey / dark grey silty to very	silty CLAY	
		1.00 1.00 1.00 1.00 - 1.45 1.50 1.50 2.00 - 2.45 2.50 2.50 3.00 - 3.45 3.50 3.50 3.75	B D S UT B D B B D B SPT	Ublow=3 Ublow=5 Ublow=7	3.75 3.85	-2.91 -3.01		Attempted vane, invalid result. On cle small amount of medium to coarse ta black limestone intermixed with dark. Soft grey/dark grey silty CLAY with a tabular gravel of black limestone. Pos discrete gravel rich pockets	aning pulled bular GRAVEL of grey clay. little sub angular	1 2 2 3 4 4
		5.00 5.00 - 5.45 5.50 5.50	ES UT B D	Ublow=9						5
		6.25 6.50 6.50 6.50 6.50 6.50 - 7.50	B D U UT P	HVP=34	6.00	-5.16	X X X X X X X X X X X X X X X X X X X	Soft grey/dark grey silty CLAY.		7
		7.75 8.00 - 8.45 8.50 8.50	UT B D	HVP=44 Ublow=11			X X X X X X X X X X X X X X X X X X X			8 8
Remar	ke	9.50 9.50 10.00	B SPT B	N=0 (0,0/0,0,0,0)			xx xx	Continued on Next Sheel		10

											Borehole N	0.
	& DOH							Bo	reho	ole Log	M11	
GEOSC	OLUTIC	NS									Sheet 2 of	
Project N	Name:	Foynes	Port - c	Jetty P	hase 2		oject No. 022		Co-ords:	125137E - 151793N	Hole Type CP+RC	!
Location	n:	Foynes	Port						Level:	0.84 m CD	Scale 1:50	
Client:		RPS							Dates:	23/04/2017 - 25/04/2017	Logged By CL	′
Well S	Nater Strikes			n Situ	Testing		Depth (m)	Level (m)	Legend	Stratum Description	1	
\vdash	, trintoo	Depth (m) 10.00	Type D		Results		(,	(,	→ ^ -×	Soft grey/dark grey silty CLAY.		
		11.00 - 11.45 11.50 11.50 12.50 12.50 13.00 13.00 13.20 13.20 13.50 14.00 14.50 14.50 16.50	UT BD BSPT BDBDBSPT BD SPT B	N=0 N=2	Ublow=11 0 (0,0/0,0,0 0 (5,4/5,5,5)	5,5)	12.60	-11.76 -12.36		Change to firm grey CLAY with very sr fragments and indistinctly laminated by probable original natural ground. Sandy, fine to medium, occasionally coangular to sub rounded GRAVEL.	rown CLAY,	11 12 13 14 15 16
		16.706 - 507.20	₿				16.60	-15.76		SWITCH TO ROTARY CORE Sandy, fine to medium, occasionally of	coarse sub	
	_	17.20 - 18.70 18.70 - 20.20		60						Sandy, fine to medium, occasionally or rounded to sub angular GRAVEL of g limestone with some sandstone.	Juaise, Sub rey and black	18
					87							
			Type/FI	TCR	SCR F	RQD	<u></u>	<u></u> _				20 —
Remarks	,										95	-63

											Borehole N	0.
GAVI		U						Rota	ary (Core Log	M11	
GEC	SOLUTIO										Sheet 3 of	
Proje	ct Name	e: Foynes	s Port	- Jetty	Phase 2		roject No. 7022		Co-ords:	125136.95 - 151793.25	Hole Type CP+RC	9
Locat	ion:	Foynes	Port						Level:	0.84 m CD	Scale 1:50	
Clien	t:	RPS							Dates:	23/04/2017 - 25/04/2017	Logged B	У
Well	Water Strikes	Depth (m)	Type /FI		Coring	200	Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
Well	Water Strikes	Depth (m) 20.20 - 21.70 21.70 - 23.20	Type /FI		SCR F	RQD		-20.56	Legend	Stratum Description Sandy, fine to medium, occasionally of rounded to sub angular GRAVEL of glimestone with some sandstone. Fine, medium and coarse, angular GI COBBLES of predominantly black limits sandy, clayey matrix, assumed washed as a sandy, clayey matrix, assumed washed for sange brown sandstone present. Stronstaining note on fracture surface limestone. Some light grey limestone, granite as gravel present. 24.3-24.5 cobble of limestone. End of Borehole at 24.500	RAVEL and estone in a ed out in parts. white limestone gravel of come es of black and sandstone black	22
												26

CDC					Borehole N	Ю.	
GDG GAVIN & DOHERTY			Bo	reho	le Log	M12	
GEOSOLUTIONS					_	Sheet 1 of	4
Project Name:	Foynes Port - Jetty Phase 2	Project No. 17022		Co-ords:	125146E - 151812N	Hole Type CP+RC	
Location:	Foynes Port			Level:	-2.93 m CD	Scale 1:50	
Client:	RPS			Dates:	18/05/2017 - 19/05/2017	Logged B	У

Client: RPS					Dates:	18/05/2017 - 19/05/2017		CB		
Well	Water Strikes	Sample and In Situ Testing			Depth	Level	Legend	Stratum Description		
V V C		Deput (III)	Туре	Results	(m)	(m)	Logona			
		0.00 0.00 - 0.50	B D	 -			XX	Soft to very soft grey very silty CLAY w sand	ith some fine	
							xx	Sanc		
		0.50 0.50 - 1.00	B D				×			
		0.50 - 1.00					X			
		1.00	ES							1
		1.00	UT	Ublow=3			X—X_			•
							XX			
		1.50 1.50	B D				××			
		1.50	0				~-××			
		2.00	D							2
		2.00	SPT	N=0 (0,0/0,0,0,0)			×——×=			_
							<u> </u>			
		2.50	В				××			
		2.50	D				<u></u> x			
							^×-			
		3.00 3.00	ES UT	Ublow=7			<u> </u>			3
		0.00		Oblow-1			××_			
		3.50	В				~-××			
		3.50	D				X			
		3.75		HVP=27			×——×=			
		4.00	Р				XX			•
							××_			
							^			
							$X-\overline{x}-\overline{x}$			
		5.00	ES				××			Ę
		5.25		HVP=37						
				1107-37						
		5.50 5.50	B D				X—X_			
		3.30					XX			
		6.00	D				×X			(
		6.00	SPT	N=0 (0,0/0,0,0,0)			×			`
		6.50 6.50	В				XX-			
		6.50	D				×X			
							×			
							XX			•
							^x_			
		7.50	UT	Ublow=9			$X = \overline{X} = X + X + X + X + X + X + X + X + X + X$			
							××			
			_							
		8.00 8.00	B D		8.00	-10.93		Soft very sandy CLAY		8
		0.00								
										(
		9.50	В		9.50	-12.43				
		9.50	D		9.50	-12.43	8 X	Soft to very soft grey very silty CLAY w	ith some fine	
							~××	sand and cobbles		
							<u> </u>	Continued on Next Sheet	1	1
								Continued on Next Sheet		

		\overline{C}							Borehole N	0.
GAVII	N & DOH					Bo	reho	ole Log	M12	
GEC	SOLUTIO	SNS					1		Sheet 2 of	
Projec	t Name:	Foynes	Port - c	Jetty Phase 2	Project No. 17022		Co-ords:	125146E - 151812N	Hole Type CP+RC	;
Locati	on:	Foynes	Port				Level:	-2.93 m CD	Scale 1:50	
Client:		RPS					Dates:	18/05/2017 - 19/05/2017	Logged By CB	/
Well	Water Strikes		Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	า	
		11.00 11.00 11.40 12.00 12.50 14.00	B D B SPT N=16 (3,3/3,5,4,4) B SPT N=29 (4,6/6,7,9,7) B SPT N=50 (7,11/50 for 210mm) B		11.00 11.30	-13.93 -14.23		Soft to very soft grey very silty CLAY v sand and cobbles Firm dark grey clayey SILT with thin fr timber and fine rootlets Dense dark brown and black very san some cobbles and rare boulder, sand is fine to coarse sub angular to sub ro brown, grey nd black are sub rounded dark grey subangular. Dense black sandy GRAVEL with cobboulder, sand is coarse, gravel is fine angular to sub rounded, cobbles brow black are sub rounded, boulders are disubangular.	agments of dy GRAVEL with is coarse, gravel unded, cobbles i, boulders are bles and rare to coarse sub n, grey and	13 14 15 15 15 15 16 17 18 18 18 18 18 18 18
		15.50 16.50 18.00	SPT SPT	N=50 (7,12/50 for 280mm) N=69 (24 for 135mm/69 for 155m N=50 (6,12/50 for 230mm)	nm)	-22 63				16
					19.70	-22.63		\ SWITCH TO ROTARY CORE Very dense dark grey coarse subang	jular GRAVEL,	
Pemar			Type/FI	TCR SCR RQ	D					20 -

GDG GAVIN & DOHERTY									Borehole No	0.		
GAVIN & DOHERTY GEOSOLUTIONS								Rota	ary (Core Log	M12	
GEC	SOLUTIO) N S							1		Sheet 3 of	
roje	ct Name	e: Foynes	Port	- Jetty	Phase	2 Pi	roject No. 7022		Co-ords:	125145.83 - 151811.68	Hole Type CP+RC	9
ocat	ion:	Foynes	Port						Level:	-2.93 m CD	Scale 1:50	
lient	t:	RPS							Dates:	18/05/2017 - 19/05/2017	Logged B	У
Vell	Water Strikes	Depth (m)	Type /FI		Coring		Depth (m)	Level (m)	Legend	Stratum Description	n	
		()	,	TCR	SCR	RQD	()	()		with grey sub rounded cobbles and ra	are boulders of	
		22.50 - 24.00		100	7	7	- 22.50	-25.43		Very dense dark grey subrounded CC some boulders of limestone, boulders rounded	DBBLES with appear to be	21 22 22 23 23
							24.00	-26.93		Very dense dark grey silty angular to s GRAVEL, with sub angular to sub rou and boulders of limestone.	subangular nded cobbles	24 —
		24.00 - 25.50		100	13	7		00.40		Boulder encountered at 25.1m to 25	5.5m.	25 —
		25.50 - 27.00		100	1	0	_ 25.50	-28.43	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	Very dense dark grey gravelly COBBI boulder, gravel is fine to coarse sub a cobbles are subrounded.	ES with rare ngular,	26 -
		27.00 - 28.50 28.28	С	100	39	27	28.00	-30.93		Strong, dark grey, highly fractured fine LIMESTONE	e grained	27
		28.50 - 30.00		100	33	7	- - 30.00	-32.93				29
	1	!	İ	1	1 1		1	1				ı I

	ח										Borehole N	0.
GAVI	N & DOH							Rota	ary (Core Log	M12	
	SOLUTI					P	roject No.				Sheet 4 of Hole Type	
Proje	ct Name	e: Foynes	Port	- Jetty	Phase		7022		Co-ords:	125145.83 - 151811.68	CP+RC	,
Locat	ion:	Foynes	Port						Level:	-2.93 m CD	Scale 1:50	
Clien	t:	RPS							Dates:	18/05/2017 - 19/05/2017	Logged B CB	y
Well	Water Strikes	Depth	Туре		Corin		Depth	Level	Legend	Stratum Description	n	
	Strikes	(m)	/FI	TCR	SCR	RQD	(m)	(m)		Medium strong to strong, dark grey, h		_
		30.00 - 31.50		93	27	7				laminated, fine grained, shaley LIME Fractures predominantly sub horizon closely spaced to closely spaced, pla Frequent non intact zones of highly fi weathered shale.	STONE. tal, extremely mar, smooth.	31 -
		31.50 - 33.00		100	40	13						32 -
	32.94 33.09 ³ .73 ⁴ .50 33.79	CC	100	100	33						33 34 34 34 34 34 34 34	
	34.50 - 36.00 34.50 - 36.20		0 18	0 8	0						35	
		36.20 - 37.70		33	7	0						37
		37.70 - 39.00		100	15	38	200 200					38
							39.00	-41.93		End of Borehole at 39.000	Om	39 -

									Borehole N	0.
GAVIN	N & DOH	ERTY				Bo	reho	ole Log	M13	
GEO	SOLUTIO	ONS						•	Sheet 1 of	3
Projec	t Name:	Foynes	Port - J	etty Phase 2	Project No. 17022		Co-ords:	125216E - 151845N	Hole Type CP+RC	e
Location	on:	Foynes	Port				Level:	-4.54 m CD	Scale 1:50	
Client:		RPS					Dates:	28/03/2017 - 29/03/2017	Logged By CB	у
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
		Depth (m)	Туре	Results		,	× ~ ~×	Very soft grey silty CLAY		
					1.00	-5.54	X X X X X X X X X X X X X X X X X X X	Very soft bluish grey slightly silty CLAY		1 -
		4.50	CDT	N=0 (0 0/0 0 0 0	1.50	6.04	XX			
		1.50	SPT	N=0 (0,0/0,0,0,0)) 1.50	-6.04	×x	Very soft bluish grey silty CAY with son	ne fine sand	
		2.10 2.10 2.10 3.50	P U UT	N=0 (0,0/0,0,0,0	2.10	-6.64		Very soft bluish grey slightly silty CLAY		2 3 4 5 5 6
	8.50 SPT N=25 (6,12/6,4,				7.50 7.80 7.80 9.00	-11.04 -12.04 -12.34 -13.34 -13.54		Soft bluish grey slightly silty CLAY with and conch shells, gravel is coarse, ang Soft bluish grey slightly silty, gravelly Cline to coarse, angular to subrounded a gravel, with rare cobbles. Subrounded grey, angular and flat gravel is black Medium dense black sandy GRAVEL, angular, with some cobbles which are subrounded some flat. Some gravels a Firm light brownish grey silty gravelly C cobbles, gravels are angular to subrou cobbles are subrounded black. Medium dense black sandy GRAVEL, angular, with some cobbles which are subrounded some flat. Some gravels a	ELAY, gravel is and some flat gravel is light fine to coarse, angular to re white. CLAY with rare nded black, fine to coarse, angular to	8 9 9
								Continued on Next Sheet		10 —
Remar	ks								70	_

GDG											Borehole No.	
GAVIN	GAVIN & DOHERTY GEOSOLUTIONS							Bo	reho	ole Log	M13	
										<u> </u>	Sheet 2 of	3
Project N	Name:	Foynes	Port - c	Jetty P	hase 2		oject No. 022		Co-ords:	125216E - 151845N	Hole Type CP+RC	•
Location	ո:	Foynes	Port			·			Level:	-4.54 m CD	Scale 1:50	
Client:		RPS							Dates:	28/03/2017 - 29/03/2017	Logged By CB	У
	Water Strikes	Sample		n Situ			Depth (m)	Level (m)	Legend	Stratum Description	1	
	Junio J	Depth (m)	Туре		Results	3	()	()		Medium dense black sandy GRAVEL, angular, with some cobbles which are	angular to	=
		10.00 10.20								subrounded some flat. Some gravels a	are white.	
		18:88 <u>- 13:3</u> 8	SPT	N=0 (2	5 for 75n 0mm)	nm/0 for	10.80	-15.34	000	SWITCH TO ROTARY CORE LIMESTONE Boulder, surface is undi lightly stained	ulating rough,	11
							11.50	-16.04		Medium dense black sandy GRAVEL		
										coarse, angular, with some cobbles w angular to subrounded some flat. Sor white		12
		12.30 - 13.80	С				12.30	-16.84		Dense bluish grey GRAVEL, medium angular, with some cobbles, angular, rare flat.		
										Tare liat.		13
									LIMESTONE Boulder approx. 0.6m	lenath		
		13.80 - 15.30	С							EMESTONE Boulder approx. 0.011	Tongar	14
			100				14.10	-18.64	**** × × × × × × × × × × × × × × × × ×	Strong thinly laminated black fine gra SILTSTONE, fractures are extremely spaced, ave. 15mm max. 20mm, plar tight, no surface staining or infilling	closely	
			33				15.00	-19.54	*****	Very strong light grey medium graine		15
		15:30 - 16:82	С	100		0	15.40	-19.94	* * * * * *	LIMESTONE, no fractures, surface is rough, no discolouring.	undulating	
										Very stiff to hard black gravelly SILT		16
		16.62 - 16.80 16.80 - 18.30	С	100		100	16.62 16.68	-21.16 -21.22	******** ******* ******* *******	Very strong light grey medium graine LIMESTONE, no fractures, surface is rough, no discolouring.	undulating	17
							17.50 17.62	-22.04 -22.16	******	Strong thinly laminated black fine gra SILTSTONE, rock is shattered, recov coarse angular		
		16.62 - 19.80 18.30 - 19.80	С	100			18.30	-22.84		Very strong light grey medium graine LIMESTONE, no fractures, surface is rough, no discolouring. Very stiff to hard black gravelly SILT		18
		70.00 - 19.00					10.50	-22.04		Dense black and grey GRAVEL with gravel is fine to coarse getting finer wangular to subangular some flat; cobl subrounded. GRAVEL possible shatts SILTSTONE and LIMESTONE; cobbl	vith depth, bles are grey ered es were	19
							19.25	-23.79	******** ******* ******* ******* ******	causing the core barrell to jam so dril pulled out approx. every 300mm betw would cause the gravel and cobbles to finer gravels to settle to the bottom of the barrell.	I had to be veen which to mix and the	
		Type/FI TCR SCR F							0000000			20 =
Remarks	1 S										83	-03

GDG GAVIN & DOHERTY										Borehole N	0.	
GAVIN & DOHERTY GEOSOLUTIONS								Rota	ary C	ore Log	M13	
GEO	SOLUTIO	SNC									Sheet 3 of	
Projec	ct Name	e: Foynes	s Port	- Jetty	/ Phase	∌ 2	Project No. 17022		Co-ords:	125215.90 - 151844.61	Hole Type CP+RC	
_ocati	on:	Foynes	Port						Level:	-4.54 m CD	Scale 1:50	
Client	:	RPS							Dates:	28/03/2017 - 29/03/2017	Logged B CB	У
Well	Water Strikes	Depth (m)	Type /FI	1	Coring		Depth (m)	Level	Legend	Stratum Description	n	
Well	Water Strikes	Depth (m) 19.80 - 21.30	Type /FI	1	SCR			-25.84	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	Strong thinly laminated black fine gra SILTSTONE, fractures are very close 30mm max. 60mm, planar smooth, s brown surface staining no infilling tigf fracture surface; vertical fracture: und partly open, light brown staining, at a some soft black silty clay infilling tight. End of Borehole at 21.300	nined ely spaced, ave. ome light nt horizontal dulating rough, around 19.7m	21 - 22 - 23 - 24 - 25 - 26 -
												29 -
												30 -
Pomo	- Lan											

	<u> </u>	G					Borehole No.			
GAVI	N & DOH					DΟ	епс	ole Log		
	ct Name:		Port - J	etty Phase 2	Project No. 17022		Co-ords:	125172E - 151823N	Sheet 1 of Hole Type CP+RC	
Locati	on:	Foynes	Port				Level:	-4.09 m CD	Scale 1:50	
Client:		RPS					Dates:	01/04/2017 - 03/04/2017	Logged By	У
Well	Water Strikes	Sample Depth (m)		Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
		0.00 - 1.00	Type B	Results		, ,	×_^_×	Very soft grey silty CLAY		
		3.50 4.00	UT B		3.50	-7.59 -8.09		Soft grey silty CLAY with some fine sand	d	1 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
		5.50 - 6.00 6.50 - 7.00	UT B				X——X——X——X——X——X——X——X——X——X——X——X——X——			6
		0.30 - 7.00					× × ×			
		7.00 - 7.50	UT				X			7 -
		8.00 - 8.50	В				× × ×			8
		8.50 - 9.00	UT				X X X			
		9.50	SPT	N=5 (2,1/1,1,1,2	9.20	-13.29	X X X X X X X X X X X X X X X X X X X	Soft very Silty, Gravelly, CLAY. Gravel is and some flat Continued on Next Sheet	fine angular	9
Rema	rks	<u> </u>				1			8	

									Borehole No	Э.
GAVIN & DOI	HERTY					Bo	reho	ole Log	M14	
GEOSOLUTI							Т	<u> </u>	Sheet 2 of 3	
Project Name	: Foynes	Port -	Jetty Phase 2	Project I	No.		Co-ords:	125172E - 151823N	Hole Type CP+RC	
Location:	Foynes	Port		1			Level:	-4.09 m CD	Scale 1:50	
Client:	RPS						Dates:	01/04/2017 - 03/04/2017	Logged By CL	,
Well Water Strikes	<u> </u>		In Situ Testing		epth m)	Level (m)	Legend	Stratum Description		
Cumos	Depth (m) 10.10 - 10.30	Type B	Results	((,,,	* · * * * * * * * * * * * * * * * * * *	Soft very Silty, Gravelly, CLAY. Gravel i	s fine angular	=
				10).30	-14.39	× × × × × × × × × × × × × × × × × × ×	and some flat Dark grey Silty GRAVEL with some cot fine to coarse angular and flat. Cobble sub angular from coarse grained rock (obles, gravel is is dark grey	
12	11.00		N=40 (12,13/12,12		.00	-15.09				11
	12.00 - 12.50 12.50	SPT	46 (5,5/46 for 194		2.00	-16.09		Dense black sandy GRAVEL and cobb fine to coarse angular to sub angular a that are grey, sub rounded and rough		12 -
	13.10	LB								13
	14.00	SPT	45 (25 for 130mn for 100mm)	n/45						14
										15
				15	5.70	-19.79		SWITCH TO ROTARY CORE Dark grey & black, occasionally light of to coarse, sub rounded to angular grailmestone and fine grained silty limest cobbles and occasional boulders of the material.	ivel of one with many	16
				17	7.20	-21.29		Cobble of dark grey grey fine silty lime Bedding (20-40mm) sub-vertical to cowith ironstaining.		17
				40	3.70	-22.79				18
				18	5.TU	-22.19		1.2m recovered. Between 19.15m & 1 of dark grey silty limestone, bedding (horizontal to core axis. Between 19.2t boulder of similar material but bedding sub vertical to core axis with slight iro	<10mm) 0m & 19.80m g (5-40mm)	19
		Type/FI	TCR SCR R	.QD						20 —

GDG								Borehole N	0.
GAVIN & D	OHERTY				Rota	ary (Core Log	M14	
				Project No.			105171.00 151000.01	Sheet 3 of Hole Type	
Project Na	ıme: Foyne	s Port	Jetty Phase 2	17022		Co-ords:	125171.86 - 151822.81	CP+RC	
Location:	Foynes	3 Port				Level:	-4.09 m CD	Scale 1:50	
Client:	RPS					Dates:	01/04/2017 - 03/04/2017	Logged B	у
Well Wat	er Depth	Type /FI T	Coring	Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
Strik	23.50	C C	TCR SCR RO	20.20	-24.29		1.2m recovered. Between 19.15m & of dark grey sitly limestone, bedding horizontal to core axis. Between 19.2 boulder of similar material but beddin sub vertical to core axis with slight iro	19.20m cobble (<10mm) 0m & 19.80m g (5-40mm)	22
							End of Borehole at 24.700)m	25 —
									27 -
									28 —
									29 -

Project Name: Project Sport - Jetily Phase 2 Project Name: Project Nam		N & DOH					Во	reho	ole Log	Borehole No. M15 Sheet 1 of 3	3
Close Per Pe	Projec	t Name:	Foynes	Port - Je	etty Phase 2	Project No. 17022		Co-ords:	125123E - 151815N		
West West Sample and in Situ Testing Depth (m) Type Results Ch Ch Ch Ch Ch Ch Ch C	Locati	on:	Foynes	Port				Level:	-3.40 m CD	1:50	
Strikes Depth (m) Type Results (m) (m) Legend Straium Description Stra	Client:		RPS					Dates:	04/04/2017 - 06/04/2017		'
Very soft to soft, grey, slightly sitly CLAY.	Well							Legend	Stratum Description		
8.50 - 8.95 UT 8.50 - 11.90 Short length (about 190mm) of 30mm diameter re-bar. Soft grey slightly silty CLAY with allittle sub rounded gravel of limestone. Traces of shell fragments noted within clay; possibly original natural ground UT sample taken at 8.50m 9.50 B 9.50 D 9.70 -13.10 Very dense, light and dark grey, fine to coarse, sandy, sub angular to angular GRAVEL of limestone and			0.50 0.50 1.00 1.00 1.00 - 1.45 1.50 1.50 2.00 2.00 - 3.00 3.00 3.00 3.00 3.00 3.50 3.50 4.00 - 4.45 4.50 5.00 5.00 5.00 5.00 5.00 5.00 6.00 - 7.00	BD BDSTBD STP BDS BD T B BDSTBD TP BD	Results	4.00	-7.40		Very soft to soft, grey, slightly silty CLAY.		3 4 5 6
9.50 D 9.70 -13.10 Very dense, light and dark grey, fine to coarse, sandy, sub angular to angular GRAVEL of limestone and			8.00 8.50 - 8.95	D UT		8.50	-11.90		Soft grey slightly silty CLAY with alittle sugravel of limestone. Traces of shell fragr within clay; possibly original natural group	ub rounded nents noted	
			9.50	D		9.70	-13.10		sub angular to angular GRAVEL of limes	oarse, sandy, stone and	10

GDG											Borehole N	0.
GAVII	GAVIN & DOHERTY GEOSOLUTIONS							Bo	reho	ole Log	M15	
GEC	SOLUTIO	SNS									Sheet 2 of	
Projec	t Name:	Foynes	Port - c	Jetty Pl	nase 2		oject No. '022		Co-ords:	125123E - 151815N	Hole Type CP+RC	;
Locati	on:	Foynes	Port						Level:	-3.40 m CD	Scale 1:50	
Client:		RPS							Dates:	04/04/2017 - 06/04/2017	Logged By CL	′
Well	Water Strikes	Sample		n Situ			Depth (m)	Level (m)	Legend	Stratum Description	1	
		11.00 11.00 11.50	Type B D SPT	N=24	Results N=24 (11,10/8,8,5,3 100 N=50 (25 for 90mm/s 10r 75mm)					siltstone/limestone with some to many boulders of limestonse and siltstone/lin		11
		12.50	В									
		12.60 - 14.30 14.30 - 15.80	DSPT	N=50 (25 for 90mm/ for 75mm)		nm/50	12.60	-16.00 -17.70		SWITCH TO ROTARY CORE. Cobble caught in barrel 0.90m recovered (assumed that sand been washed out). Very dense mediu subangular to subrounded GRAVEL, of limestone with a little sandstone/sil to many cobbles of grey limestone wit cobbles of dark grey siltstone/limesto Disturbed sample, 0.90m recovered. subangular to angular fine to coarse limestone with a little sansdstone & s of sample overcored cobbles of dark limestone.	um to coarse predominantly litstone, some ith occasional ine. Verys dense GRAVEL of iltstone. At top	13
		15.80 - 17.30		0			- 15.80	-19.20		No recovery, CPT carried out at base	s, refusal.	16
							- 17.30	-20.70	V U v o	200mm COBBLE of grey limestone w	uith hands of	17 —
		17.30 - 18.80		100			17.50 17.80 18.30 18.55	-20.90 -21.20 -21.70 -21.95		pyrites flakes. Very clayey subangular to angular Gf limestone to 17.80. Stiff slightly gravelly sandy dark grey/ Very clayey subangular to angular Gf limestone to 17.80.	RAVEL of grey /black CLAY. RAVEL of grey	18
		18.80 - 20.30		97	000	RQD	- 18.80 18.80	-22.20		Stiff slightly gravelly sandy dark grey/ Firm to stiff, dark grey, slightly sandy, with medium cobble content. Gravel i coarse, suba angular to angular, prec limestone with lesser sandstone. Cob limestone.	gravelly CLAY, is fine to dominantly	19
Pemar	l.											

GDG										Borehole N	0.	
GAVII	N & DOH	ERTY						Rota	ary (Core Log	M15	
GEC	SOLUTIO	SNC									Sheet 3 of	3
Proje	ct Name	e: Foynes	s Port	- Jetty	Phase		roject No. 7022		Co-ords:	125123.41 - 151814.74	Hole Type CP+RC	Э
Locat	ion:	Foynes	Port						Level:	-3.40 m CD	Scale	
Client		RPS							Dates:	04/04/2017 - 06/04/2017	1:50 Logged B	у
					<u> </u>		T		Butoo.	04/04/2017 00/04/2017	CL	
Well	Water Strikes	Depth (m)	Type /FI		SCR	RQD	Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
		,		TON	SCK	NQD	, ,	, ,	a :0°0 2.0°	Firm to stiff, dark grey, slightly sandy,		=
							20.30	-23.70	A .0 0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .	with medium cobble content. Gravel i	lominantly	
										limestone with lesser sandstone. Cob		=
										Very dense, light and dark grey, fine t angular to angular GRAVEL of limest	one and	24
		20.30 - 21.80		100						siltstone/limestone with some to man boulders of limestonse and siltstone/l	imestone.	21 =
										20.90-21.30 & 21.45-21.60m limestor cobble at base of run.	ne cobbles,	=
							21.80	-25.20	3 9 9			
							22.10	-25.50		21.80-22.10m GRAVEL of S/S & L/S		22 =
							22.10	-25.70	0 0 0 0	22.10-22.30m L/S cobble 22.30-23.20m claybound gravel and	cohbles	
		21.80 - 23.30		97					من معلى س	22.00-20.2011 Glaybound graver and t	Jobbies.	
									ائن المناسطة المناسطة المناسطة الم			
									ئىن مىنى جەن س			23
							23.30 23.40	-26.70 -26.80	4 .04 .15	Rockhead 23.3-23.4m.		
									 	Strong, non intact, black, fine grained Highly fractured (possibly due to glac		
		22.20 24.00		100	40	10				plucking?).		24
		23.30 - 24.80		100	40	10	24.20	-27.60		1		-
										Highly fractured, fractures sub horiz angular & sub vertical, open & clear		=
										related to glacial "plucking". Strong, very thinly bedded, black, fine	e to medium	
									1 1 1	grained, LIMESTONE. Recovered as fractured.	solid core but	25
										Fractures horizontal, sub vertical & generally closed and clean.	vertical,	
		24.80 - 26.30		100	67	20				Fractures sub horizontal and sub ve	ertical, clean.	
										Non intact. Parallel closely spaced sub vertical	fractures.	00
										Fractures gamerally sub-barizantal	a a a a a i a n a llur	26
		26.50	С							Fractures generally sub horizontal, sub vertical, clean.	accasionally	=
		26.53	С									
		26.30 - 27.80		100	83	27						27
												<u> </u>
							27.80	-31.20		End of Borehole at 27.800)m	=
												28
												29
							-					30 =

GDG									Borehole No	D.		
GAVIN	N & DOH							Во	reh	ole Log	M16	
	t Name:	Foynes	Port - J	letty Pl	hase 2		oject No.		Co-ords:	125202E - 151845N	Sheet 1 of 2 Hole Type CP+RC	
Location	on:	Foynes	Port			'			Level:	-6.56 m CD	Scale 1:50	
Client:		RPS							Dates:	16/06/2017 - 17/06/2017	Logged By LB	,
Well	Water Strikes	Sample		n Situ			Depth (m)	Level (m)	Legend	Stratum Description		
	Cuntoo	Depth (m)	Туре		Result	is	()	(111)		Very soft, dark grey, slightly silty CLAY.		
												1
									====			1
		1.00										,
		1.00	ES									1 =
		1.50	В									4
		1.50	D						====			3
												2 =
												1
		2.50 - 2.95	UT									
												1
		3.00	ES									3 =
		0.50							F====			3
		3.50 3.50	B D									3
		3.50 - 3.95 4.00 - 5.00	UT P						=====			4
		4.00 - 0.00	'									" =
												4
												1
		5.00	ES				5.00	-11.56		Very soft, dark grey, slightly silty CLAY	with some fine	5 =
										sand.		1
												4
									====			7
							6.00	-12.56		Very soft, dark grey with blackish organ	nic streaks,	6
									=====	slightly silty CLAY with some fine sand rootlets.	. Occasional	1
		6.50 - 6.95	UT				6.50	-13.06		Very soft, dark grey with light grey mot	tles, slightly silty	1
		7.00	В							CLAY with some fine sand and rare grafragments.	avel and shell	,]
		7.00	D				7.10	-13.66	× × ×	Very soft, dark grey, slightly silty gravel	y CLAY with	7 =
							7.50	-14.06	× ×	some fine sand. Gravel is fine to coarse		1
										Soft, dark grey, slightly silty gravely sar some cobbles. Gravel is fine to coarse,		1
		8.00 - 8.45	SPTL				8.00	-14.56		Cobbles are sub-rounded.		8 =
			S							Loose, dark grey, fine to coarse GRAVI SAND. Gravel is sub-angular to angula	EL and coarse	3
							8.50	-15.06		Medium dense, grey, gravelly coarse S		
										cobbles. Cobbles and Gravels are sub-	-angular.	=
		9.19	С				9.00	-15.56		SWITCH TO ROTARY CORE		9 =
										No recovery		=
		9.009 . 500.30 9.64	UT C	89	58	38				Very strong, thinly laminated, light gre grained LIMESTONE. Fractures are of	losely,	=
		10.00	В							surfaces are rough undulating, sandy	soii intilling.	10
Remar	ks	.0.00	Type/FI	TCR	SCR	RQD					703	.5

GDG							Borehole No	0.				
GAVII	N & DOH	ERTY						Rota	ary (Core Log	M16	
GEC	SOLUTIO	ONS									Sheet 2 of	2
Proje	ct Name	e: Foynes	s Port	- Jetty	Phas		roject No. 7022		Co-ords:	125201.80 - 151844.62	Hole Type CP+RC	9
Locat	ion:	Foynes	Port						Level:	-6.56 m CD	Scale 1:50	
Client	:	RPS							Dates:	16/06/2017 - 17/06/2017	Logged B	у
	Water	Depth	Туре		Corin		Depth	Level				
Well	Strikes	(m)	/FI			RQD		(m)	Legend	Stratum Description	n	
		10.00	D	TOIX	COIL	NGD	10.30	-16.86		Very strong, thinly laminated, light granined LIMESTONE. Fractures are	closely,	
							10.00	10.00		surfaces are rough undulating, sandy Strong, thinly laminated, grey, fine me	/	11 -
		44.00 44.45	ODT							coarse grained LIMESTONE. Fractur surfaces are rough undulating and or	es are closely,	=
		18:99 = 11: 8 5	SPTL S	100	29	27				infilling.		11 -
							11.80	-18.36				
												12
		11.80 - 13.30		99	0	0						
		13.00 - 13.45	UT									13
	13.50 B 13.303:513.90 D	50	0	0	13.30 13.60	-19.86 -20.16		No recovery				
		13.3µ3 <u>-</u> 5µ3.90	D	30		0	13.90	-20.10		Dense, very light grey slightly clayey some cobbles, sub-angular.	GRAVEL with	
							10.00	20.10				14
		13.90 - 14.80 14.50 - 15.60	SPTL	100	23	12						
			S				14.80	-21.36				
		15.00 15.00	B D									15
		14.80 - 16.30		100	9	0						=
		15.80	В									16
		15.80	D									16
		16.50	В				16.30	-22.86				=
		16.50 16.80	D B									
		16.30 - 17.80		99	25	0						17
		17.30	В									
							17.80	-24.36		Strong, thinly laminated, very dark gr	ev fine	
		17.80 - 18.50		100	7	0				grained, LIMESTONE. Fractures are closely to closely spaced, roughly pla	extremely nar, aperture	18
							18.50	-25.06		tight to moderately wide black clay in End of Borehole at 18.500	ŭ	18
										End of Borenole at 18.500	// II	=
												19
							_					20 -

		G				Borehole Log					Borehole No	0.
U A P	L DOH	J EDTY						Bo	reho	ole Log	M16b	
GEO	SOLUTIO	DNS								.	Sheet 1 of	4
rojec	t Name:	Foynes	Port - J	Jetty P	hase 2		Project No. 17022		Co-ords:	125203E - 151848N	Hole Type CP+RC	
ocati	 on:	Foynes	Port				17022		Level:	-6.75 m CD	Scale	
		-									1:50 Logged By	,
lient:		RPS							Dates:	18/06/2017 - 19/06/2017	LB	
Well	Water Strikes	Sample		n Situ			Depth (m)	Level (m)	Legend	Stratum Description	ı	
	Strikes	Depth (m)	Туре		Result	s	(111)	(111)		Very soft, dark grey, slightly silty CLAY		=
			Depth (m) Type Results			6.00	-12.75		Very soft, dark grey with brown mottled sandy CLAY with occasional cobbles a	f, slightly fine and rare rootlets.	1 2 3 4 5 6 7	
										with occasional cobbles. Gravels are a are sub-angular. Rare rootlet and tiny	ngular, cobbles shells.	8
							8.00	-14.75	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Medium dense, dark grey, coarse sand COBBLES and GRAVELS. Gravels ard and cobbles are angular. Occasional g	sub-angular	=
							8.50	-15.25	0 0	reddish. Loose, dark grey, coarse sandy, sub-a	ngular GRAVEL	
				<u> </u>			9.00	-15.75		with occasional cobbles. Gravel is fine cubic, flat and elongated. Cobbles are		9
						ſ				SWITCH TO ROTARY CORE No recovery		- Immiliani
						ı				,		
			Type/El	TCP	SCR	RQD	\exists					10 =
omar	-ko		Type/FI	ICK	JOCK	_ אעט	<u>' </u>	1		<u> </u>	01	

	SOLUTIO	Name: Foynes Port - Jetty Phase				o F	Project No.	Rota		Core Log	M16b Sheet 2 of Hole Type	4
roje	ct Name	: Foynes	S Port	- Jetty	Pnase		7022		Co-ords:	125203.45 - 151847.55	CP+RC Scale	
ocat	tion:	Foynes	Port						Level:	-6.75 m CD	1:50	
lien	t:	RPS							Dates:	18/06/2017 - 19/06/2017	Logged B LB	у
	Water	Depth	Туре		Coring		Depth	Level	Lagand	Ctuatum Decembra		
Vell	Strikes	(m)	/FI		SCR	RQE	— /\	(m)	Legend	Stratum Description	· · · · · · · · · · · · · · · · · · ·	_
		13.50 - 13.80 13.80 - 14.90 14.90 - 16.40		100	14 30 0	9 17	- 13.50 - 13.80 - 14.90 - 16.40 16.55 17.15 17.30 - 17.90 17.93	-20.25 -20.55 -21.65 -23.30 -24.05 -24.65 -24.68		Medium dense, light grey to grey, sub medium to coarse GRAVEL. Very strong, thinly laminated, dark gre medium grained LIMESTONE. Fractu closely, rough undulating and partially aperture. Occasional black clay infillin Very strong, thinly laminated, dark gre medium grained LIMESTONE. Fractu closely, rough undulating and tight to aperture. Occasional black clay infillin No recovery Very strong, thinly laminated, dark gre LIMESTONE. Fractures are very closundulating, apertures are partly open. clay infilling. Dense, black, clayey GRAVEL. Grave angular. Very strong, thinly laminated, dark gre LIMESTONE. Fractures are very closundulating, apertures are very tight. Sinfilling.	ey, fine res are open g. ey, fine res are partially open g. ey, fine grained ely, smooth Soft black ey, fine and ey, fine and	11 12 13 14 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19
		17.90 - 19.40		98	14	0	- 19.40 10.50	-26.15		No recovery Strong, dark grey, fine grained LIMES Fractures are very closely to closely, r undulated, apertures from tight to part black clay infilling No recovery	rough tly open. Soft	19
							19.50	-26.25		Strong, dark grey, fine grained LIMES Fractures are very closely, rough undo apertures are tight to moderately wide	ulated,	
												1 20

											Borehole No	0.
GAVIN	& DOH	& DOHERTY OLUTIONS					Rota	ary (Core Log	M16b		
GEOS	SOLUTIO	NS									Sheet 3 of	4
Projec	t Name	: Foynes	s Port	- Jetty	/ Phas		roject No. 7022		Co-ords:	125203.45 - 151847.55	Hole Type CP+RC	Э
Location	on:	Foynes	Port						Level:	-6.75 m CD	Scale 1:50	
Client:		RPS							Dates:	18/06/2017 - 19/06/2017	Logged B	У
	Water Strikes	Depth (m)	Type /FI		Corin		Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
				TCR	SCR	RQD		, ,		black clay infilling and occasional stai	ning surface.	=
	_	19.40 - 20.90		93	0	0	20.90	-27.65		No recovery		
										No recovery		21 =
		20.90 - 22.40		95			21.60	-28.35	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	High fractured limestone recovered a Fissured breaks into blocks along un discontinuities. Dark grey, gravelly Conumerous tiny pyrite nodules. Gravel are angular, rare gravels are whitish. yellow staining surface and occasions	polished OBBLES with and cobbles Occasional	22 —
							22.40	-29.15		black clay infilling.	al very soit	1 =
		22.40 - 23.90		80			22.70	-29.45		No recovery Very weathering limestone recovered Dense, dark grey, occasional orange slightly sandy clayey GRAVEL. Grave to coarse and angular.	mottled.	23
		23.90 - 25.40		93			23.90 24.00	-30.65 -30.75		No recovery High fractured limestone recovered a Fissured breaks into blocks along un discontinuities. Dark grey slightly silty course GRAVEL. Rare gravels are ye Gravel and Cobbles are angular.	polished clayey sandy	24
		25.40 - 26.90		100			25.40	-32.15		High fractured limestone recovered a Dense, fissured: breaks into blocks a Dark grey occasional yellow mottled. GRAVEL with occasional cobbles. Gr angular to angular and cobbles are an	nd laminae. Clayey sandy avels are sub-	26
		26.90 - 28.40		100			26.90	-33.65		High fractured limestone recovered a Fissured: Break into blocks along ung discontinuities. Dark angular cubic an and COBBLE with numerous tiny pyri Gravel and cobbles are cubic and flat	polished nd flat GRAVEL ite nodules.	27 -
	ļ						28.40	-35.15		No recovery		
		28.40 - 29.90		80			28.70	-35.45		High fractured limestone recovered a gravel. Dense, fissured: Breaks into be unpolished discontinuities. Dark grey angular COBBLE and GRAVEL with repyrite nodules. Some green yellowish staining.	olocks along sandy clayey numerous tiny	29 -
	-					<u> </u>	29.90	-36.65	موريغتي م			30 =
- 1	l		1 '	1	1	1	1	1	1			1

GDG								Borehole N	0.			
GAVII	AVIN & DOHERTY GEOSOLUTIONS							Rota	ary (Core Log	M16b	
GEC	SOLUTIO	NS								_	Sheet 4 of	
roje	ct Name	: Foynes	Port	- Jetty	Phase	e 2	Project No. 17022		Co-ords:	125203.45 - 151847.55	Hole Type CP+RC	9
.ocat	ion:	Foynes	Port						Level:	-6.75 m CD	Scale 1:50	
lient	:	RPS							Dates:	18/06/2017 - 19/06/2017	Logged B LB	у
Nell	Water Strikes	Depth (m)	Type /FI		Corin		Depth (m)	Level (m)	Legend	Stratum Description	n	
	Strikes	(m) 29.90 - 31.40		93	11	11	30.20	-36.95		No recovery High fractured limestone recovered as gravel. Dense, fissured: Breaks into b unpolished discontinuities. Dark grey angular COBBLE and GRAVEL with r pyrite nodules. Some yellow surface End of Borehole at 31.400	s cobble and locks along slightly sandy numerous tiny staining.	31 32 33 34 35 36 37 38 39 40
												40 —

	DG N & DOHERTY DSOLUTIONS					Tr	rial Pit Log	TrialPit TP0 ² Sheet 1	1
Projec				Proj	ect No.		Co-ords: 526352.64 - 651954.76	Date	
Name	Foynes Po	ort - Jet	ty Phase 2	170			Level: 4.26	31/03/20)17
_ocat	ion: Foynes Po	ort		•			Dimensions	Scale	;
							(m): Depth	1:25 Logge	d
Client				1		T	4.50	CCostig	
Water	Samp Depth	Type	Results	Depth (m)	Level (m)	Legend	Stratum Description		
				0.10	4.16		TOPSOIL		
							Soft grey brown mottled slightly sandy slightly gra	avelly	=
									=
	0.50	В		0.50	3.76	××××	Soft grey with brown mottling slightly sandy slight	Hv	=
	0.50 0.50	ES T				(gravelly SILTwith occasional lenses of fine Sand a	and	=
	0.50	HVP	100			XXXX	piant remains.		=
						X X X X X X X X X X X X X X X X X X X			=
	1.00 1.00	B ES				××××			1 -
	1.00 1.00 1.00	T HVP	100			××××			=
	1.00	HVP	100			××××			=
						X X X X X X X X X X X X X X X X X X X]
						(=
						(=
						X X X X X			=
	2.00	T				X X X X X X X X X X X X X X X X X X X			2 —
	2.00	HVP	90			$\times \times $			_ =
	2.20	В				$\times \times \times \times \times$			=
						X X X X X			=
						(=
						(=
						× × × × ×			=
						X X X X X X X X X X X X X X X X X X X			=
						××××			3 —
						××××			=
						(=
						× × × × × × × × × × × × × × × × × × ×			=
						(=
						(=
	2.00	_				× × × × ×			=
lacksquare	3.90 3.90	ES ES				XXXX			4 —
	4.00	HVP	50			X X X X X X X X X X X X X X X X X X X			
						$\times \times \times \times \times$			=
						××××			
				4.50	-0.24	××××	End of Pit at 4.50m		
									=
									5 —
	T : 1 D:	.			_			_	

Remarks: Trial Pit sidewalls collapsing from 0.2m BGL. Groundwater seepage at 4.0m BGL - Slight.Trial Pit backfilled upon completion.Shear Vane Results at 0.5 m - 100, 1.0 m - 100, 2.0 m - 90, 4.0 m - 50.

AGS

	DG & DOHERTY SOLUTIONS	[Tı	rial Pit Log	TrialPit TP02 Sheet 1	2
Project				Pro	ect No.		Co-ords: 526295.85 - 651703.52	Date	
Name:	Foynes P	ort - Jett	ty Phase 2	170			Level: 4.68	31/03/20	
ocatio	n: Foynes P	ort		'			Dimensions	Scale	
							(m): Depth	1:25 Logge	
Client:	RPS						4.50	CCostig	
Water	·		itu Testing	Depth	Level	Legend	Stratum Description		
≥ છ	Depth	Туре	Results	(m)	(m)	*///8////8			
				0.10	4.58		TOPSOIL Soft grey brown mottled slightly sandy slightly gra	avelly	-
							CLAY	a.r.oy	-
									-
	0.50	В							_
	0.50 0.50	T HVP	100	0.60	4.08	××	Soft to firm grey with brown mottling slightly sand	ly silty	
						×_×_×	CLAY with plant remains and sea shell.		-
						××			-
	1.00	В				××			1 -
	1.00 1.00	ES T				×			-
	1.00	HVP	110			×			-
						×			-
						××			-
						× ×			-
						× × ×			-
						× ×			-
				2.10	2.58	×_×_×			2 -
				2.10	2.30	$\times \times \times \times$	Soft to firm grey sandy SILT with fragments of se	a shell.	-
						X X X X			-
						××××			-
						$\times \times $			-
						$\times \times $			-
						$\times \times $			-
	3.00	HVP	90			X			3 -
						(
						(-
						× × × × × ×			-
	3.50	В				(_
						XXXX			-
						X X X X X X X X X X X X X X X X X X X			-
						$\times \times $			-
	4.00	HVP	50			$\times \times $			4 -
						$\times \times $			-
						XXXX			-
						× × × × × ×			-
	4.50 4.50	ES T		4.50	0.18		End of Pit at 4.50m		-
	4.50	HVP	60						-
									-
									-
									5 —

Remarks: Trial Pit sidewalls are stable.Groundwater seepage at 4.0m BGL - Slight.Trial Pit backfilled upon completion.Shear Vane Results at 0.5 m - 100, 1.0 m - 110, 3.0 m - 90, 4.0 m - 50, 4.5 m - 60.

G	iDG	7				Tı	rial Pit Log	TrialPit	
	OSOLUTIONS	Y						Sheet 1	of 1
Proje	ct Foynes F	ort - Jet	ty Phase 2		ject No.		Co-ords: 526513.41 - 651710.11	Date	;
Name	e:		., 1 11400 2	170)22		Level: 4.78	31/03/20	
ocat	ion: Foynes F	ort					Dimensions (m):	Scale 1:25	
Client	:: RPS						Depth	Logge	ed
		ples & In S	Situ Testing	Double	Laval		4.50	CCostic	gan
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description		
				0.10	4.68		TOPSOIL		-
				0.10	4.00		Soft to firm grey brown mottled slightly sandy sliggravelly CLAY.	ghtly	_
									=
	0.50	ES							_
	0.50	T	400						_
	0.50	HVP	100						-
	0.80 0.80	B ES							=
	1.00	HVP	90						1 -
									-
	4.00	_		4.00	0.40				-
	1.30	Т		1.30	3.48	××××	Soft grey sandy SILT with fragments of sea shell	l.	
						$\times \times $			-
						$\times \times $			-
						XXXX			
						× × × × × × × × × × × × × × × ×			-
						× × × × ×			2 —
						× × × × × ×			
						× × × ×			=
						X X X X X X X X X X X X X X X X X X X			-
						XXXX			-
						× × × × × × × × × × × ×			-
						$\times \times \times \times$			-
	3.00	В				× × × × × × × × × × × × × × × × × × ×			3 -
	3.00 3.00	ES HVP	60			(
	0.00	''''				× × × × ×			-
						(-
						XXXX			_
						X X X X X X X X			=
						$\times \times $			-
						$\times \times $			-
	4.00 4.00	T HVP	70			$\times \times $			4 —
	7.00	1111	10			× × × × × × × × × × × × × × × × × × ×			
						X			=
		,=				(=
	4.50	HVP	50	4.50	0.28	K- 7 / 2/- 2/- 2/- 2/-	End of Pit at 4.50m		1 =
									=
									5 —

Remarks: Trial Pit sidewalls collasping from 0.0 m BGL.Groundwater seepage at 4.0m BGL - Slight.Trial Pit backfilled upon completion.Shear Vane Results at 0.5 m - 100, 1.0 m - 90, 3.0 m - 60, 4.0 m - 70, 4.5 m - 50.

AGS

	DG & DOHERTY	Y				Tr	rial Pit Log		TrialPit TP04	4
	OLUTIONS			Proi	ect No.		Co-ords: 526109.79 - 6514	402.06	Sheet 1 Date	
Project Name:	Foynes P	ort - Jetty	Phase 2	170			Level: 6.26	492.90	31/03/20	
_ocatior	n: Foynes P	ort					Dimensions (m):		Scale 1:25)
Client:	RPS						Depth 2.50		Logge CCostig	d ıan
Water	Samp Depth	ples & In Sit	tu Testing Results	Depth (m)	Level (m)	Legend	Stratum D	escription		
				0.10	6.16		TOPSOIL Soft brown slightly sandy slig	htly gravelly CLAY.		-
	0.50 0.50 0.60	T HVP B	100	0.50	5.76		Soft to firm orange brown slig CLAY.	ghtly sandy slightly g	ravelly	- - - - -
	1.00 1.00 1.00	ES T HVP	90	0.80	5.46		Firm to stiff grey sandy slight occasional cobbles and bould	ly gravelly CLAY with ders.	n	1 -
	1.50 1.50	B HVP	80							-
	2.00	Т		2.00	4.26		Dense grey slightly clayey gr cobbles and boulders	avelly SAND with oc	casional	2 -
	2.30 2.30	B ES		2.45 2.50	3.81 3.76		OBSTRUCTION - Possible R End of Pit			- - - - - -
										3 -
										4
										- -

Remarks: Trial Pit sidewalls are stable.No groundwater encountered in Trial Pit.Trial Pit backfilled upon completion.Shear Vane Results at 0.5 m - 100, 1.0 m - 90, 1.5 m - 80.Refusal at 2.5 m due to probable rock.

	DG N & DOHERT	Y				Tr	rial Pit Log	TrialPit	5
Projec	solutions t		DI 0	Proj	ect No.		Co-ords: 526309.75 - 651509.86	Sheet 1 Date	
Name:	Foynes F	Port - Jetty	Phase 2	1702	22		Level: 5.72	31/03/20	
Location	on: Foynes F	Port					Dimensions (m):	Scale 1:25	
Client:	RPS						Depth	Logge	d
er (e	Sam	ples & In Situ	ı Testing	Depth	Level		2.20	CCostig	<u>jan</u>
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
				0.10	5.62		TOPSOIL Soft grey brown slightly sandy slightly gravelly C	CLAY.	- - - - -
	0.50 0.50 0.50 0.50	B ES T HVP	90	0.50	5.22		Soft to firm orange brown slightly sandy slightly CLAY with rare cobbles.	gravelly	- - - - -
	0.80 0.80 1.00	B ES HVP	90	0.80	4.92		Firm grey sandy slightly gravelly CLAY with occa sub angular to sub rounded cobbles and boulde rare lenses of gravelly Sand.	asional rs and	1 -
	1.40 1.50	B HVP	80	1.50	4.22		Stiff grey slightly sandy slightly gravelly CLAY w frequent sub angular to angular cobbles and bot	ith ulders.	- - - - - - - -
	2.00 2.00	B ES		2.15 2.20	3.57 3.52		OBSTRUCTION - Possible Rock. End of Pit at 2.20m		2 -
									3 -
									4

Remarks: No groundwater encountered in Trial Pit.Trial Pit sidewalls collasping 0.2 m BGL.Trial Pit backfilled upon completion.Shear Vane Results at 0.5 m - 90, 1.0 m - 90, 1.5 m - 80.Refusal at 2.2 m due to probable rock.

AGS

	DG & DOHERTY					Tr	rial Pit Log	TrialPit TP06	6
Project	SOLUTIONS	4 1 - 44	h. Dh 0	Proj	ject No.		Co-ords: 526431.22 - 651405.28	Sheet 1 Date	
Name:	Foynes Po	ort - Jet	ty Phase 2	170	22		Level: 4.55	31/03/20	
_ocatio	n: Foynes Po	ort					Dimensions (m):	Scale 1:25	
Client:	RPS						Depth 1.90	Logge CCostig	d
ke ke	Samp	les & In S	Situ Testing	Depth	Level	Ι		CCOstig	all
Water	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
	0.50 0.50	T HVP	110	0.10	4.45 3.75		TOPSOIL Soft to firm grey brown mottled slightly sandy sligh gravelly CLAY.		
	1.00 1.00	ES ES					Firm grey black mottled sandy slightly gravelly CL/ occasional angular to sub angular cobbles and rar boulders.	AY with e	1 —
	1.00	HVP	100	1.10	2.70		Firm to stiff grey brown slightly sandy slightly grave CLAY with frequent sub angular to sub rounded coand boulders and occasional lenses of fine Sand.	elly obbles	
				1.90	2.65		OBSTRUCTION: Possible Rock. End of Pit at 1.90m		3 -
									4 —

Remarks: Groundwater encountered at 1.3 m BGL in Trial Pit. Very fast ingress. 1.1m BGL after 5 mins.Trial Pit sidewalls collasping 1.0 m BGL.Trial Pit backfilled upon completion.Shear Vane Results at 0.5 m - 110, 1.0 m - 100.Refusal at 1.9 m due to possible rock and water.

AGS

	DG N & DOHERTY DSOLUTIONS	<u> </u> 				Tr	rial Pit Log	TrialPit TP0	7
Projec	.4	ort lot	ty Phase 2	Proj	Project No.		Co-ords: 526626.38 - 651529.75	Date	
Name	. Foynes F	ort - Jet	ly Fliase 2	170	22		Level: 4.65	31/03/20	
ocati	on: Foynes P	ort					Dimensions (m):	Scale 1:25	
Client	: RPS						Depth 4.50	Logge	d
er (e	Samp	oles & In S	Situ Testing	Depth	Level			CCOSIIQ	jai i
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
	0.50 0.50 0.50 1.00 1.00 1.50	ES T HVP B ES HVP	100	1.70	2.95		TOPSOIL Soft to firm grey brown mottled slightly sandy sli gravelly CLAY. Soft to firm grey sandy SILT with fragments of so		1
	3.50 3.50 3.50 3.80 3.80	HVP T HVP B ES	70 60	4.50	0.15		End of Pit at 4.50m		3
	4.50	HVP	60	4.50	0.15	<u> </u>	End of Pit at 4.50m		- - - - - - -

Remarks: Slight groundweater seepage from sidewall observed at 4.0 m BGL in Trial Pit.Trial Pit sidewalls are stable.Trial Pit backfilled upon completion.Shear Vane Results at 0.5 m - 100, 1.0 m - 120, 2.5 m - 70, 3.5 m - 60, 4.5 m - 60.

AGS

	DC N & DOHERT SOLUTIONS					Tr	rial Pit Log	TrialPit TP08	8
Project			Discoura O	Proj	ect No.		Co-ords: 526409.73 - 651241.42	Sheet 1 of 1 Date	
Name:	Foynes F	Port - Jetty	Phase 2	1702	22		Level: 4.93	31/03/20	
_ocatio	on: Foynes F	Port					Dimensions (m):	Scale 1:25	
Client:	RPS						Depth 2.50	Logge CCostig	ed nan
Water Strike	Sam	ples & In Situ	u Testing	Depth	Level	Legend	Stratum Description		,
Str	Depth	Туре	Results	(m)	(m)	Legend	·		
	0.50 0.50 0.50	ES T HVP	90	0.15	4.78		TOPSOIL Soft to firm grey brown mottled slightly sandy sli gravelly silty CLAY with ocassional angular cobb rare boulders.	ghtly oles and	- - - - - - - - - - - - - - - - - - -
	0.80	B HVP	100	0.70	4.23		Firm grey brown orange mottled slightly sandy s gravelly CLAY with occasional angular to sub ar cobbles and occasional lenses of gravelly Sand	igular	1 —
	1.50	Т							
	2.00 2.00	B ES		2.00	2.93		Firm to stiff grey slightly sandy slightly gravelly (occasional sub angular to sub rounded cobbles boulders.	CLAY with and	2 -
				2.45 2.50	2.48 2.43	key key key	OBSTRUCTION: Possible Rock. End of Pit at 2.50m		3 -
									-
									4

Remarks: Groundwater encountered at 2.0 m BGL in Trial Pit. Fast ingress. Trial Pit sidewalls are stable.Trial Pit backfilled upon completion.Shear Vane Results at 0.5 m - 90, 1.0 m - 100.Refusal at 1.9 m due to probable rock and water.

GAVI GEO	DG N & DOHERT DSOLUTIONS	Y				Tr	rial Pit Log	TrialPit TP09 Sheet 1	9
Projec Name	t Fayras D	ort - Jet	ty Phase 2		Project No. 17022		Co-ords: 526382.83 - 651215.42	Date 31/03/2017	
	on: Foynes P	ort		170	22		Level: 4.25 Dimensions	Scale	;
Client:							(m): Depth	1:25 Logge	d
		ples & In S	itu Testing	Donth	Level		1.80	CCostig	jan
Water	Depth	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description		
				0.10	4.15		TOPSOIL Soft to firm grey brown mottled slightly sandy slig gravelly silty CLAY.	htly	-
	0.50 0.50 0.50	ES T HVP	90	0.50	3.75		Firm to stiff grey slightly sandy slightly gravelly C rare angular to sub angular cobbles.	LAY with	- - - - - -
	1.00 1.00	B HVP	110						1
				1.50 1.75	2.75		Stiff grey slightly sandy slightly gravelly CLAY wit frequent sub angular to sub rounded cobbles and boulders.	h I rare	
	1.80 1.80	B ES		1.80	2.45		OBSTRUCTION: Possible Rock. End of Pit at 1.80m		3 4
									- - - - -

Remarks: Groundwater encountered at 1.5 m BGL in Trial Pit. Very fast ingress. 1.3m BGL after 5 mins.Trial Pit sidewalls collasping 1.4 m BGL.Trial Pit backfilled upon completion.Shear Vane Results at 0.5 m - 90, 1.0 m - 110.Refusal at 1.8 m due to possible rock and water.

	DC- & DOHERT SOLUTIONS					Tr	rial Pit Log	TrialPit No TP10 Sheet 1 of	
Project				Proi	ect No.		Co-ords: 526253.00 - 651079.00		1
Name:	Foynes I	Port - Jetty	Phase 2	1702			Level: 4.83	31/03/201	7
Locatio	n: Foynes I	Port		<u> </u>			Dimensions	Scale	
							(m): Depth	1:25 Logged	
Client:	RPS				I		4.70	CCostigar	n
Water		nples & In Siti		Depth (m)	Level (m)	Legend	Stratum Descripti	ion	
> 0	Depth	Туре	Results	(111)	(111)	X//XX//XX	TOPSOIL		
				0.10	4.73		Soft grey brown mottled slightly sand	dy slightly gravelly	-
							CLAY.		-
									-
	0.50 0.50	ES T		0.60	4.23				-
	0.50 0.60	HVP B	100			× × × × × × × × × × × × × × × × × × ×	Soft grey with brown mottling slightly plant remains and fragments of sea	shell.	
						(-
	1.00	ES				(1 -
	1.00 1.00	T HVP	90			(
	1.30	В				××××			-
						× × × × × × × × × × × × × × × × × × ×			-
						(-
						(-
						(
				2.00	2.83	××××	Soft to firm sandy SILT with fragmen	its of sea shell	2 -
						× × × × × × ×	Con to min bandy oier marinaginon	no or ood orion.	
						(
						(
	2.50 2.50	HVP	80			××××			-
						(
						× × × × × × × × × × × × × × × × × × ×			
						(3 -
						(
						××××			-
	0.50					× × × × × × × × × × × × × × × × × ×			
	3.50 3.50	B T	50			(-
	3.50	HVP	50			(
						(
						××××			4 -
						(-
						(
	4.50	10.75	50			(
	4.50	HVP	50			(-
	4.70 4.70	B ES		4.70	0.13	××××	End of Pit at 4.70m	1	-

Remarks: Slight groundwater seepage observed from sidewall at 4.4m BGL in Trial Pit.Trial Pit sidewalls are stable.Trial Pit backfilled upon completion.Shear Vane Results at 0.5 m - 100, 1.0 m - 90, 2.5 m - 80, 3.5 m - 50, 4.5 m - 50.

Stability:

5 -

Foynes Port – Ground Investigation Factual Report

APPENDIX 2

LABORATORY TEST RESULTS

Contract Number: 35579

Client's Reference: Report Date: **08-08-2017**

Client Ground Investigation Ireland
Catherinestown House
Hazelhatch Road
Newcastle
Co. Dublin

Contract Title: Foynes Port
For the attention of: Conor Finnerty

Date Received: **15-06-2017**Date Commenced: **15-06-2017**Date Completed: **08-08-2017**

Test Description	Qty
Moisture Content 1377: 1990 Part 2: 3.2 - * UKAS	91
4 Point Liquid & Plastic Limit (LL/PL) 1377: 1990 Part 2: 4.3 & 5.3 - * UKAS	61
Density by Immersion in Water or Water Displacement Method 1377: 1990 Part 2: 7.4 - @ Non Accredited Test	35
PSD Wet Sieve method 1377 : 1990 Part 2 : 9.2 - * UKAS	111
PSD: Sedimentation by pipette carried out with Wet Sieve (Wet Sieve must also be selected) 1377: 1990 Part 2: 9.4 - * UKAS	1
PSD: Sedimentation by pipette carried out separately 1377: 1990 Part 2: 9.4 - * UKAS	3
Hand Shear Vane	26

Notes: Observations and Interpretations are outside the UKAS Accreditation

- * denotes test included in laboratory scope of accreditation
- # denotes test carried out by approved contractor
- @ denotes non accredited tests

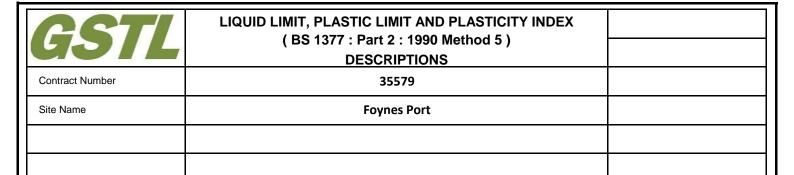
This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved Signatories:

Alex Wynn (Associate Director) - Ben Sharp (Contracts Manager) - Emma Sharp (Office Manager)
Paul Evans (Quality/Technical Manager) - Richard John (Advanced Testing Manager) - Sean Penn (Administrative/Quality Assistant)
Vaughan Edwards (Managing Director) - Wayne Honey (Administrative/Quality Assistant)

Contract Number: 35579

Test Description	Qty
One-dimensional Consolidation 75mm or 50mm diameter specimens (5 days) 1377: 1990 Part 5: 3 - * UKAS	38
Quick Undrained Triaxial Compression test - single specimen at one confining pressure (100mm or 38mm diameter) 1377: 1990 Part 7: 8 - * UKAS	13
Consolidated Drained Peak Shear Strength - set of 3 - 60 x 60mm Shear Box Specimens by Direct Shearing (3 days) 1377: 1990 Part 7:4 - * UKAS	28
CUD 100mm Consolidated undrained triaxial compression test on a Single Specimen with Multistage Loading with the measurement of pore water pressure including saturation and consolidation, test duration FOUR days. BS1377: Part 8: Clause 7: 1990 - @ Non Accredited Test	10
Extra over items for test duration in excess of four days.	80
Disposal of Samples on Project	1


Notes: Observations and Interpretations are outside the UKAS Accreditation

- * denotes test included in laboratory scope of accreditation
- # denotes test carried out by approved contractor
- @ denotes non accredited tests

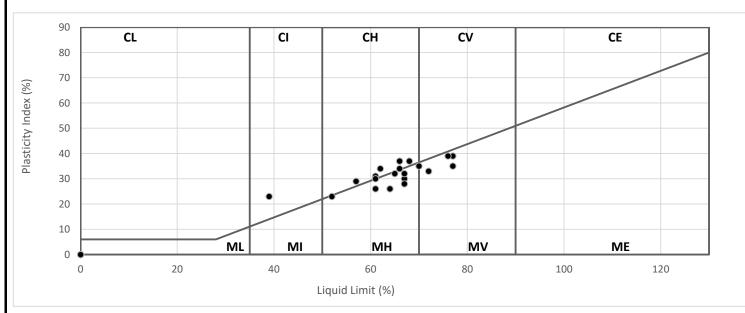
This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved Signatories:

Alex Wynn (Associate Director) - Ben Sharp (Contracts Manager) - Emma Sharp (Office Manager)
Paul Evans (Quality/Technical Manager) - Richard John (Advanced Testing Manager) - Sean Penn (Administrative/Quality Assistant)
Vaughan Edwards (Managing Director) - Wayne Honey (Administrative/Quality Assistant)

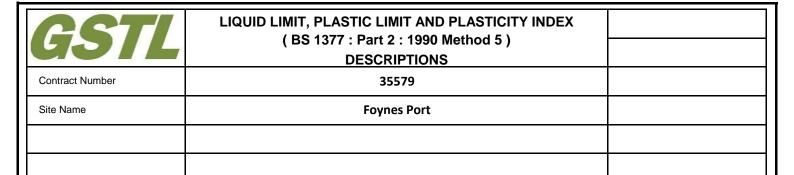
Hole Reference	Sample Number	Sample Type	D	epth (m)	Descriptions
LO4		В	0.50	-	Grey slightly fine gravelly sandy clayey SILT
LO4		В	2.00	-	Grey clayey SILT
LO4		В	5.50	-	Grey clayey SILT
LO4		В	7.00	-	Grey silty CLAY
LO4		В	10.00	-	Grey clayey SILT
LO4		В	14.50	-	Brown slightly sandy clayey SILT
LO5		В	0.50	-	Greyish brown clayey SILT
LO5		В	2.50	-	Greyish brown clayey SILT
LO5		В	5.00	-	Greyish brown clayey SILT
LO5		В	8.50	-	Greyish brown silty CLAY
LO5		В	11.50	-	Grey clayey SILT
LO5		В	13.00	-	Brown silty CLAY
LO5		В	15.50	-	Dark grey slightly fine gravelly clayey SILT
MO1		В	1.00	-	Greyish brown silty CLAY
MO1		В	3.50	-	Grey SILT/CLAY
MO1		В	5.50	-	Grey clayey SILT
MO1		В	10.00	-	Grey silty CLAY
MO1		В	13.00	-	Grey SILT/CLAY
MO1		В	13.50	-	Grey silty CLAY
MO1		В	16.00	-	Grey slightly fine to medium gravelly sandy silty CLAY
MO2		В	1.00	-	Grey SILT/CLAY
MO2		В	3.50	-	Grey silty CLAY
MO2		В	6.50	-	Grey SILT/CLAY
MO2		В	8.00	-	Grey silty CLAY

Operators	Checked	22/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	23/07/2017	Ben Sharp	


GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)	
Contract Number	35579	
Site Name	Foynes Port	

Hole Reference	Sample Number	Sample Type	De	epth (ı	m)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing .425mm %	Remarks
LO4		В	0.50	-		58	67	37	30	93	MH High Plasticity
LO4		В	2.00	-		61	64	38	26	100	MH High Plasticity
LO4		В	5.50	-		58	70	35	35	100	MH/V High/HighPlasticity
LO4		В	7.00	-		62	66	32	34	100	CH High Plasticity
LO4		В	10.00	-		60	77	38	39	100	MV Very High Plasticity
LO4		В	14.50	-		53	76	37	39	99	MV Very High Plasticity
LO5		В	0.50	-		61	72	39	33	100	MV Very High Plasticity
LO5		В	2.50	-		54	67	35	32	100	MH High Plasticity
LO5		В	5.00	-		62	77	42	35	100	MV Very High Plasticity
LO5		В	8.50	-		57	66	29	37	100	CH High Plasticity
LO5		В	11.50	-		41	61	35	26	100	MH High Plasticity
LO5		В	13.00	-		50	61	30	31	100	CH High Plasticity
LO5		В	15.50	-		37	67	39	28	95	MH High Plasticity
MO1		В	1.00	-		56	61	31	30	100	CH High Plasticity
MO1		В	3.50	-		29					
MO1		В	5.50	-		34	52	29	23	100	MH High Plasticity
MO1		В	10.00	-		57	65	33	32	100	MH High Plasticity
MO1		В	13.00			46					
MO1		В	13.50	-		52	62	28	34	100	CH High Plasticity
MO1		В	16.00	-		49	68	31	37	97	CH High Plasticity
MO2		В	1.00	-		62					
MO2		В	3.50	-		48	57	28	29	100	CH High Plasticity
MO2		В	6.50	-		30					
MO2		В	8.00	-		34	39	16	23	100	CI Intermediate Plasticity

Symbols: NP : Non Plastic

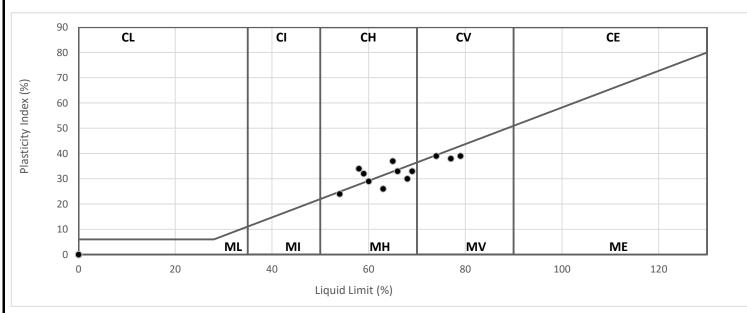

: Liquid Limit and Plastic Limit Wet Sieved

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION BS 5930:1999+A2:2010

Operators	Checked	22/07/2017	Wayne Honey	W. Honey
DB	Approved	23/07/2017	Ben Sharp	35

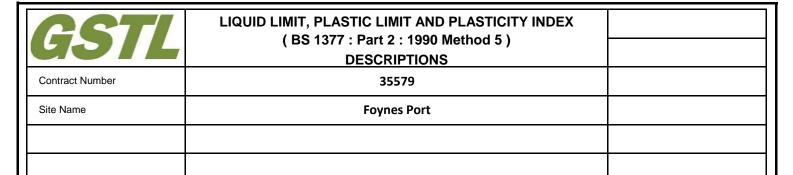
Hole Reference	Sample Number	Sample Type	D	epth (m)	Descriptions
MO2		В	9.50	-	Grey SILT/CLAY
MO2		В	12.50	-	Grey clayey SILT
MO2		В	16.40	-	Brown sandy silty clayey fine to coarse GRAVEL
MO3		В	1.00	-	Grey SILT/CLAY
MO3		В	2.50	-	Greyish brown clayey SILT
MO3		В	7.00	-	Grey SILT/CLAY
MO3		В	9.50	-	Greyish brown silty CLAY
MO3		В	11.00	-	Grey SILT/CLAY
MO3		В	14.00	-	Greyish brown silty CLAY
MO4		В	1.50	-	Grey clayey SILT
MO4		В	7.00	-	Grey sandy clayey SILT
MO4		В	10.00	-	Brown slightly sandy clayey SILT
MO4		В	13.50	-	Brown slightly sandy SILT/CLAY
MO4		В	15.00	-	Grey clayey SILT
MO4		В	15.80	-	Brown fine to coarse gravelly sandy SILT/CLAY
MO4		В	17.30	-	Brown slightly sandy fine to coarse GRAVEL
MO5		В	2.50	-	Grey clayey SILT
MO5		В	5.50	-	Grey clayey SILT
MO5		В	6.50	-	Grey SILT/CLAY
MO5		В	12.50	-	Grey clayey SILT
MO5		В	14.70	-	Brown slightly sandy silty clayey fine to coarse GRAVEL
MO5		В	22.40	-	Brown slightly silty sandy fine to coarse GRAVEL
MO6		В	0.50	-	Grey SILT/CLAY
MO6		В	3.00	-	Grey silty CLAY

Operators	Checked	22/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	23/07/2017	Ben Sharp	


GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)	
Contract Number	35579	
Site Name	Foynes Port	

Hole Reference Sample Number	Sample Type	Depth (m)		Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing .425mm %	Remarks		
MO2		В	9.50	-		41					
MO2		В	12.50	-		49	69	36	33	100	MH High Plasticity
MO2		В	16.40	-		21					
MO3		В	1.00	-		50					
MO3		В	2.50	-		55	54	30	24	100	MH High Plasticity
MO3		В	7.00	-		28					
MO3		В	9.50	-		36	59	27	32	100	CH High Plasticity
MO3		В	11.00	-		37					
MO3		В	14.00	-		48	65	28	37	100	CH High Plasticity
MO4		В	1.50	-		50	60	31	29	100	MH High Plasticity
MO4		В	7.00	-		63	74	35	39	89	MV Very High Plasticity
MO4		В	10.00	-		66	66	33	33	100	MH High Plasticity
MO4		В	13.50	-		56					
MO4		В	15.00	-		58	77	39	38	100	MV Very High Plasticity
MO4		В	15.80	-		85					
MO4		В	17.30	-		6.7					
MO5		В	2.50	-		61	68	38	30	100	MH High Plasticity
MO5		В	5.50	-		65	79	40	39	100	MV Very High Plasticity
MO5		В	6.50	-		45					
MO5		В	12.50	-		53	63	37	26	100	MH High Plasticity
MO5		В	14.70	-		14					
MO5		В	22.40	-		5.6					
MO6		В	0.50	-		34					
MO6		В	3.00	-		50	58	24	34	100	CH High Plasticity

Symbols: NP : Non Plastic

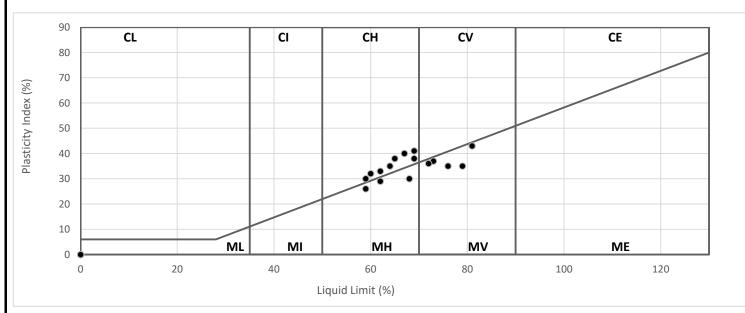

: Liquid Limit and Plastic Limit Wet Sieved

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION BS 5930:1999+A2:2010

Operators	Checked	22/07/2017	Wayne Honey	W. Honey
DB	Approved	23/07/2017	Ben Sharp	35

Hole Reference	Sample Number	Sample Type	Depth (m)		Descriptions		
MO6		В	9.50	-	Grey silty CLAY		
MO6		В	12.50	- 1	Grey clayey SILT		
MO6		В	14.00	- 1	Brown slightly silty sandy fine to coarse GRAVEL		
MO7		В	2.00	-	Grey silty CLAY		
MO7		В	6.50	- 1	Grey silty fine to coarse GRAVEL		
MO7		В	18.50	- 1	Grey SILT/CLAY		
MO8		В	1.00	- 1	Brown sandy clayey SILT		
MO8		В	3.50	- 1	Brownish grey clayey SILT		
MO8		В	9.00	- 1	Brownish grey silty CLAY		
MO8		В	12.00	-	Brown clayey SILT		
MO8		В	13.50	- 1	Brown slightly fine to coarse gravelly sandy SILT/CLAY		
MO8		В	21.40	-	Brown slightly sandy fine to coarse GRAVEL		
M10		В	0.00	- 1	Grey clayey SILT		
M10		В	2.00	-	Grey SILT/CLAY		
M10		В	4.50	-	Grey clayey SILT		
M10		В	9.50	- 1	Grey slightly silty CLAY		
M10		В	12.50	- 1	Grey clayey SILT		
M10		В	13.30	-	Grey SILT/CLAY		
M10		В	18.50	- 1	Grey SILT/CLAY		
M11		В	1.50	-	Grey silty CLAY		
M11		В	2.50	-	Grey clayey SILT		
M11		В	4.50	-	Grey silty CLAY		
M11		В	6.50	-	Grey slightly silty CLAY		
M11		В	11.50	-	Grey slightly silty CLAY		

Operators	Checked	22/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	23/07/2017	Ben Sharp	


GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)	
Contract Number	35579	
Site Name	Foynes Port	

Hole Reference	Sample Number	Sample Type	D	Depth (m)		Depth (m)		Depth (m)		Depth (m)		Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing .425mm %	Remarks
MO6		В	9.50	-		42	67	27	40	100	CH High Plasticity						
MO6		В	12.50	-		63	73	36	37	100	MV Very High Plasticity						
MO6		В	14.00	-		26											
MO7		В	2.00	-		47	60	28	32	100	CH High Plasticity						
MO7		В	6.50	-		2.5		NP		8							
MO7		В	18.50	-		2.5											
MO8		В	1.00	-		59	76	41	35	99	MV Very High Plasticity						
MO8		В	3.50	-		57	62	33	29	100	MH High Plasticity						
MO8		В	9.00 -			51	59	29	30	100	CH High Plasticity						
MO8		В	12.00 -			58	72	36	36	100	MV Very High Plasticity						
MO8		В	13.50	-		36											
MO8		В	21.40	21.40 -		5.6											
M10		В	0.00	-		69	79	44	35	100	MV Very High Plasticity						
M10		В	2.00	-		51											
M10		В	4.50	-		58	68	38	30	100	MH High Plasticity						
M10		В	9.50	-		39	65	27	38	100	CH High Plasticity						
M10		В	12.50	-		61	81	38	43	100	MV Very High Plasticity						
M10		В	13.30			55											
M10		В	18.50	-		5.6											
M11		В	1.50	-		53	69	31	38	100	CH High Plasticity						
M11		В	2.50	-		49	59	33	26	100	MH High Plasticity						
M11		В	4.50	-		43	62	29	33	100	CH High Plasticity						
M11		В	6.50	6.50 -		38	64	29	35	100	CH High Plasticity						
M11		В	11.50	-		51	69	28	41	100	CH High Plasticity						

Symbols: NP : Non Plastic

: Liquid Limit and Plastic Limit Wet Sieved

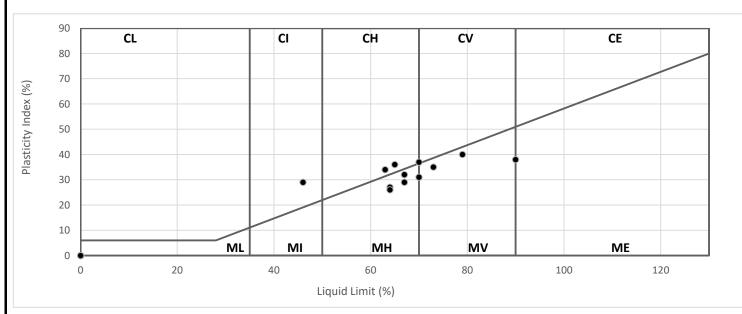
PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION BS 5930:1999+A2:2010

Operators	Checked	22/07/2017	Wayne Honey	W. Honey
DB	Approved	23/07/2017	Ben Sharp	35

CCTI	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)	
GOIL	DESCRIPTIONS	
Contract Number	35579	
Site Name	Foynes Port	

Hole Reference	Sample Number	Sample Type	Depth (m)		m)	Descriptions
M11		B 13.0	13.00 -			Grey clayey SILT
M11		В	14.50	-		Grey SILT/CLAY
M12		В	0.00	-		Grey clayey SILT
M12		В	1.50	-		Grey clayey SILT
M12		В	3.50	-		Grey clayey SILT
M12		В	5.50	-		Grey clayey SILT
M12		В	8.00	-		Grey silty CLAY
M12		В	11.40	-		Dark grey clayey SILT
M15		В	1.00	-		Grey sandy silty CLAY
M15		В	4.50	-		Brown sandy clayey SILT
M15		В	7.00	-		Brown sandy SILT/CLAY
M15		В	9.50	-		Brown slightly fine to medium gravelly sandy SILT/CLAY
M15		В	3.50	-		Grey SILT/CLAY
M15		В	5.00	-		Grey SILT/CLAY
M15		В	5.50	-		Grey clayey SILT
M15		В	12.50	-		Grey silty clayey fine to coarse sandy fine to coarse GRAVEL
M07		В	8.00	-		Brown slightly fine to medium gravelly sandy SILT/CLAY
M07		В	11.00	-		Grey silty CLAY
M11		В	9.50	-		Grey silty CLAY
				-		
				-		
				-		
				-		
				-		

Operators	Checked	07/08/2017	Wayne Honey	W. Honey
RO/MH	Approved	08/08/2017	Ben Sharp	


CSTI	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX	
GOIL	(BS 1377 : Part 2 : 1990 Method 5)	
Contract Number	35579	
Site Name	Foynes Port	

Hole Reference	Sample Number	Sample Type	Depth (m)		Depth (m)		Depth (m)		Depth (m)		Liquid Limit %	Plastic Limit %	Plasticity index %	Passing .425mm %	Remarks
M11		В	13.00	-		59	64	37	27	100	MH High Plasticity				
M11		В	14.50	-		6.8									
M12		В	0.00	-		63	70	39	31	100	MH/V High/HighPlasticity				
M12		В	1.50	-		60	67	35	32	100	MH High Plasticity				
M12		В	3.50	-		58	79	39	40	100	MV Very High Plasticity				
M12		В	5.50	-		60	64	38	26	100	MH High Plasticity				
M12		В	8.00	-		37	46	17	29	100	CI Intermediate Plasticity				
M12		В	11.40 -		83	90	52	38	100	/E Very/Extremely High Plasti					
M15		В	1.00	-		57	70	33	37	99	CH/V High/HighPlasticity				
M15		В	4.50	-		54	67	38	29	99	MH High Plasticity				
M15		В	7.00	-		48									
M15		В	9.50	-		37									
M15		В	3.50	-		48									
M15		В	5.00	-		45									
M15		В	5.50	-		52	73	38	35	100	MV Very High Plasticity				
M15		В	12.50	-		11									
M07		В	8.00	-		29									
M07		В	11.00	-		42	63	29	34	100	CH High Plasticity				
M11		В	9.50	-		44	65	29	36	100	CH High Plasticity				
				-											
				-											
				-											
				-											
				-											

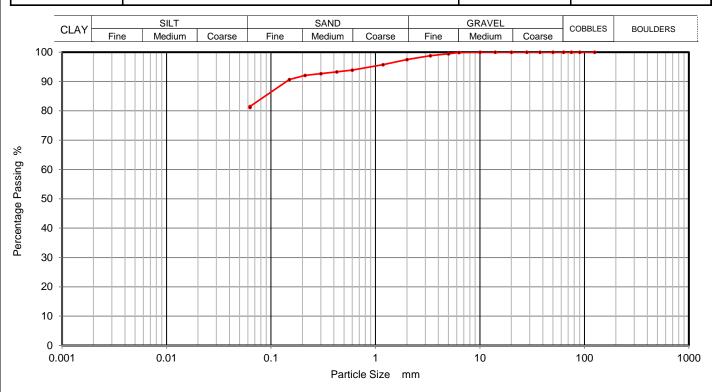
Symbols: NP: Non Plastic

#: Liquid Limit and Plastic Limit Wet Sieved

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION BS 5930:1999+A2:2010

Operators	Checked	07/08/2017	Wayne Honey	W. Honey
DB	Approved	08/08/2017	Ben Sharp	

GSTL	SUMMARY OF SOIL DENSITY TESTS (BS 1377 : PART 2 : 7/8 : 1990)	
Contract Number	35579	
Site Name	Foynes Port	


Hole Reference	Sample Number	Sample Type	D	epth (r	n)	Moisture Content	Bulk Density	Dry Density	Compaction Method	Particle Density	Estimated Air Voids	Remarks
L04		UT	2.00	-		66	1.67	1.01	Natural			
L04		Р	3.00	-		61	1.84	1.14	Natural			
L04		UT	6.50	-		35	1.60	1.18	Natural			
L05		UT	1.00	-		97	1.28	0.65	Natural			
L05		Р	4.00	-		55	1.67	1.08	Natural			
L05		UT	11.00	-		57	1.72	1.10	Natural			
L05		UT	14.00	-		67	2.12	1.27	Natural			
M01		Р	6.00	-		27	1.96	1.54	Natural			
M02		Р	2.00	-		33	1.92	1.44	Natural			
M02		Р	5.00	-		39	1.90	1.37	Natural			
M03		UT	1.00	-		51	1.77	1.17	Natural			
M03		UT	4.00	-		51	1.70	1.13	Natural			
M03		Р	5.00	-		42	1.83	1.29	Natural			
M03		UT	9.00	-		27	1.34	1.06	Natural			
M03		UT	15.00	-		46	1.75	1.20	Natural			
M04		UT	3.50	-		45	1.51	1.04	Natural			
M04		Р	4.00	-		49	1.75	1.17	Natural			
M04		UT	9.50	-		36	1.91	1.40	Natural			
M05		UT	3.00	-		103	1.67	0.82	Natural			
M05		UT	5.00	-		42	1.54	1.09	Natural			
M05		Р	7.00	-		44	1.86	1.29	Natural			
M05		UT	9.00	-		50	1.89	1.26	Natural			
M05		UT	12.00	-		48	1.78	1.20	Natural			
M06		UT	7.50	-		43	1.86	1.30	Natural			
M06		Р	8.50	-		35	1.76	1.30	Natural			
M06		UT	10.50	-		46	1.78	1.22	Natural			
M08		UT	2.00	-		53	1.76	1.15	Natural			
M08		UT	4.00	-		40	1.49	1.07	Natural			
M08		Р	5.00	-		63	1.65	1.01	Natural			
M11		UT	3.00	-		45	1.48	1.02	Natural			
M11		Р	6.50	-		33	1.86	1.40	Natural			
M11		UT	8.00	-		40	1.55	1.10	Natural			
M13		Р	2.10	-		49	1.74	1.17	Natural			
M15 M15		P P	2.00 6.00	-		44 98	1.84	1.28	Natural			<u> </u>
IVIT5		٢	6.00	-		98	1.70	0.86	Natural			İ

Key	Reported As
Moisture Content	%
Bulk Density	Mg/m ³
Dry Density	Mg/m ³
Particle Density	Mg/m ³
Air Voids	%

Operators	Checked	02/08/2017	Wayne Honey	W. Honey
CA/JS	Approved	03/08/2017	Ben Sharp	

PARTICLE SIZ	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L04
Site Name	Foynes Port	Sample No.	
Soil Description	0 11 11 5 11 5	Depth Top	0.50
	Grey slightly fine gravelly fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Siev	Sieving		entation
Particle Size	% Passing	Particle Size	% Passing
mm	% Fassing	mm	% Fassing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	99		
3.35	99		
2	97		
1.18	96		
0.6	94		
0.425	93		
0.3	93		
0.212	92		
0.15	91		
0.063	82		

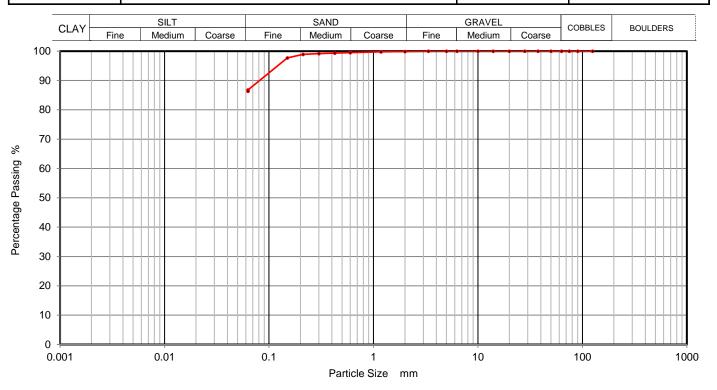

Sample Proportions	% dry mass
Cobbles	0
Gravel	3
Sand	15
Silt and Clay	82

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L04
Site Name	Foynes Port	Sample No.	
Soil Description		Depth Top	3.00
	Grey slightly fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Siev	Sieving		entation
Particle Size	% Passing	Particle Size	% Passing
mm	% Passing	mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	99		
0.212	99		
0.15	95		
0.063	91		

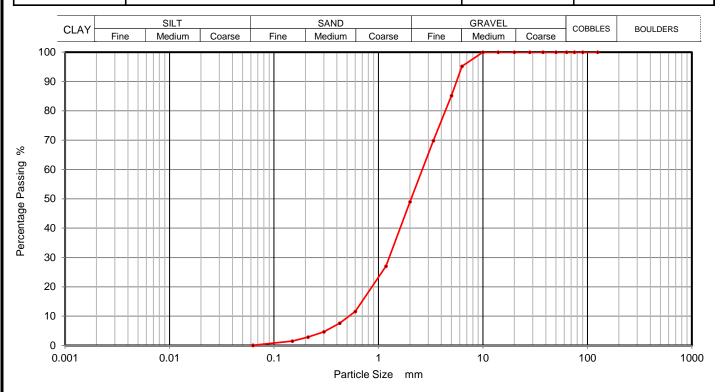

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	9
Silt and Clay	91

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L04	
Site Name	Foynes Port	Sample No.	
Soil Description		Depth Top	8.50
	Grey slightly fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 1 assing	mm	70 1 assing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	99		
0.3	99		
0.212	99		
0.15	98		
0.063	87		


Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	13
Silt and Clay	87

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	07/08/2017	Wayne Honey	W. Honey
RO/MH	Approved	08/08/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L04
Site Name	Foynes Port	Sample No.	
Soil Description	Brown fine to coarse sandy fine to medium GRAVEL	Depth Top	9.00
		Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	95		
5	85		
3.35	70		
2	49		
1.18	27		
0.6	12		
0.425	8		
0.3	5		
0.212	3		
0.15	1		
0.063	0		

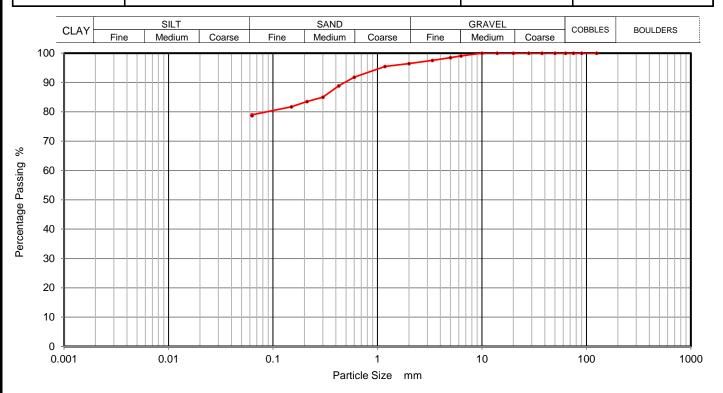
Sample Proportions	% dry mass
Cobbles	0
Gravel	51
Sand	49
Silt and Clay	0

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L04
Site Name	Foynes Port	Sample No.	
Soil Description	D () LOUT(OLAY)	Depth Top	11.50
	Brown fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	99		
0.6	99		
0.425	98		
0.3	98		
0.212	97		
0.15	96		
0.063	83		

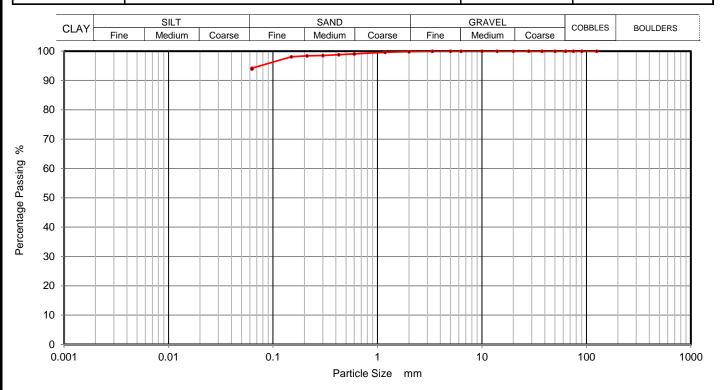

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	0	
Sand	17	
Silt and Clay	83	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L04
Site Name	Foynes Port		
Soil Description	Brown slightly fine to medium gravelly fine to coarse sandy	Depth Top	13.00
	SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	99		
5	98		
3.35	98		
2	96		
1.18	95		
0.6	92		
0.425	89		
0.3	85		
0.212	84		
0.15	82		
0.063	79		


Sample Proportions	% dry mass
Cobbles	0
Gravel	4
Sand	17
Silt and Clay	79

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION		
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Contract Number 35579 Borehole/Pit No. L04 Sample No. Depth Top 14.50 Depth Base	
Site Name	Foynes Port	Sample No.	
Soil Description	Prown clightly fine to coarce candy SILT/CLAY	Depth Top	14.50
	Brown slightly fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 1 assing	mm	70 1 assing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	99		
0.212	98		
0.15	98		
0.063	94		

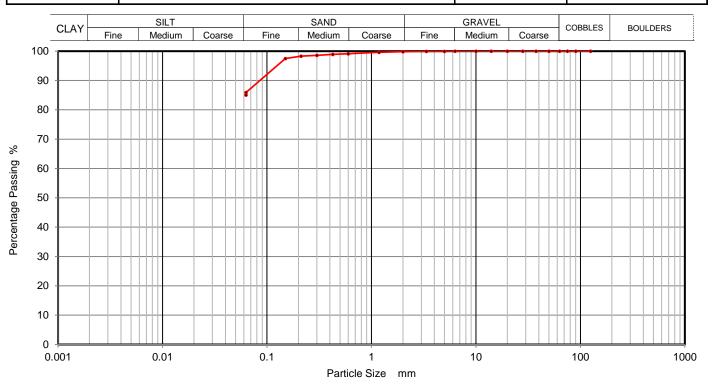
Sample Proportions	% dry mass
Cobbles Gravel Sand	0
Gravel	0
Sand	6
Silt and Clay	94

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Contract Number	35579
GOIL		Borehole/Pit No.	L05
Site Name	Foynes Port	Sample No.	
Soil Description	Brown slightly fine to medium gravelly fine to coarse sandy	Depth Top	1.00
	SILT/CLAY	Depth Base	
		Sample Type	В

Siev	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	99		
10	99		
6.3	99		
5	99		
3.35	99		
2	98		
1.18	98		
0.6	97		
0.425	96		
0.3	96		
0.212	96		
0.15	95		
0.063	83		

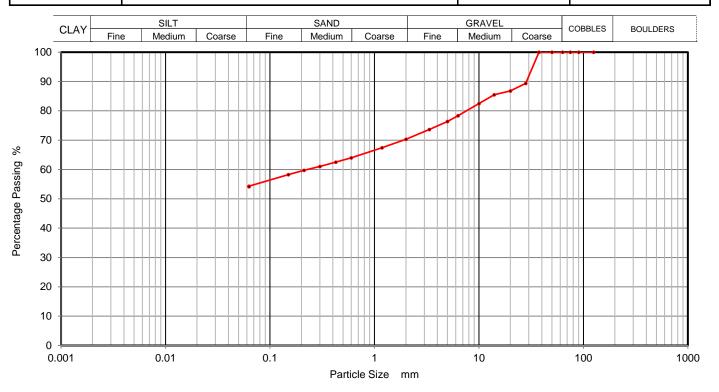

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	2	
Sand	15	
Silt and Clay	83	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

PARTICLE SIZE DISTRIBUTION	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L05
Site Name	Foynes Port	Sample No.	
Soil Description		Depth Top	1.50
	Brown fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	/0 F assing	mm	/0 Fassing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	99		
0.212	98		
0.15	97		
0.063	86		

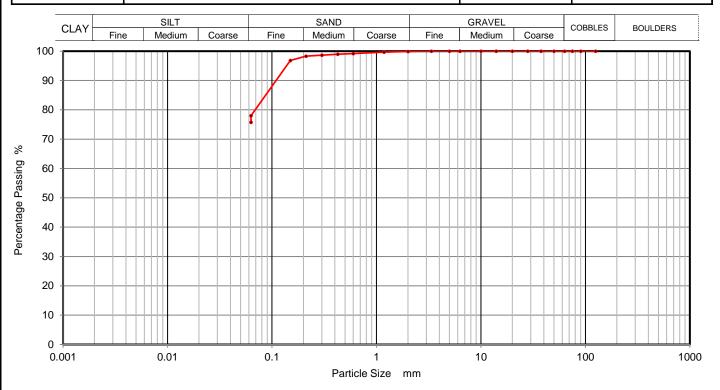

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	0	
Sand	14	
Silt and Clay	86	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Contract Number	35579	
	Borehole/Pit No.	L05	
Site Name	Foynes Port	Sample No.	
Soil Description	D	Depth Top	6.00
	Brown fine to coarse sandy fine to coarse gravelly SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 1 assing	mm	70 1 assing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	89		
20	87		
14	85		
10	82		
6.3	78		
5	76		
3.35	74		
2	70		
1.18	67		
0.6	64		
0.425	63		
0.3	61		
0.212	60		
0.15	58		
0.063	54		


Sample Proportions	% dry mass
Cobbles	0
Gravel	30
Sand	16
Silt and Clay	54

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990 Wet Sieve, Clause 9.2		35579
GOIL			L05
Site Name	Foynes Port	Sample No.	
Soil Description	D () O T(O A) (Depth Top	7.00
	Brown fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	Sedimentation	
Particle Size	% Passing	Particle Size	% Passing	
mm	70 Fassing	mm	/0 Fassing	
125	100	0.0200		
90	100	0.0060		
75	100	0.0019		
63	100			
50	100			
37.5	100			
28	100			
20	100			
14	100			
10	100			
6.3	100			
5	100			
3.35	100			
2	100			
1.18	100			
0.6	99			
0.425	99			
0.3	99			
0.212	98			
0.15	97			
0.063	78			


Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	22
Silt and Clay	78

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L05
Site Name	Foynes Port	Sample No.	
Soil Description	D ()	Depth Top	9.50
	Brown fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	9/ Dessing	Particle Size	% Passing
mm	% Passing	mm	% Fassing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	99		
0.212	98		
0.15	97		
0.063	80		

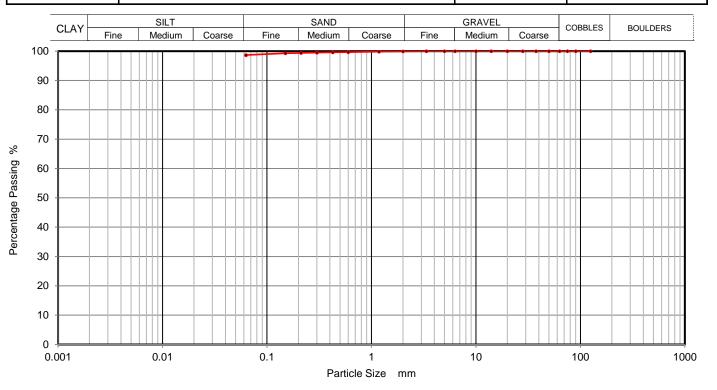
Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	20
Silt and Clay	80

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

PARTICLE SIZE DISTRIBUTION	Contract Number	35579	
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L05
Site Name	Foynes Port	Sample No.	
Soil Description		Depth Top	10.00
	Brown fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	99		
0.212	98		
0.15	97		
0.063	81		

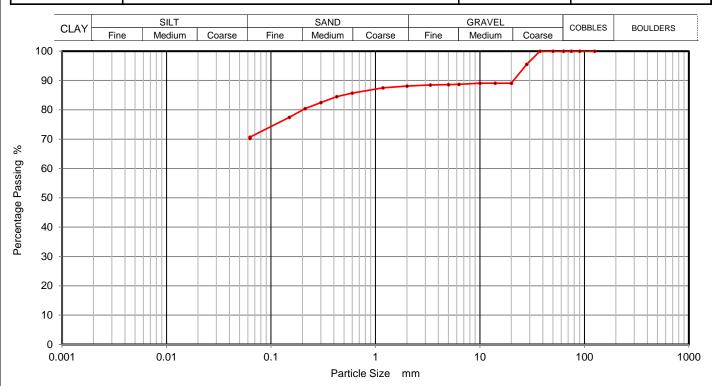

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	19
Silt and Clay	81

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION		35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L05
Site Name	Foynes Port	Sample No.	
Soil Description	Brown slightly fine to coarse sandy SILT/CLAY	Depth Top	12.50
	Brown slightly line to coarse sarrdy SiLT/CLAT	Depth Base	
		Sample Type	В

Siev	ving	Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	100		
0.3	100		
0.212	99		
0.15	99		
0.063	99		


Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	1
Silt and Clay	99

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L05
Site Name	Foynes Port	Sample No.	
Soil Description	Brown slightly fine to coarse gravelly fine to coarse sandy SILT/CLAY	Depth Top	14.50
	Blown slightly line to coarse gravelly line to coarse sailty SILT/CLAT	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 T assiring	mm	70 T d33HIg
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	96		
20	89		
14	89		
10	89		
6.3	89		
5	89		
3.35	88		
2	88		
1.18	87		
0.6	86		
0.425	84		
0.3	82		
0.212	80		
0.15	77		
0.063	71		

Sample Proportions	% dry mass
Cobbles	0
Gravel	12
Sand	17
Silt and Clay	71

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M01
Site Name	Foynes Port	Sample No.	
Soil Description	Down (for the company of OH T/OHA)/	Depth Top	0.50
	Brown fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	% Passing	mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	99		
0.6	98		
0.425	98		
0.3	97		
0.212	97		
0.15	96		
0.063	83		

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	17
Silt and Clay	83

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M01
Site Name	Foynes Port	Sample No.	
Soil Description		Depth Top	1.50
	Brown fine to medium sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 T assiring	mm	70 T d33HIG
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	100		
0.3	100		
0.212	99		
0.15	98		
0.063	86		

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	14
Silt and Clay	86

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	35

CCTI	PARTICLE SIZE DISTRIBUTION		35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M01
Site Name	Foynes Port	Sample No.	
Soil Description	·	Depth Top	2.50
	Brown fine to medium sandy SILT/CLAY		
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 1 assing	mm	70 1 assing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	99		
0.212	99		
0.15	98		
0.063	81		

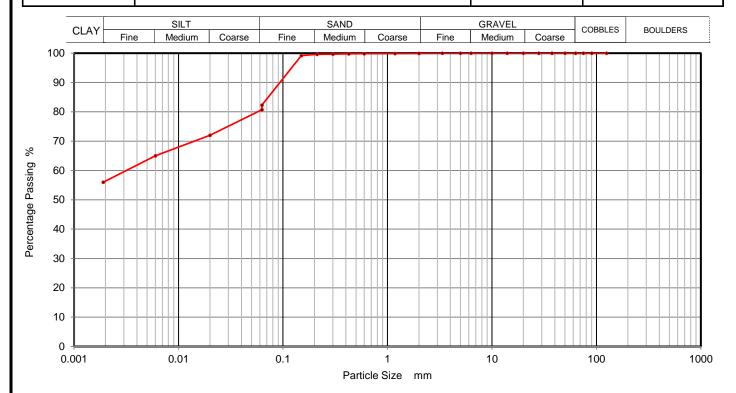

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	0	
Sand	19	
Silt and Clay	81	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION		35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M01
Site Name	Foynes Port	Sample No.	
Soil Description	'	Depth Top	4.50
	Brown silty clayey fine to medium SAND		
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	100		
0.3	99		
0.212	99		
0.15	97		
0.063	39		


Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	61
Silt and Clay	39

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4	Borehole/Pit No.	M01
Site Name	Foynes Port	Sample No.	
Soil Description	Grey fine to medium sandy silty CLAY	Depth Top	7.00
	Grey line to medium sandy siny CLAT	Depth Base	
		Sample Type	В

Siev	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	72
90	100	0.0060	65
75	100	0.0019	56
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	100		
0.3	100		
0.212	100		
0.15	99		
0.063	82		

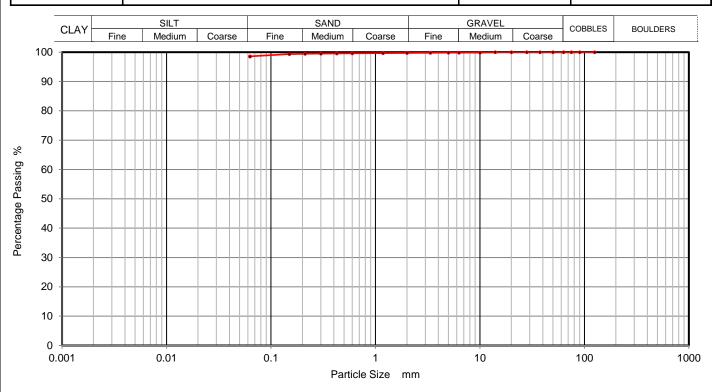
Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	18
Silt	26
Clay	56

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	07/08/2017	Wayne Honey	W. Honey
RO/MH	Approved	08/08/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M01
Site Name	Foynes Port	Sample No.	
Soil Description	Brown fine to coarse sandy SILT/CLAY	Depth Top	9.00
	BIOWITHINE to coarse salidy SILT/CLAT	Depth Base	
		Sample Type	В

Siev	ving	Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 Fassing	mm	/0 Fassing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	98		
0.212	97		
0.15	96		
0.063	66		

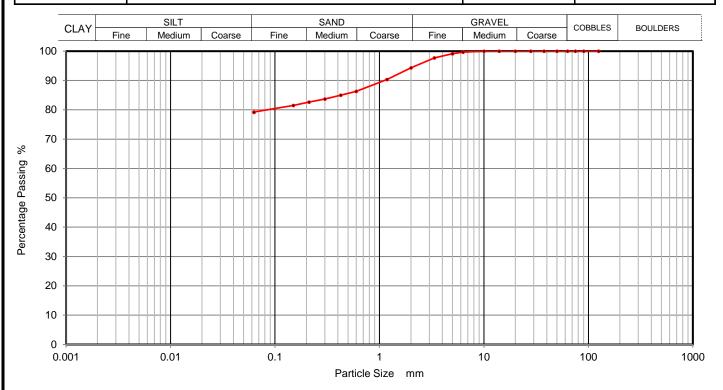

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	0	
Sand	34	
Silt and Clay	66	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M01
Site Name	Foynes Port	Sample No.	
Soil Description	Brown slightly fine to medium sandy SILT/CLAY	Depth Top	10.50
	Brown slightly line to medium sarray Sil 17CLAT	Depth Base	
		Sample Type	В

Siev	ving	Sedime	entation
Particle Size	9/ Dessing	Particle Size	9/ Dessing
mm	% Passing	mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	100		
0.3	99		
0.212	99		
0.15	99		
0.063	99		

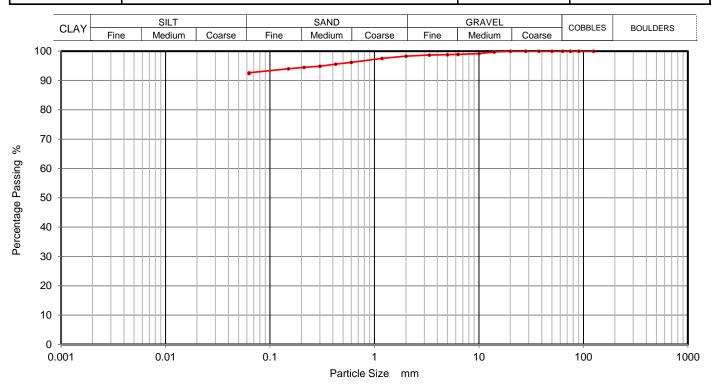

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	1
Silt and Clay	99

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M01	
Site Name	Foynes Port	Sample No.	
Soil Description	Grey slightly fine to medium gravelly fine to coarse sandy SILT/CLAY	Depth Top	12.00
	Grey slightly line to medium gravelly line to coarse sandy SiET/CEAT	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	99		
3.35	98		
2	94		
1.18	90		
0.6	86		
0.425	85		
0.3	84		
0.212	83		
0.15	82		
0.063	79		


Sample Proportions	% dry mass
Cobbles	0
Gravel	6
Sand	15
Silt and Clay	79

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M01	
Site Name	Foynes Port	Sample No.	
Soil Description	Grey slightly fine to medium gravelly slightly fine to coarse sandy	Depth Top	15.00
	SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm		mm	/0 Fassing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	99		
6.3	99		
5	99		
3.35	99		
2	98		
1.18	98		
0.6	96		
0.425	96		
0.3	95		
0.212	94		
0.15	94		
0.063	93		

Sample Proportions	% dry mass
Cobbles	0
Gravel	2
Sand	5
Silt and Clay	93

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
	Borehole/Pit No.	M01	
Site Name	Foynes Port	Sample No.	
Soil Description		Depth Top	16.00
	Grey slightly fine to medium gravelly fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	% Passing	mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	99		
10	99		
6.3	99		
5	99		
3.35	99		
2	98		
1.18	98		
0.6	97		
0.425	97		
0.3	96		
0.212	96		
0.15	95		
0.063	63		

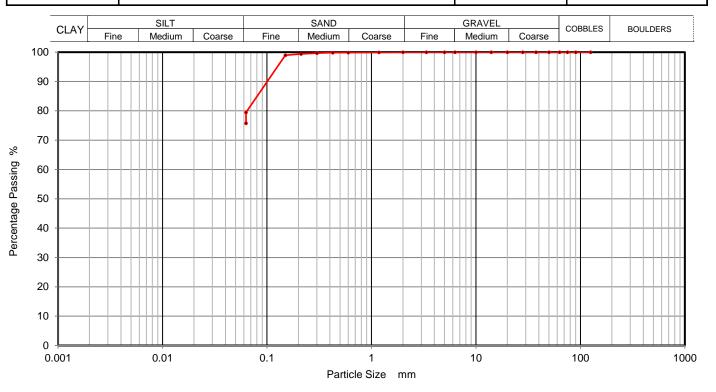
Sample Proportions	% dry mass
Cobbles	0
Gravel	2
Sand	35
Silt and Clay	63

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	L	Contract Number	35579
	Borehole/Pit No.	M02	
Site Name	Foynes Port	Sample No.	
Soil Description		Depth Top	1.50
	Grey fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 1 assing	mm	70 1 assing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	99		
0.212	98		
0.15	97		
0.063	84		

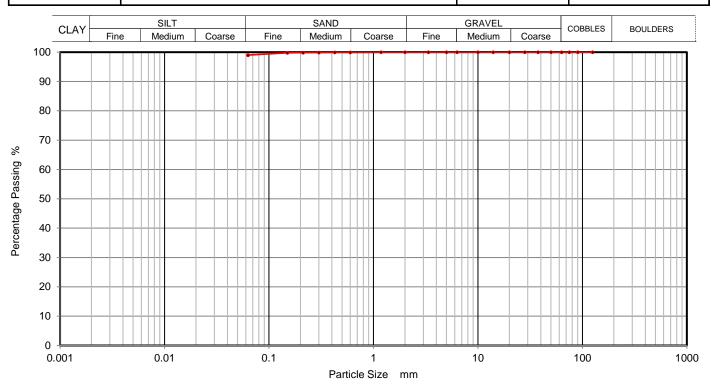

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	16
Silt and Clay	84

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M02
Site Name	Foynes Port	Sample No.	
Soil Description	0 6 1 1 0 1 7 0 1 1	Depth Top	4.50
	Grey fine to medium sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	100		
0.3	100		
0.212	99		
0.15	99		
0.063	80		

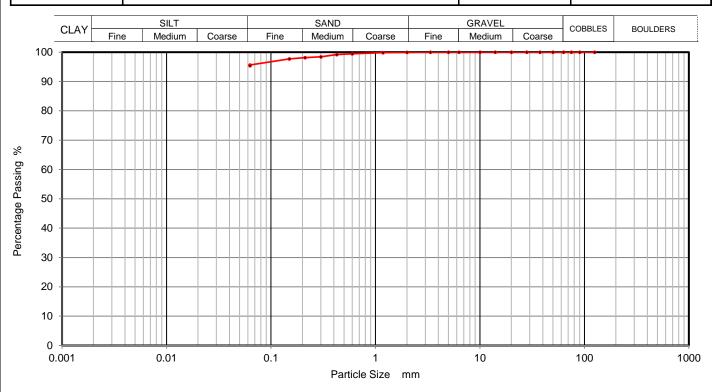

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	20
Silt and Clay	80

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M02
Site Name	Foynes Port	Sample No.	
Soil Description	Occupation of the Company of the Company	Depth Top	11.00
	Grey slightly fine sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 T assiring	mm	70 T d33HIG
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	100		
0.3	100		
0.212	100		
0.15	100		
0.063	99		

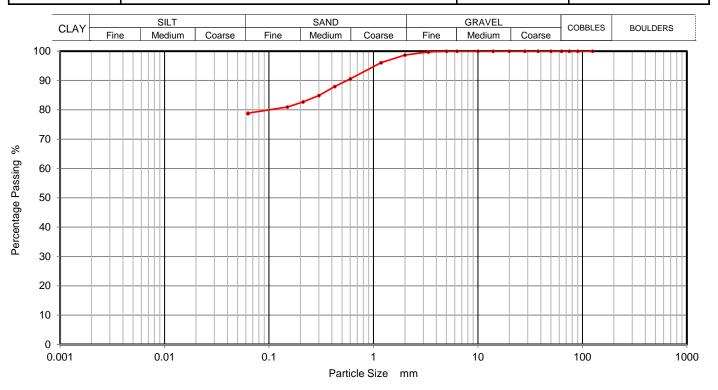

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	1
Silt and Clay	99

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	07/08/2017	Wayne Honey	W. Honey
RO/MH	Approved	08/08/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M02
Site Name	Foynes Port	Sample No.	
Soil Description	D / 11-11-15 / 11-11-15 / 11-11-15 / 11-11-15 / 11-11-15 / 11-11-15 / 11-11-15 / 11-11-15 / 11-11-15 / 11-11-15	Depth Top	14.00
	Brown/grey slightly fine to medium sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	9/ Dessing
mm	% Fassing	mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	98		
0.212	98		
0.15	98		
0.063	96		


Sample Proportions	% dry mass	
Cobbles	0	
Gravel	0	
Sand	4	
Silt and Clay	96	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M02	
Site Name	Foynes Port	Sample No.	
Soil Description	·	Depth Top	15.50
	Grey slightly fine gravelly fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	9/ Dessing	Particle Size	% Passing
mm	% Passing	mm	% Fassing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	99		
1.18	96		
0.6	91		
0.425	88		
0.3	85		
0.212	83		
0.15	81		
0.063	79		


Sample Proportions	% dry mass
Cobbles	0
Gravel	1
Sand	20
Silt and Clay	79

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M02	
Site Name	Foynes Port	Sample No.	
Soil Description	·	Depth Top	16.40
	Brown fine to coarse sandy silty clayey fine to coarse GRAVEL	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm		mm	% Fassing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	96		
20	83		
14	72		
10	65		
6.3	55		
5	49		
3.35	46		
2	40		
1.18	35		
0.6	32		
0.425	31		
0.3	29		
0.212	28		
0.15	26		
0.063	23		

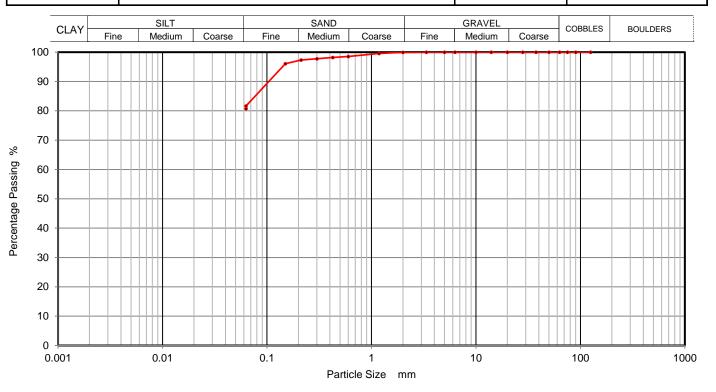

Sample Proportions	% dry mass
Cobbles	0
Gravel	60
Sand	17
Silt and Clay	23

Grading Analysis		
Uniformity Coefficient		

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	35

CCTI	PARTICLE SIZE DISTRIBUTION		35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M03
Site Name	Foynes Port	Sample No.	
Soil Description	Drawn fine to see see and CH T/OLAY	Depth Top	0.50
	Brown fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedimentation	
Particle Size	9/ Dessing	Particle Size	% Passing
mm	% Passing	mm	% Fassing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	99		
0.6	99		
0.425	99		
0.3	98		
0.212	98		
0.15	98		
0.063	85		

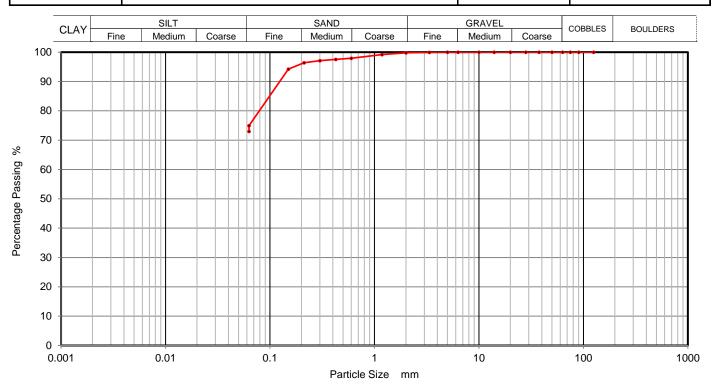

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	0	
Sand	15	
Silt and Clay	85	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M03
Site Name	Foynes Port	Sample No.	
Soil Description	D. (°) LOUTIOLAY	Depth Top	1.50
	Brown fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Siev	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	98		
0.3	98		
0.212	97		
0.15	96		
0.063	82		


Sample Proportions	% dry mass	
Cobbles	0	
Gravel	0	
Sand	18	
Silt and Clay	82	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990	Contract Number	35579
GOIL		Borehole/Pit No.	M03
Site Name	Foynes Port	Sample No.	
Soil Description	D (') 0 T(0 A)(Depth Top	3.50
	Brown fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	9/ Dessing	Particle Size	% Passing
mm	% Passing	mm	% Fassing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	99		
0.6	98		
0.425	98		
0.3	97		
0.212	96		
0.15	94		
0.063	75		

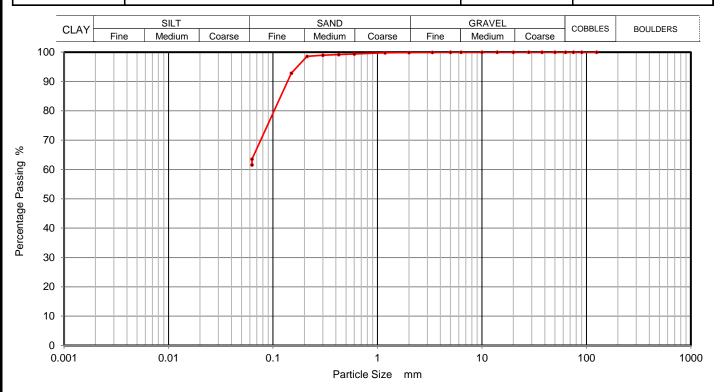

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	0	
Sand	25	
Silt and Clay	75	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M03
Site Name	Foynes Port	Sample No.	
Soil Description		Depth Top	4.50
	Brown slightly fine gravelly fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 Fassing	mm	/0 F assing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	99		
1.18	99		
0.6	98		
0.425	98		
0.3	97		
0.212	97		
0.15	96		
0.063	81		

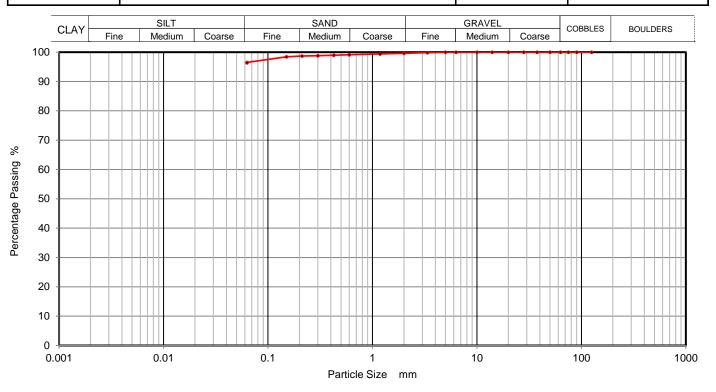

Sample Proportions	% dry mass
Cobbles	0
Gravel	1
Sand	18
Silt and Clay	81

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION		35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M03
Site Name	Foynes Port	Sample No.	
Soil Description	Depute fire to access and CH T/CLAV	Depth Top	8.00
	Brown fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedimentation		
Particle Size	9/ Dessing	Particle Size	9/ Dessing	
mm	% Passing	mm	% Passing	
125	100	0.0200		
90	100	0.0060		
75	100	0.0019		
63	100			
50	100			
37.5	100			
28	100			
20	100			
14	100			
10	100			
6.3	100			
5	100			
3.35	100			
2	100			
1.18	100			
0.6	99			
0.425	99			
0.3	99			
0.212	99			
0.15	93			
0.063	64			

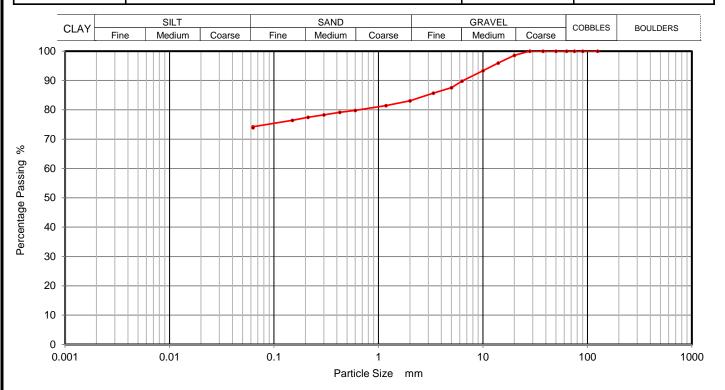

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	36
Silt and Clay	64

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990 Wet Sieve, Clause 9.2		35579
GOIL			M03
Site Name	Foynes Port	Sample No.	
Soil Description	Decree eligibility fine to cooper and CHT/CLAV	Depth Top	12.50
	Brown slightly fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	Sedimentation	
Particle Size	% Passing	Particle Size	% Passing	
mm	70 1 assing	mm	70 1 assing	
125	100	0.0200		
90	100	0.0060		
75	100	0.0019		
63	100			
50	100			
37.5	100			
28	100			
20	100			
14	100			
10	100			
6.3	100			
5	100			
3.35	100			
2	100			
1.18	99			
0.6	99			
0.425	99			
0.3	99			
0.212	99			
0.15	98			
0.063	97			

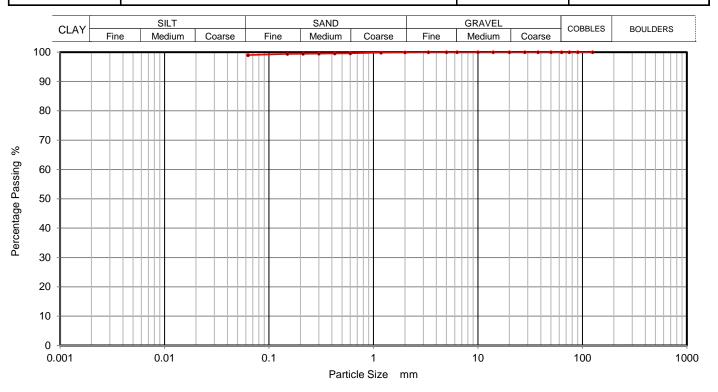

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	3
Silt and Clay	97

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION		35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M03
Site Name	Foynes Port	Sample No.	
Soil Description	Brown slightly fine to coarse sandy fine to coarse gravelly SILT/CLAY	Depth Top	15.50
	Blown slightly line to coalse sality line to coalse gravelly SILT/CLAT	Depth Base	
		Sample Type	В

Siev	Sieving		entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 1 assing	mm	70 1 assing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	99		
14	96		
10	93		
6.3	90		
5	88		
3.35	86		
2	83		
1.18	81		
0.6	80		
0.425	79		
0.3	78		
0.212	77		
0.15	76		
0.063	74		

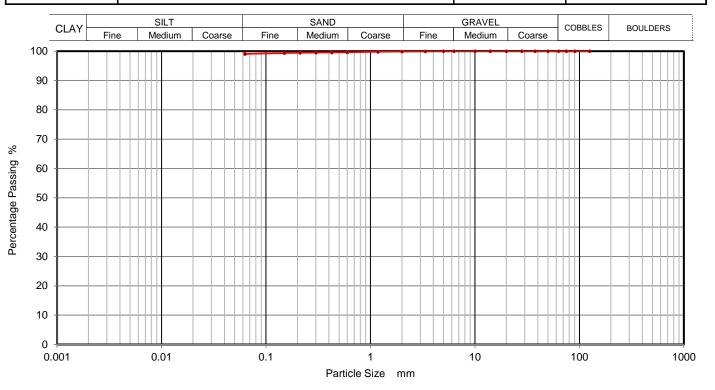

Sample Proportions	% dry mass
Cobbles	0
Gravel	17
Sand	9
Silt and Clay	74

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	35

CCTI	PARTICLE SIZE DISTRIBUTION		35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M04
Site Name	Foynes Port	Sample No.	
Soil Description	Brown slightly fine to coarse sandy SILT/CLAY	Depth Top	10.00
	Blown slightly line to coarse sailty SiLT/CLAT	Depth Base	
		Sample Type	В

Siev	Sieving		entation
Particle Size	9/ Dessing	Particle Size	9/ Dessing
mm	% Passing	mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	100		
0.3	99		
0.212	99		
0.15	99		
0.063	99		

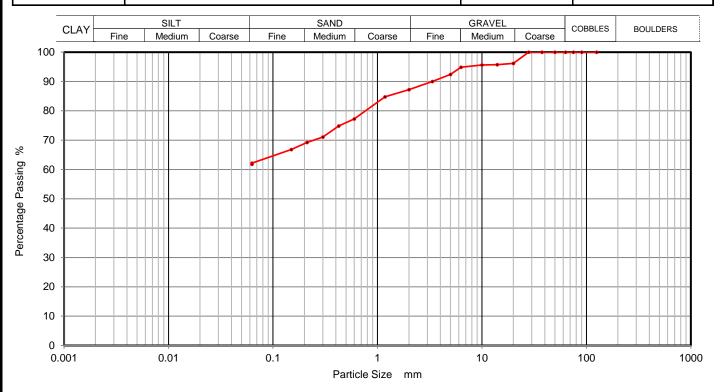

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	1
Silt and Clay	99

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

PARTICLE SIZE DISTRIBUTION	Contract Number	35579	
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M04
Site Name	Foynes Port	Sample No.	
Soil Description	Brown slightly fine to coarse sandy SILT/CLAY	Depth Top	13.50
	Blown slightly line to coarse sailty SiLT/CLAT	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	% Fassing	mm	/0 F assing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	100		
0.3	99		
0.212	99		
0.15	99		
0.063	99		

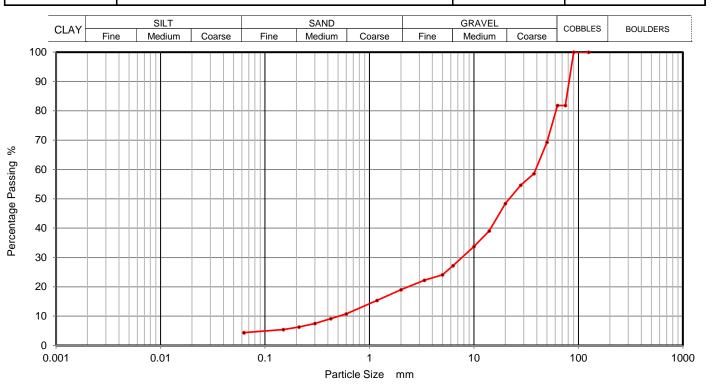

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	1
Silt and Clay	99

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M04
Site Name	Foynes Port	Sample No.	
Soil Description	Decree (for the consequence) of the form to be consequence of the CH T/OLAV	Depth Top	15.80
	Brown fine to coarse gravelly fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Siev	Sieving		entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	96		
14	96		
10	96		
6.3	95		
5	92		
3.35	90		
2	87		
1.18	85		
0.6	77		
0.425	75		
0.3	71		
0.212	69		
0.15	67		
0.063	62		

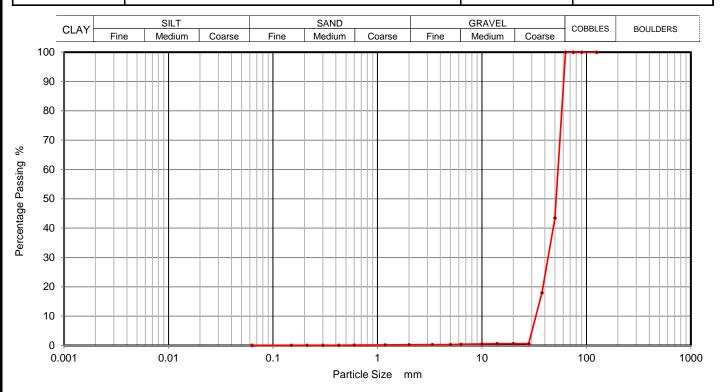

Sample Proportions	% dry mass
Cobbles	0
Gravel	13
Sand	25
Silt and Clay	62

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M04
Site Name	Foynes Port	Sample No.	
Soil Description	Grey slightly silty slightly clayey fine to coarse sandy fine to coarse	Depth Top	16.50
	GRAVEL with some cobbles	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	82	0.0019	
63	82		
50	69		
37.5	59		
28	55		
20	48		
14	39		
10	34		
6.3	27		
5	24		
3.35	22		
2	19		
1.18	15		
0.6	11		
0.425	9		
0.3	7		
0.212	6		
0.15	5		
0.063	4		

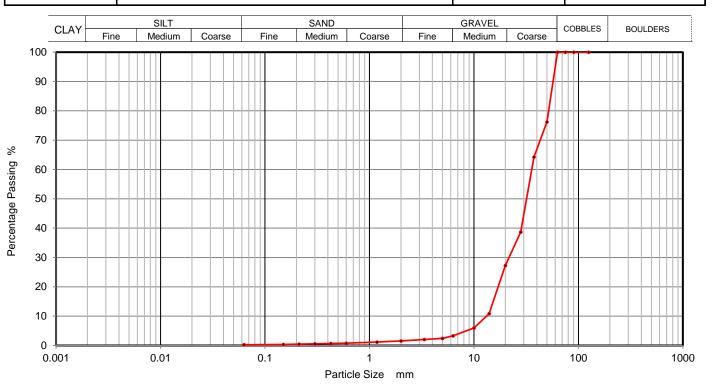

Sample Proportions	% dry mass
Cobbles	18
Gravel	63
Sand	15
Silt and Clay	4

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

PARTICLE SIZE DISTRIBUTION		Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M04
Site Name	Foynes Port	Sample No.	
Soil Description	Brown fine to coarse GRAVEL	Depth Top	16.80
	DIOWITHINE to COAISE GRAVEL	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm		mm	% Fassing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	43		
37.5	18		
28	1		
20	1		
14	1		
10	0		
6.3	0		
5	0		
3.35	0		
2	0		
1.18	0		
0.6	0		
0.425	0		
0.3	0		
0.212	0		
0.15	0		
0.063	0		


Sample Proportions	% dry mass
Cobbles	0
Gravel	100
Sand	0
Silt and Clay	0

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Contract Number	35579
GJIL		Borehole/Pit No.	M04
Site Name	Foynes Port	Sample No.	
Soil Description		Depth Top	17.30
	Brown slightly fine to coarse sandy fine to coarse GRAVEL	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	76		
37.5	64		
28	39		
20	27		
14	11		
10	6		
6.3	3		
5	2		
3.35	2		
2	2		
1.18	1		
0.6	1		
0.425	1		
0.3	1		
0.212	0		
0.15	0		
0.063	0		

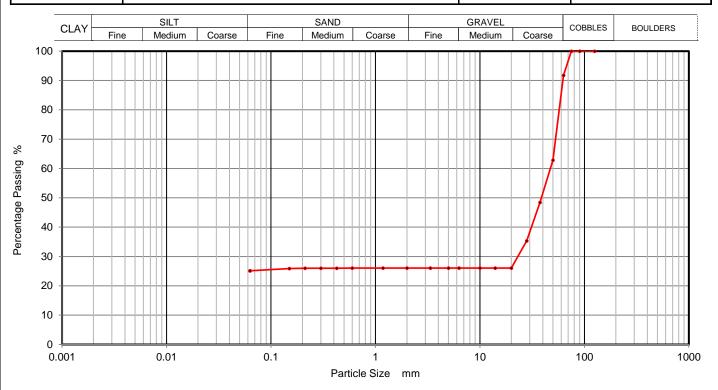
Sample Proportions	% dry mass
Cobbles	0
Gravel	98
Sand	2
Silt and Clay	0

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	18/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	19/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M05
Site Name	Foynes Port	Sample No.	
Soil Description	Grey fine to coarse sandy SILT/CLAY	Depth Top	1.00
	Grey line to coarse sandy SILT/CLAT	Depth Base	
		Sample Type	В

Siev	ving	Sedime	entation
Particle Size	9/ Dessing	Particle Size	9/ Dessing
mm	% Passing	mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	98		
0.3	98		
0.212	97		
0.15	95		
0.063	81		

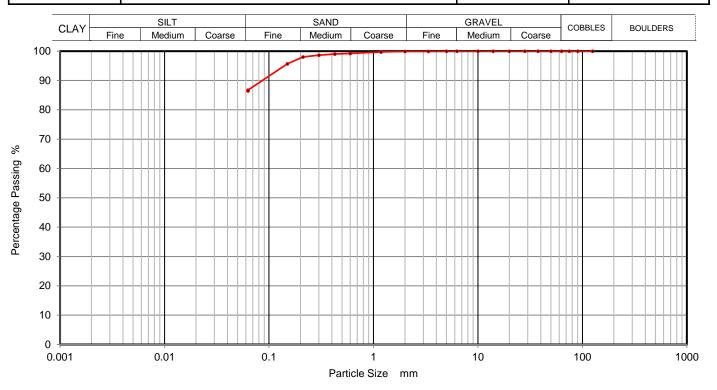

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	0	
Sand	19	
Silt and Clay	81	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	20/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION		35579
BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M05	
Site Name	Foynes Port	Sample No.	
Soil Description	Brown slightly fine to coarse sandy silty clayey fine to coarse	Depth Top	3.50
	GRAVEL with some cobbles	Depth Base	
		Sample Type	В

Siev	ving	Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 1 assing	mm	70 1 assiriy
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	92		
50	63		
37.5	48		
28	35		
20	26		
14	26		
10	26		
6.3	26		
5	26		
3.35	26		
2	26		
1.18	26		
0.6	26		
0.425	26		
0.3	26		
0.212	26		
0.15	26		
0.063	25		


Sample Proportions	% dry mass	
Cobbles	8	
Gravel	66	
Sand	1	
Silt and Clay	25	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	20/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION		35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M05
Site Name	Foynes Port	Sample No.	
Soil Description	Brown fine to coarse sandy SILT/CLAY	Depth Top	4.50
	BIOWITHINE to coarse sainty SILT/CLAT	Depth Base	
		Sample Type	В

Siev	ving	Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 T assiring	mm	70 T d33HIG
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	99		
0.212	98		
0.15	96		
0.063	87		

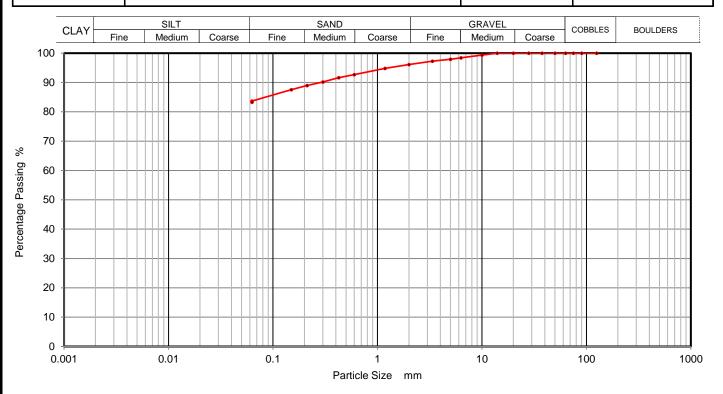
Sample Proportions % dry mass	
Cobbles	0
Gravel	0
Sand	13
Silt and Clay	87

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	20/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION		35579
BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M05	
Site Name	Foynes Port	Sample No.	
Soil Description	Decree all ability from the consequence of QUIT/QUAY	Depth Top	8.50
	Brown slightly fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedimentation	
Particle Size	% Passing	Particle Size	% Passing
mm	70 Fassing	mm	/0 Fassing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	99		
0.6	99		
0.425	99		
0.3	99		
0.212	99		
0.15	99		
0.063	95		

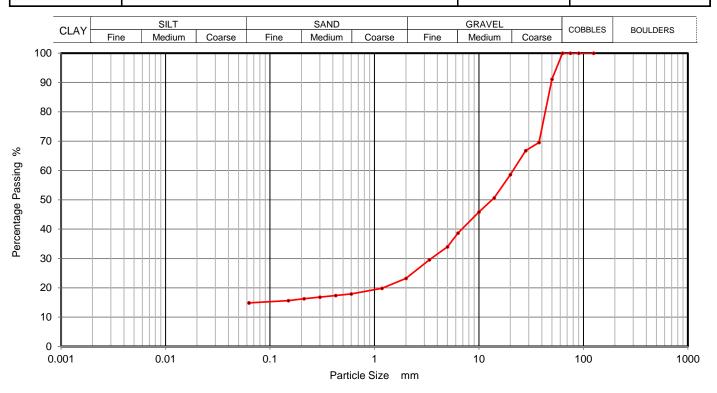

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	5
Silt and Clay	95

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	20/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION		35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M05
Site Name	Foynes Port	Sample No.	
Soil Description	Brown slightly fine to medium gravelly fine to coarse sandy	Depth Top	14.00
	SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	99		
6.3	98		
5	98		
3.35	97		
2	96		
1.18	95		
0.6	93		_
0.425	92		
0.3	90		
0.212	89		
0.15	88		
0.063	84		

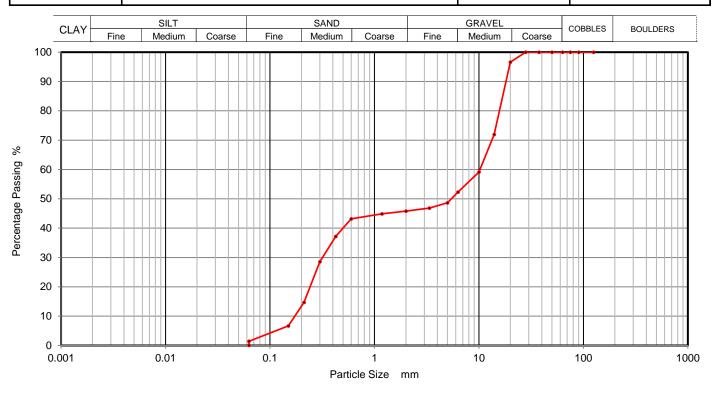

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	4	
Sand	12	
Silt and Clay	84	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	20/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Contract Number	35579
GOIL		Borehole/Pit No.	M05
Site Name	Foynes Port	Sample No.	
Soil Description	Brown slightly fine to coarse sandy silty clayey fine to coarse	Depth Top	14.70
	GRAVEL	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 1 assing	mm	70 1 assing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	91		
37.5	70		
28	67		
20	59		
14	51		
10	46		
6.3	39		
5	34		
3.35	30		
2	23		
1.18	20		
0.6	18		
0.425	17		
0.3	17		
0.212	16		
0.15	16		
0.063	15		


Sample Proportions	% dry mass
Cobbles	0
Gravel	77
Sand	8
Silt and Clay	15

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	20/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION		35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M05
Site Name	Foynes Port	Sample No.	
Soil Description		Depth Top	22.40
	Brown slightly silty fine to coarse sandy fine to coarse GRAVEL	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
	400		
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	97		
14	72		
10	59		
6.3	52		
5	49		
3.35	47		
2	46		
1.18	45		
0.6	43		
0.425	37		
0.3	29		
0.212	15		
0.15	7		
0.063	1		

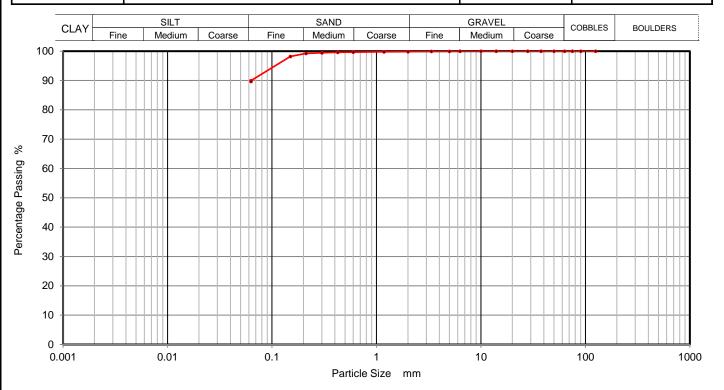
Sample Proportions	% dry mass
Cobbles	0
Gravel	54
Sand	45
Silt and Clay	1

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	20/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Contract Number	35579
GOIL		Borehole/Pit No.	M06
Site Name	Foynes Port	Sample No.	
Soil Description	Brown slightly fine to medium gravelly fine to coarse sandy	Depth Top	0.00
	SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 1 assing	mm	70 1 assiriy
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	99		
6.3	99		
5	99		
3.35	99		
2	98		
1.18	98		
0.6	97		
0.425	96		
0.3	96		
0.212	95		
0.15	92		
0.063	82		


Sample Proportions	% dry mass
Cobbles	0
Gravel	2
Sand	16
Silt and Clay	82

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	20/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M06
Site Name	Foynes Port	Sample No.	
Soil Description	D () LOUT(OLAY)	Depth Top	2.00
	Brown fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	100		
0.3	99		
0.212	99		
0.15	98		
0.063	90		

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	0	
Sand	10	
Silt and Clay	90	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	20/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M06
Site Name	Foynes Port	Sample No.	
Soil Description	D () LOUT(OLAY)	Depth Top	5.00
	Brown fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	99		
0.212	98		
0.15	94		
0.063	68		

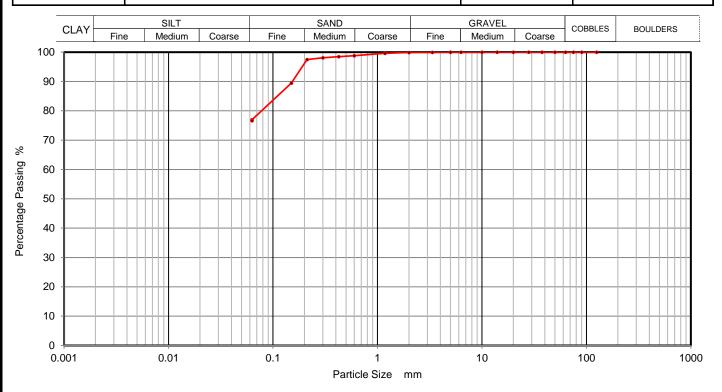
Sample Proportions	% dry mass	
Cobbles	0	
Gravel	0	
Sand	32	
Silt and Clay	68	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	20/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M06
Site Name	Foynes Port	Sample No.	
Soil Description	Brown fine to coarse sandy SILT/CLAY	Depth Top	6.50
	BIOWITHINE to coarse sainty SILT/CLAT	Depth Base	
		Sample Type	В

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0200		
90	100	0.0060		
75	100	0.0019		
63	100			
50	100			
37.5	100			
28	100			
20	100			
14	100			
10	100			
6.3	100			
5	100			
3.35	100			
2	100			
1.18	99			
0.6	99			
0.425	99			
0.3	99			
0.212	99			
0.15	89			
0.063	53			


Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	47
Silt and Clay	53

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	20/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M06
Site Name	Foynes Port	Sample No.	
Soil Description	Brown fine to coarse sandy SILT/CLAY	Depth Top	8.00
		Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	% Fassing	mm	/0 Fassing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	98		
0.3	98		
0.212	97		
0.15	89		
0.063	77		

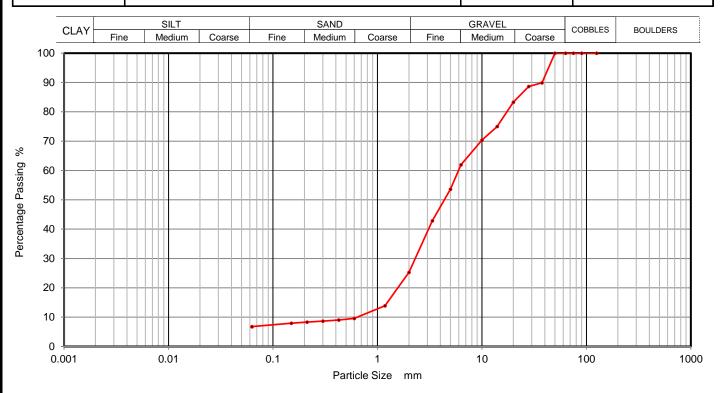
Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	23
Silt and Clay	77

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	20/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M06
Site Name	Foynes Port	Sample No.	
Soil Description	Brown slightly fine to coarse sandy SILT/CLAY	Depth Top	11.00
	Blown slightly line to coarse sailty SiLT/CLAT	Depth Base	
		Sample Type	В

Siev	ving	Sedime	entation
Particle Size	9/ Dessing	Particle Size	9/ Dessing
mm	% Passing	mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	99		
0.212	99		
0.15	96		
0.063	96		

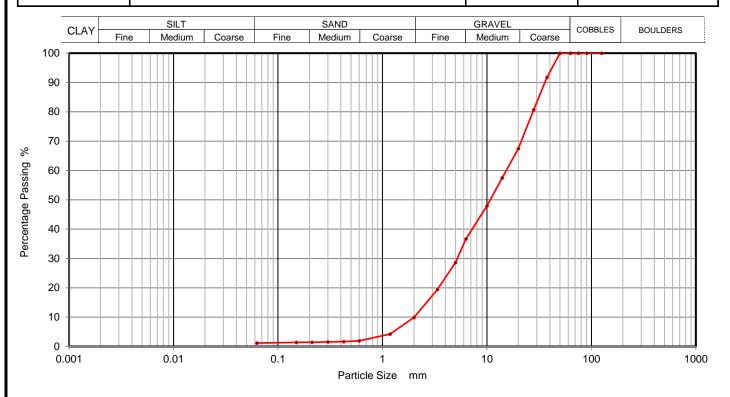

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	0	
Sand	4	
Silt and Clay	96	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	20/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M06
Site Name	Foynes Port	Sample No.	
Soil Description	Brown slightly silty fine to coarse sandy fine to coarse GRAVEL	Depth Top	14.00
	Blown slightly slity life to coarse sailty life to coarse GRAVEL	Depth Base	
		Sample Type	В

Siev	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	90		
28	89		
20	83		
14	75		
10	70		
6.3	62		
5	54		
3.35	43		
2	25		
1.18	14		
0.6	10		
0.425	9		
0.3	9		
0.212	8		
0.15	8		
0.063	7		

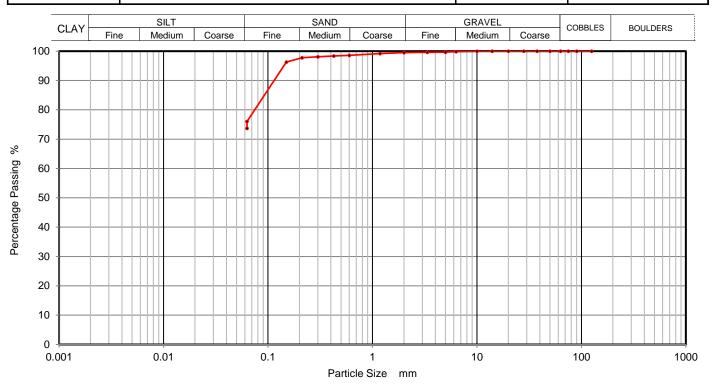

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	75	
Sand	18	
Silt and Clay	7	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	20/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION		35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M06
Site Name	Foynes Port	Sample No.	
Soil Description	Brown slightly silty slightly fine to coarse sandy fine to coarse	Depth Top	15.50
	GRAVEL	Depth Base	
		Sample Type	В

Siev	ving	Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 Fassing	mm	/0 F assing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	92		
28	81		
20	67		
14	57		
10	48		
6.3	37		
5	29		
3.35	19		
2	10		
1.18	4		
0.6	2		
0.425	2		
0.3	2		
0.212	1		
0.15	1		
0.063	1		

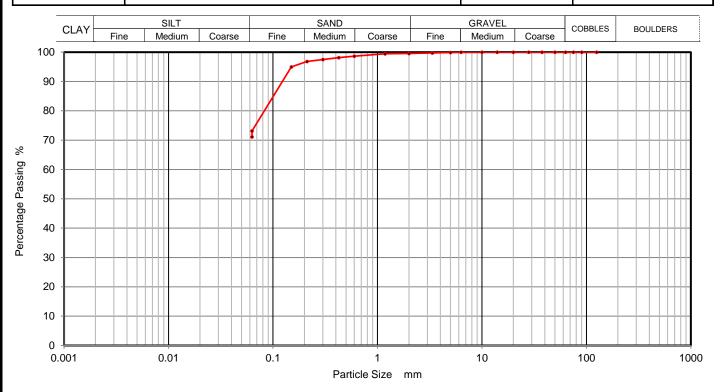

Sample Proportions	% dry mass
Cobbles	0
Gravel	90
Sand	9
Silt and Clay	1

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	20/07/2017	Ben Sharp	

PARTICLE SIZE DIS	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M07
Site Name	Foynes Port	Sample No.	
Soil Description	Brown slightly fine gravelly fine to coarse sandy SILT/CLAY	Depth Top	0.50
		Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	% Passing	mm	/0 F assing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	99		
1.18	99		
0.6	99		
0.425	98		
0.3	98		
0.212	98		
0.15	96		
0.063	76		

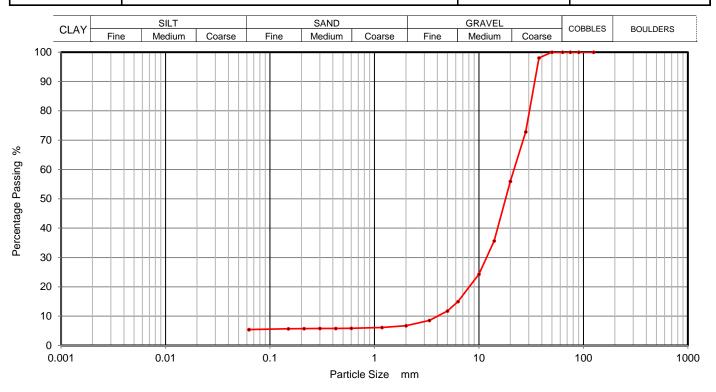

Sample Proportions % dry mass	
Cobbles	0
Gravel	1
Sand	23
Silt and Clay	76

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	20/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990	Contract Number	35579
GOIL		Borehole/Pit No.	M07
Site Name	Foynes Port	Sample No.	
Soil Description	Brown fine to coarse sandy SILT/CLAY	Depth Top	1.00
		Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	9/ Dessing	Particle Size	% Passing
mm	% Passing	mm	% Fassing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	99		
0.6	99		
0.425	98		
0.3	97		
0.212	97		
0.15	95		
0.063	73		

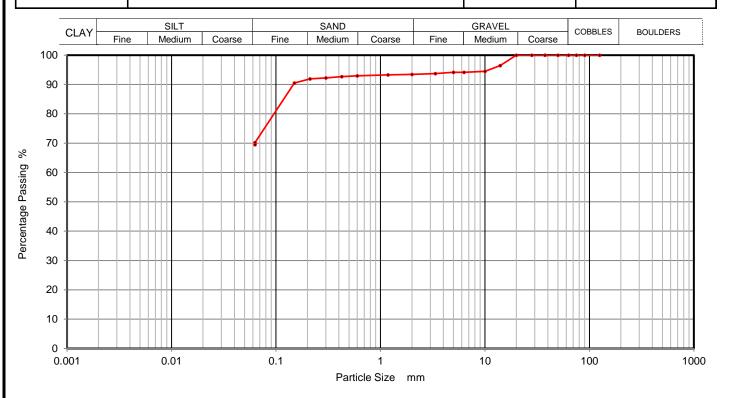

Sample Proportions % dry mass	
Cobbles	0
Gravel	0
Sand	27
Silt and Clay	73

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	20/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990 Wet Sieve, Clause 9.2		35579
GOIL			M07
Site Name	Foynes Port	Sample No.	
Soil Description	Brown slightly fine to coarse sandy slightly silty fine to coarse	Depth Top	5.20
	GRAVEL	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	98		
28	73		
20	56		
14	36		
10	24		
6.3	15		
5	12		
3.35	9		
2	7		
1.18	6		
0.6	6		
0.425	6		
0.3	6		
0.212	6		
0.15	6		
0.063	5		

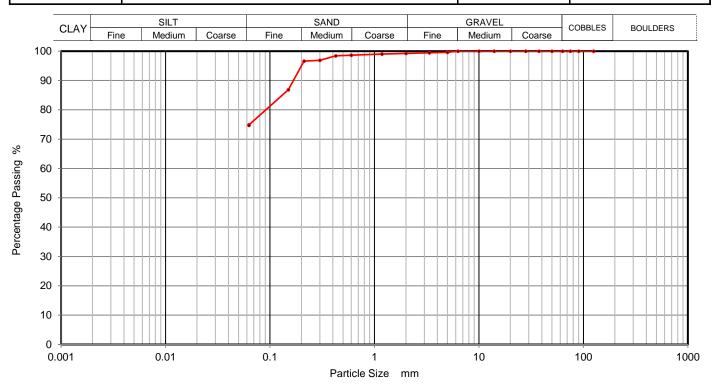

Sample Proportions	% dry mass
Cobbles	0
Gravel	93
Sand	2
Silt and Clay	5

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	20/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION		35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M07
Site Name	Foynes Port	Sample No.	
Soil Description	Brown slightly fine to medium gravelly fine to coarse sandy	Depth Top	8.00
	SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	9/ Dessing	Particle Size	% Passing
mm	% Passing	mm	% Fassing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	96		
10	94		
6.3	94		
5	94		
3.35	94		
2	93		
1.18	93		
0.6	93		
0.425	93		
0.3	92		
0.212	92		
0.15	90		
0.063	70		

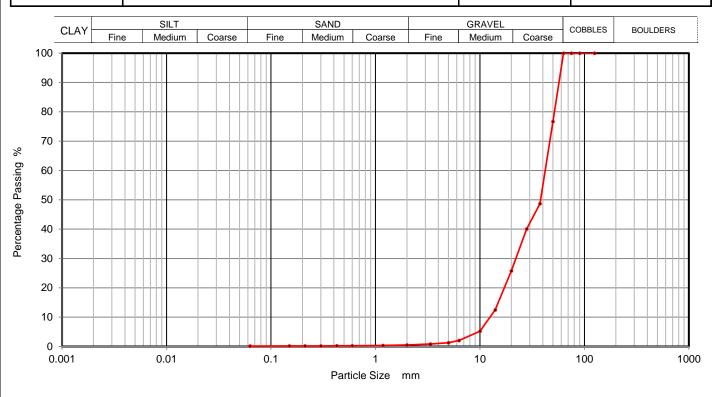

Sample Proportions	% dry mass
Cobbles	0
Gravel	7
Sand	23
Silt and Clay	70

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	07/08/2017	Wayne Honey	W. Honey
RO/MH	Approved	08/08/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
BS 1377 Part 2:1990 Wet Sieve, Clause 9.2		Borehole/Pit No.	M07
Site Name	Foynes Port	Sample No.	
Soil Description	Brown slightly fine gravelly fine to coarse sandy SILT/CLAY	Depth Top	8.50
	Blown slightly line gravelly line to coarse sailuy SiLT/CLAT	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
	400		
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	99		
2	99		
1.18	99		
0.6	99		
0.425	98		
0.3	97		
0.212	97		
0.15	87		
0.063	75		

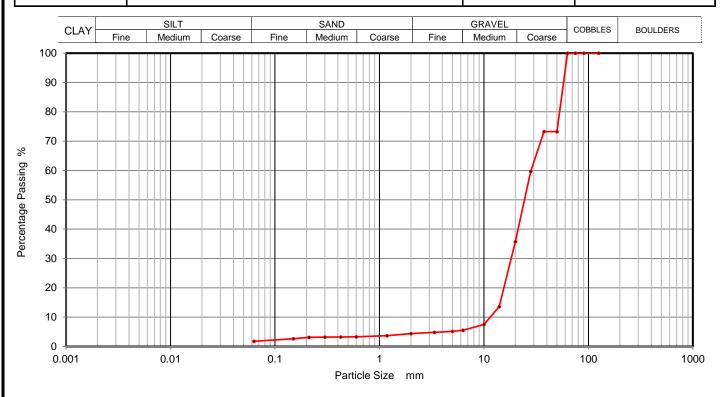

Sample Proportions	% dry mass
Cobbles	0
Gravel	1
Sand	24
Silt and Clay	75

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	20/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M07
Site Name	Foynes Port	Sample No.	
Soil Description	Drawn aliabeth fire to come and fine to come CDAVE	Depth Top	17.00
	Brown slightly fine to coarse sandy fine to coarse GRAVEL	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 1 assing	mm	70 1 assing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	77		
37.5	49		
28	40		
20	26		
14	12		
10	5		
6.3	2		
5	1		
3.35	1		
2	1		
1.18	0		
0.6	0		
0.425	0		
0.3	0		
0.212	0		
0.15	0		
0.063	0		

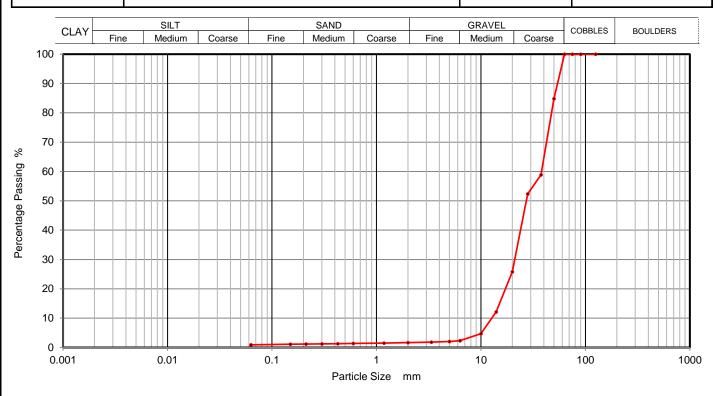

Sample Proportions	% dry mass
Cobbles	0
Gravel	99
Sand	1
Silt and Clay	0

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	20/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M07
Site Name	Foynes Port	Sample No.	
Soil Description	Brown slightly fine to coarse sandy slightly silty fine to coarse	Depth Top	20.00
	GRAVEL	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 1 dooning	mm	70 1 dooning
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	73		
37.5	73		
28	60		
20	36		
14	14		
10	8		
6.3	6		
5	5		
3.35	5		
2	4		
1.18	4		
0.6	3		
0.425	3		
0.3	3		
0.212	3		
0.15	3		
0.063	2		

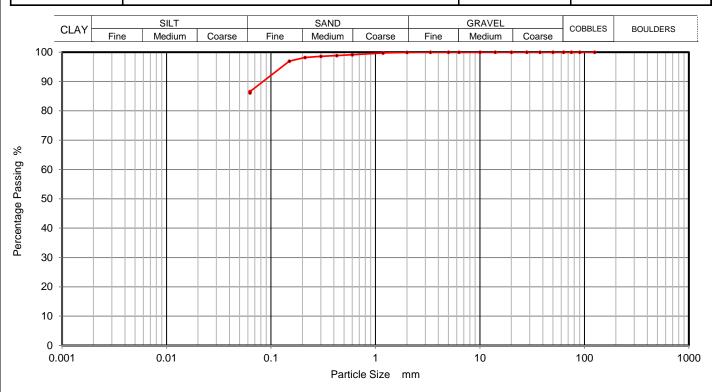

Sample Proportions	% dry mass
Cobbles	0
Gravel	96
Sand	2
Silt and Clay	2
·	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	20/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990	Contract Number	35579
GOIL		Borehole/Pit No.	M07
Site Name	Foynes Port	Sample No.	
Soil Description	Brown/grey slightly fine to coarse sandy slightly silty fine to coarse	Depth Top	21.50
	GRAVEL	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	85		
37.5	59		
28	52		
20	26		
14	12		
10	5		
6.3	2		
5	2		
3.35	2		
2	2		
1.18	2		
0.6	1		
0.425	1		
0.3	1		
0.212	1		
0.15	1		
0.063	1		


Sample Proportions	% dry mass
Cobbles	0
Gravel	98
Sand	1
Silt and Clay	1

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	20/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M08
Site Name	Foynes Port	Sample No.	
Soil Description	Down (for to come and to Oll T/OLAY)	Depth Top	1.00
	Brown fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedimentation		
Particle Size	% Passing	Particle Size	% Passing	
mm		mm	% Fassing	
125	100	0.0200		
90	100	0.0060		
75	100	0.0019		
63	100			
50	100			
37.5	100			
28	100			
20	100			
14	100			
10	100			
6.3	100			
5	100			
3.35	100			
2	100			
1.18	100			
0.6	99			
0.425	99			
0.3	99			
0.212	98			
0.15	97			
0.063	87			

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	13
Silt and Clay	87

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	20/07/2017	Ben Sharp	

PARTICLE SIZE DISTRIBUTION		Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M08
Site Name	Foynes Port	Sample No.	
Soil Description		Depth Top	1.50
	Brown slightly fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 1 assing	mm	70 1 assing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	100		
0.3	99		
0.212	99		
0.15	99		
0.063	91		

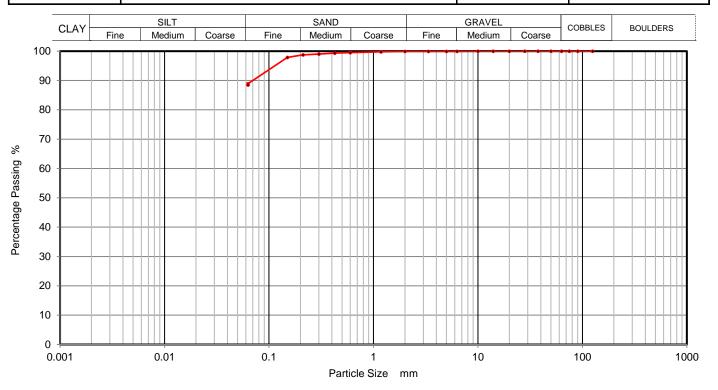

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	9
Silt and Clay	91

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	20/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M08
Site Name	Foynes Port	Sample No.	
Soil Description		Depth Top	2.50
	Brown slightly fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	9/ Dessing	Particle Size	% Passing
mm	% Passing	mm	% Fassing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	98		
0.425	98		
0.3	97		
0.212	96		
0.15	94		
0.063	75		

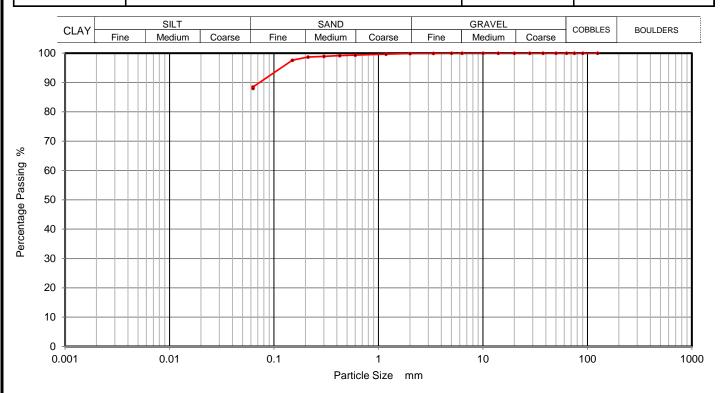

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	0	
Sand	25	
Silt and Clay	75	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	20/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2		M08
Site Name	Foynes Port	Sample No.	
Soil Description		Depth Top	4.50
	Brown slightly fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	% Passing	mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	99		
0.212	99		
0.15	98		
0.063	89		

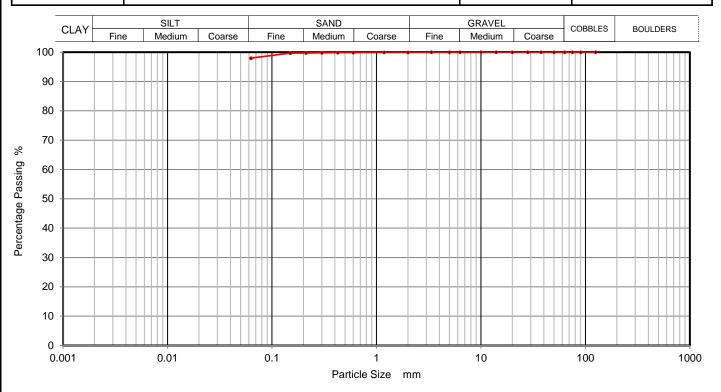

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	11
Silt and Clay	89

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	20/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION		35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M08
Site Name	Foynes Port	Sample No.	
Soil Description	Drawn fine to see and CH T/OLAY	Depth Top	7.50
	Brown fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 1 assing	mm	70 1 assing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	99		
0.212	99		
0.15	98		
0.063	88		

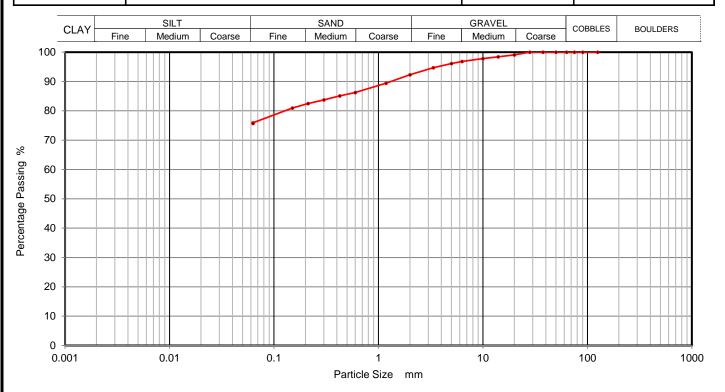

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	12
Silt and Clay	88

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	20/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990 Wet Sieve, Clause 9.2		35579
GOIL			M08
Site Name	Foynes Port	Sample No.	
Soil Description	Daniel State Control of the Control	Depth Top	10.50
	Brown slightly fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	100		
0.3	100		
0.212	100		
0.15	100		
0.063	98		

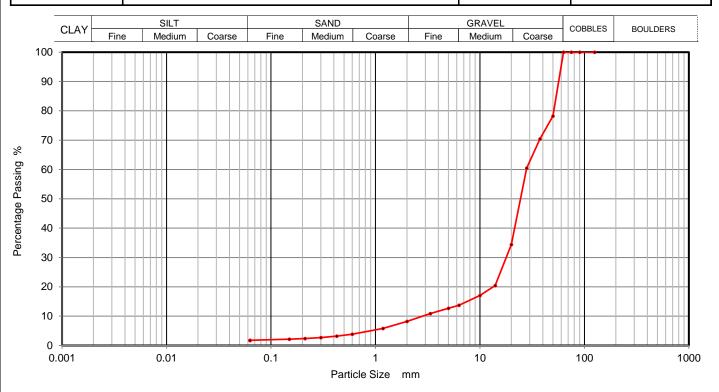

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	2
Silt and Clay	98

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	20/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION		35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M08
Site Name	Foynes Port	Sample No.	
Soil Description	Brown slightly fine to coarse gravelly fine to coarse sandy SILT/CLAY	Depth Top	13.50
	blown slightly line to coarse gravelly line to coarse sailty SILT/CLAT	Depth Base	
		Sample Type	В

Siev	ving	Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	99		
14	98		
10	98		
6.3	97		
5	96		
3.35	95		
2	92		
1.18	89		
0.6	86		
0.425	85		
0.3	84		·
0.212	82		
0.15	81		
0.063	76		

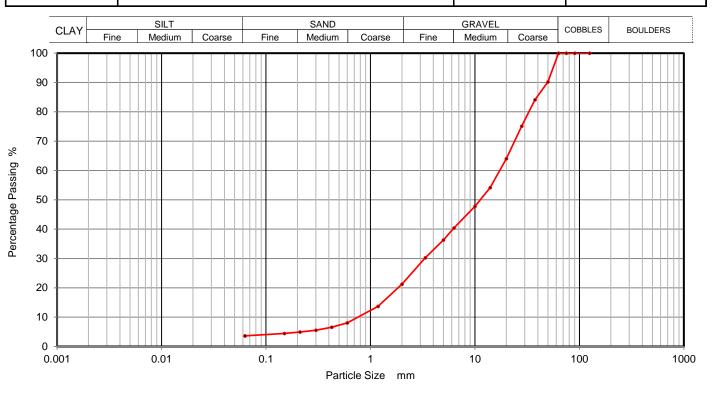

Sample Proportions	% dry mass
Cobbles	0
Gravel	8
Sand	16
Silt and Clay	76

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	20/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M08
Site Name	Foynes Port	Sample No.	
Soil Description	Brown slightly silty slightly fine to coarse sandy fine to coarse	Depth Top	13.80
	GRAVEL	Depth Base	
		Sample Type	В

Siev	ving	Sedimentation	
Particle Size	% Passing	Particle Size	% Passing
mm	70 1 assing	mm	70 1 assing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	78		
37.5	70		
28	60		
20	34		
14	20		
10	17		
6.3	14		
5	13		
3.35	11		
2	8		
1.18	6		
0.6	4		
0.425	3		
0.3	3		
0.212	2		
0.15	2		
0.063	2		

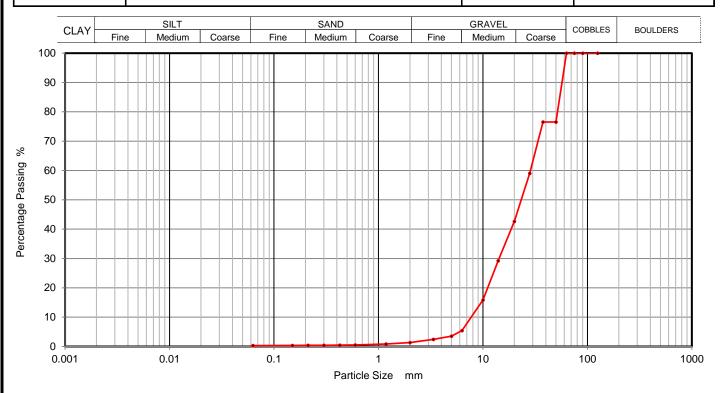

Sample Proportions	% dry mass
Cobbles	0
Gravel	92
Sand	6
Silt and Clay	2

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION		35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M08
Site Name	Foynes Port	Sample No.	
Soil Description	Brown slightly silty fine to coarse sandy fine to coarse GRAVEL	Depth Top	15.00
	Blown slightly slity line to coarse sarray line to coarse GRAVEL	Depth Base	
		Sample Type	В

Siev	Sieving		entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	90		
37.5	84		
28	75		
20	64		
14	54		
10	48		
6.3	40		
5	36		
3.35	30		
2	21		
1.18	14		
0.6	8		
0.425	7		
0.3	6		
0.212	5		
0.15	4		
0.063	4		


Sample Proportions	% dry mass
Cobbles	0
Gravel	79
Sand	17
Silt and Clay	4

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M08
Site Name	Foynes Port	Sample No.	
Soil Description	Decree all old the first transport of the transport ODAVID	Depth Top	21.40
	Brown slightly fine to coarse sandy fine to coarse GRAVEL	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 1 dooming	mm	70 1 G00m1g
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	77		
37.5	77		
28	59		
20	43		
14	29		
10	16		
6.3	5		
5	4		
3.35	2		
2	1		
1.18	1		
0.6	1		
0.425	0		
0.3	0		
0.212	0		
0.15	0		
0.063	0		

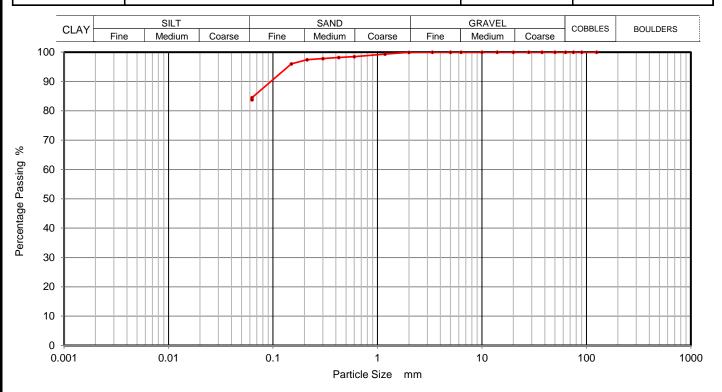

Sample Proportions	% dry mass
Cobbles	0
Gravel	99
Sand	1
Silt and Clay	0

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M08
Site Name	Foynes Port	Sample No.	
Soil Description	Decree of about a file fine to accome CDAVEL	Depth Top	24.40
	Brown slightly silty fine to coarse sandy fine to coarse GRAVEL	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	% Fassing	mm	/0 Fassing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	80		
20	72		
14	47		
10	38		
6.3	29		
5	25		
3.35	20		
2	15		
1.18	10		
0.6	6		
0.425	5		
0.3	4		
0.212	3		
0.15	3		
0.063	2		

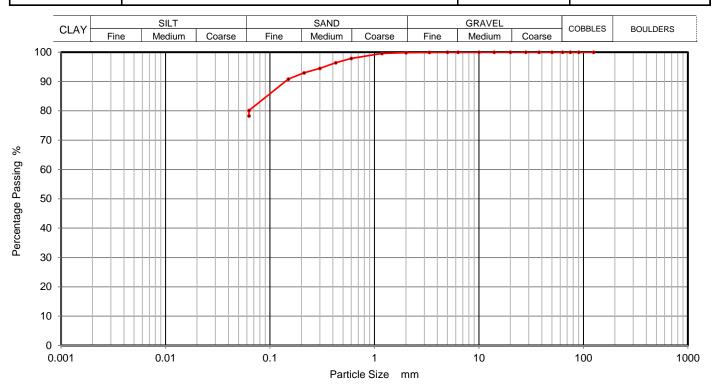

Sample Proportions	% dry mass
Cobbles	0
Gravel	85
Sand	13
Silt and Clay	2

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990	Contract Number	35579
GOIL		Borehole/Pit No.	M10
Site Name	Foynes Port	Sample No.	
Soil Description	Brown fine to coarse sandy SILT/CLAY	Depth Top	0.50
		Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	9/ Dessing
mm		mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	99		
0.6	98		
0.425	98		
0.3	98		
0.212	97		
0.15	96		
0.063	84		

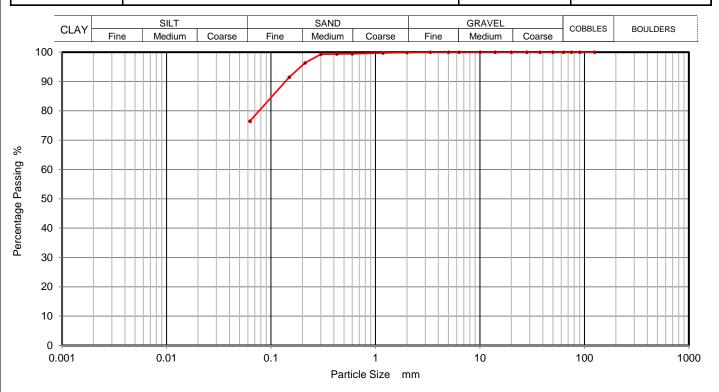

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	16
Silt and Clay	84

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990	Contract Number	35579
GOIL		Borehole/Pit No.	M10
Site Name	Foynes Port	Sample No.	
Soil Description	Brown fine to coarse sandy SILT/CLAY	Depth Top	3.00
		Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	% Passing	mm	/0 F assiriy
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	98		
0.425	96		
0.3	94		
0.212	93		
0.15	91		
0.063	80		


Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	20
Silt and Clay	80

Grading Analysis		
	Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION		35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M10
Site Name	Foynes Port	Sample No.	
Soil Description	Brown fine to coarse sandy SILT/CLAY	Depth Top	8.00
	Blown line to coalse sallby SILT/CLAT	Depth Base	
		Sample Type	В

Siev	ving	Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 1 assing	mm	70 1 assing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	99		
0.212	96		
0.15	91		
0.063	77		

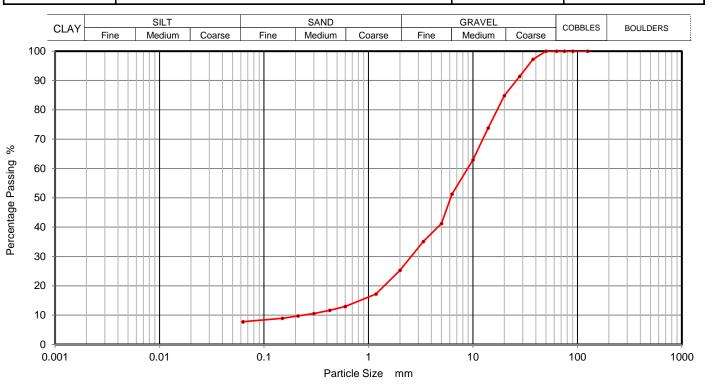
Sample Proportions	% dry mass	
Cobbles	0	
Gravel	0	
Sand	23	
Silt and Clay	77	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M10	
Site Name	Foynes Port	Sample No.	
Soil Description	D	Depth Top	11.00
	Brown fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Siev	ving	Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 Fassing	mm	/0 Fassing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	99		
0.6	97		
0.425	96		
0.3	94		
0.212	93		
0.15	92		
0.063	87		

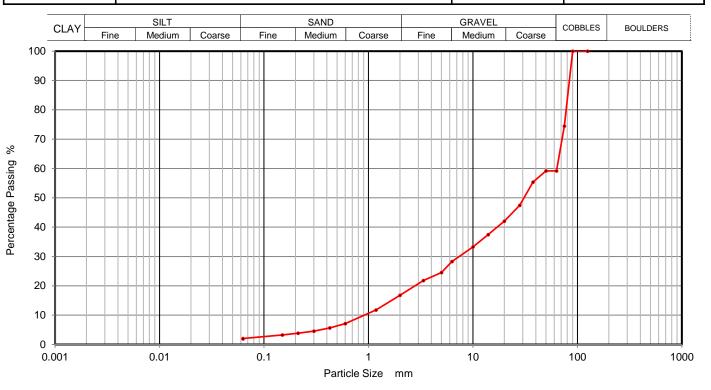

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	0	
Sand	13	
Silt and Clay	87	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

BS 1377 Part 2:1990	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M10
Site Name	Foynes Port	Sample No.	
Soil Description	Brown slightly silty slightly clayey fine to coarse sandy fine to coarse	Depth Top	14.00
	GRAVEL	Depth Base	
		Sample Type	В

Siev	ving	Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 1 assing	mm	70 1 assing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	97		
28	91		
20	85		
14	74		
10	63		
6.3	51		
5	41		
3.35	35		
2	25		
1.18	17		
0.6	13		
0.425	12		
0.3	11		
0.212	10		
0.15	9		
0.063	8		

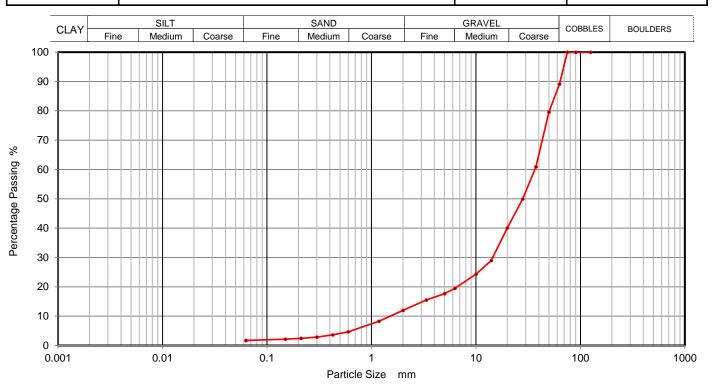

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	75	
Sand	17	
Silt and Clay	8	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M10
Site Name	Foynes Port	Sample No.	
Soil Description	Brown slightly silty slightly clayey fine to coarse sandy fine to coarse	Depth Top	17.00
	GRAVEL with many cobbles	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	74	0.0019	
63	59		
50	59		
37.5	55		
28	47		
20	42		
14	37		
10	33		
6.3	28		
5	25		
3.35	22		
2	17		
1.18	12		
0.6	7		
0.425	6		
0.3	5		
0.212	4		
0.15	3		
0.063	2		

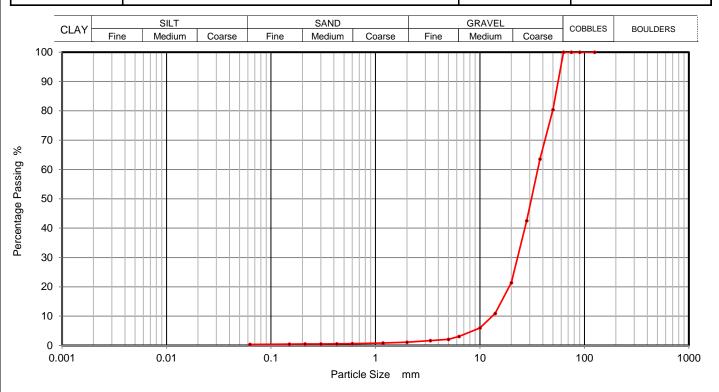

Sample Proportions	% dry mass	
Cobbles	41	
Gravel	42	
Sand	15	
Silt and Clay	2	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M10
Site Name	Foynes Port	Sample No.	
Soil Description	Brown slightly silty slightly clayey fine to coarse sandy fine to coarse	Depth Top	20.00
	GRAVEL with some cobbles	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	89		
50	80		
37.5	61		
28	50		
20	40		
14	29		
10	24		
6.3	20		
5	18		
3.35	16		
2	12		
1.18	8		
0.6	5		
0.425	4		
0.3	3		
0.212	2		
0.15	2		
0.063	2		

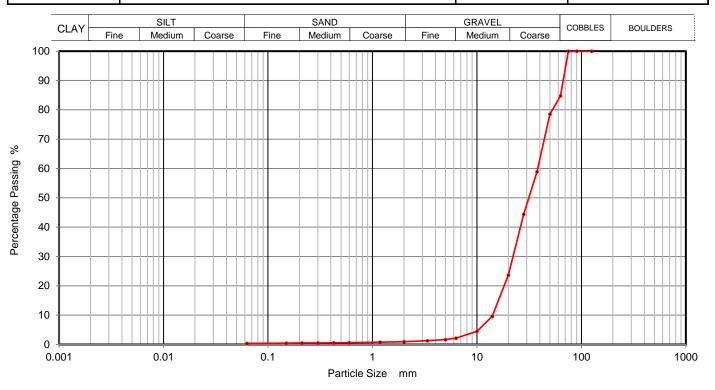

Sample Proportions	% dry mass
Cobbles	11
Gravel	77
Sand	10
Silt and Clay	2

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M10
Site Name	Foynes Port	Sample No.	
Soil Description	Proum alightly fine to general condy fine to general CRAVEL	Depth Top	23.00
	Brown slightly fine to coarse sandy fine to coarse GRAVEL	Depth Base	
		Sample Type	В

Siev	ving	Sedimentation	
Particle Size	% Passing	Particle Size	9/ Dessing
mm	% Fassing	mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	80		
37.5	64		
28	43		
20	21		
14	11		
10	6		
6.3	3		
5	2		
3.35	2		
2	1		
1.18	1		
0.6	1		
0.425	1		
0.3	1		
0.212	0		
0.15	0		
0.063	0		

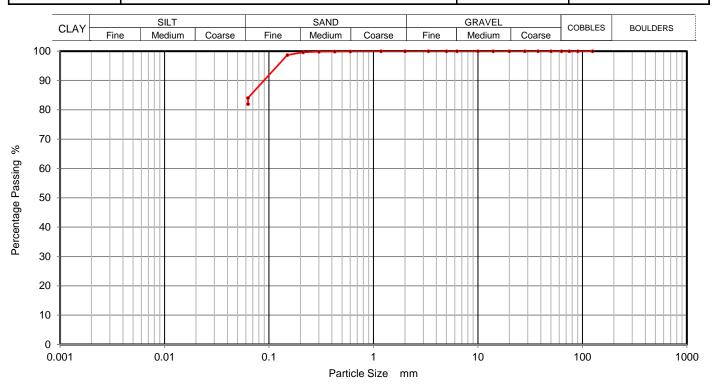

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	99	
Sand	1	
Silt and Clay	0	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990	Contract Number	35579
GOIL		Borehole/Pit No.	M10
Site Name	Foynes Port	Sample No.	
Soil Description	Brown slightly fine to coarse sandy fine to coarse GRAVEL with some	Depth Top	24.50
	cobbles	Depth Base	
		Sample Type	В

Siev	ving	Sedimentation	
Particle Size	% Passing	Particle Size	% Passing
mm	70 T assirig	mm	70 1 d33i11g
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	85		
50	79		
37.5	59		
28	44		
20	24		
14	10		
10	5		
6.3	2		
5	2		
3.35	1		
2	1		
1.18	1		
0.6	1		
0.425	1		
0.3	1		
0.212	0		
0.15	0		
0.063	0		

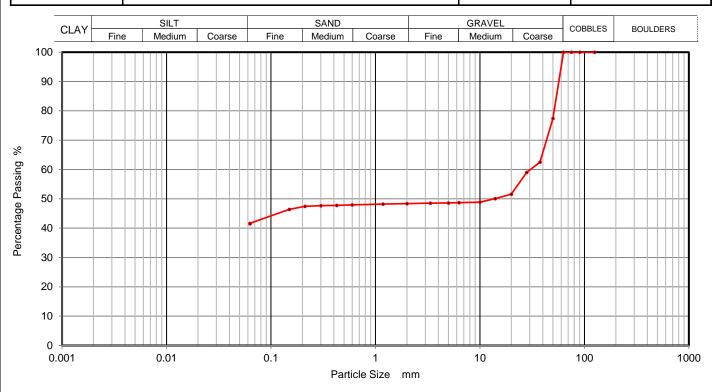

Sample Proportions	% dry mass
Cobbles	15
Gravel	84
Sand	1
Silt and Clay	0

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

PARTICLE SIZE DISTRIBUTION		Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2		M11
Site Name	Foynes Port	Sample No.	
Soil Description	Brown fine to medium sandy SILT/CLAY	Depth Top	1.00
	Blown line to medium Sandy Sil 1/CLAT	Depth Base	
		Sample Type	В

Siev	ving	Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 1 assing	mm	70 1 assing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	100		
0.3	100		
0.212	100		
0.15	99		
0.063	84		


Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	16
Silt and Clay	84

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M11
Site Name	Foynes Port	Sample No.	
Soil Description	Brown slightly fine to coarse sandy silty clayey fine to coarse	Depth Top	3.75
	GRAVEL	Depth Base	
		Sample Type	В

Siev	ving	Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	% Fassing	mm	% Fassing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	77		
37.5	63		
28	59		
20	52		
14	50		
10	49		
6.3	49		
5	49		
3.35	49		
2	48		
1.18	48		
0.6	48		
0.425	48		
0.3	48		
0.212	47		
0.15	46		
0.063	42		

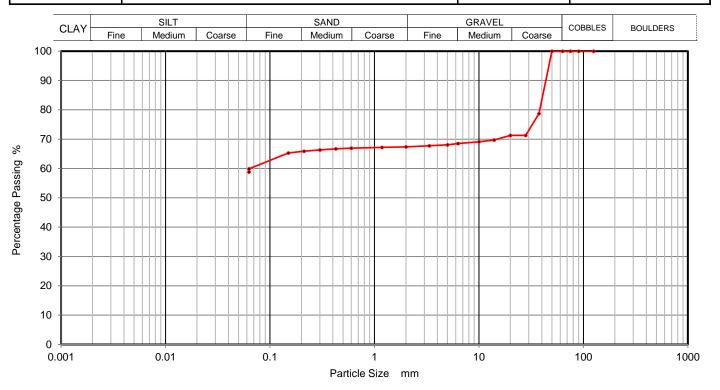
Sample Proportions	% dry mass
Cobbles	0
Gravel	52
Sand	6
Silt and Clay	42

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M11
Site Name	Foynes Port	Sample No.	
Soil Description	Brown slightly fine to medium gravelly fine to coarse sandy	Depth Top	4.50
	SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	99		
5	99		
3.35	98		
2	98		
1.18	97		
0.6	95		
0.425	95		
0.3	94		
0.212	93		
0.15	89		
0.063	70		

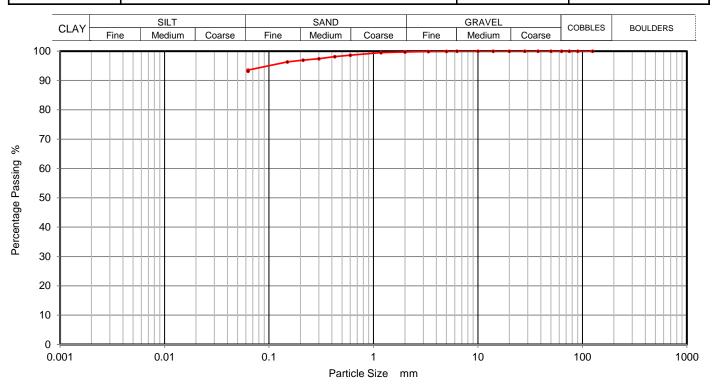

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	2	
Sand	28	
Silt and Clay	70	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990	Contract Number	35579	
	Borehole/Pit No.	M11	
Site Name	Foynes Port	Sample No.	
Soil Description	Down all the first to a second of the second of the first to a second of the first to a second of the second of the first to a second of the first to a second of the second of the first to a second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second	Depth Top	5.50
	Brown slightly fine to coarse sandy fine to coarse gravelly SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 T assirig	mm	70 1 assing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	79		
28	71		
20	71		
14	70		
10	69		
6.3	68		
5	68		
3.35	68		
2	67		
1.18	67		
0.6	67		
0.425	67		
0.3	66		
0.212	66		
0.15	65		
0.063	60		

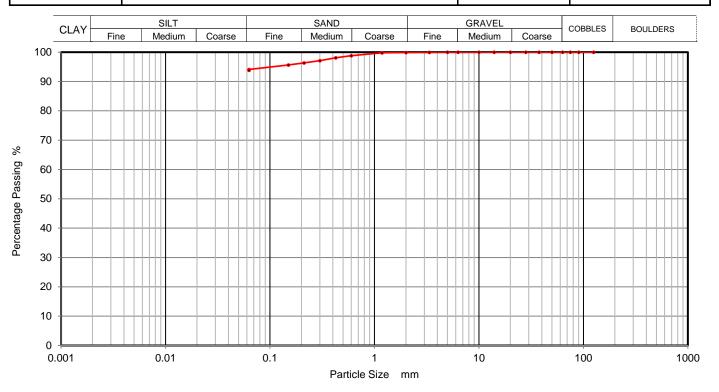

Sample Proportions	% dry mass
Cobbles	0
Gravel	33
Sand	7
Silt and Clay	60

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Contract Number	35579
GOIL		Borehole/Pit No.	M11
Site Name	Foynes Port	Sample No.	
Soil Description		Depth Top	8.50
	Brown slightly fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	9/ Dessing	Particle Size	% Passing
mm	% Passing	mm	% Fassing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	98		
0.3	97		
0.212	97		
0.15	96		
0.063	94		


Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	6
Silt and Clay	94

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M11
Site Name	Foynes Port	Sample No.	
Soil Description		Depth Top	10.00
	Brown slightly fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 Fassing	mm	/0 Fassing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	98		
0.3	97		
0.212	96		
0.15	96		
0.063	94		

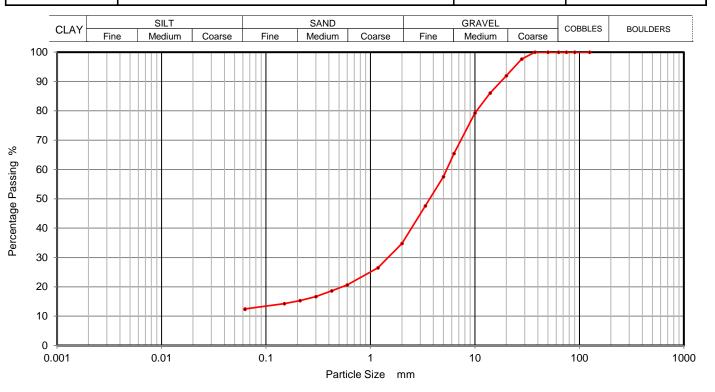
Sample Proportions	% dry mass	
Cobbles	0	
Gravel	0	
Sand	6	
Silt and Clay	94	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M11
Site Name	Foynes Port	Sample No.	
Soil Description	Brown slightly fine to medium gravelly fine to coarse sandy	Depth Top	12.50
	SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	98		
10	98		
6.3	98		
5	98		
3.35	98		
2	98		
1.18	98		
0.6	97		
0.425	97		
0.3	96		
0.212	96		
0.15	95		
0.063	80		

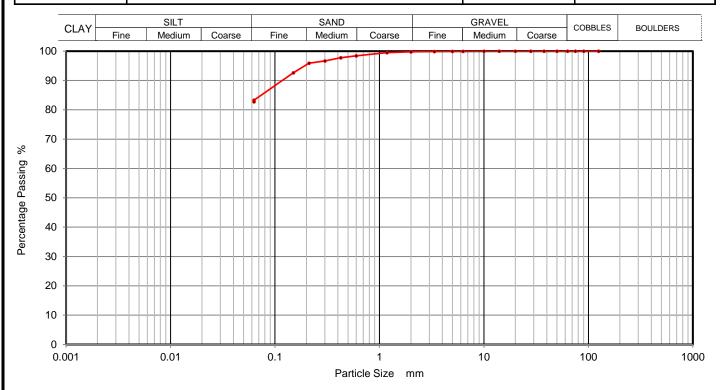

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	2	
Sand	18	
Silt and Clay	80	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

PARTICLE SIZE DISTRIBUTION		Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M11
Site Name	Foynes Port	Sample No.	
Soil Description	D 11. (1	Depth Top	13.50
	Brown silty fine to coarse sandy fine to coarse GRAVEL	Depth Base	
		Sample Type	В

Siev	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	98		
20	92		
14	86		
10	79		
6.3	65		
5	58		
3.35	48		
2	35		
1.18	26		
0.6	21		
0.425	19		
0.3	17		·
0.212	15		
0.15	14		
0.063	12		


Sample Proportions	% dry mass
Cobbles	0
Gravel	65
Sand	23
Silt and Clay	12

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION		35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M12
Site Name	Foynes Port	Sample No.	
Soil Description	Decree (i.e. to consequence of QUIT(QUA))	Depth Top	0.50
	Brown fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	98		
0.425	98		
0.3	97		
0.212	96		
0.15	93		
0.063	83		


Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	17
Silt and Clay	83

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION		35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M12
Site Name	Foynes Port	Sample No.	
Soil Description	Down for the market and to Oli T/OLAY	Depth Top	2.50
	Brown fine to medium sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		_
0.425	100		
0.3	100		
0.212	100		
0.15	99		
0.063	89		

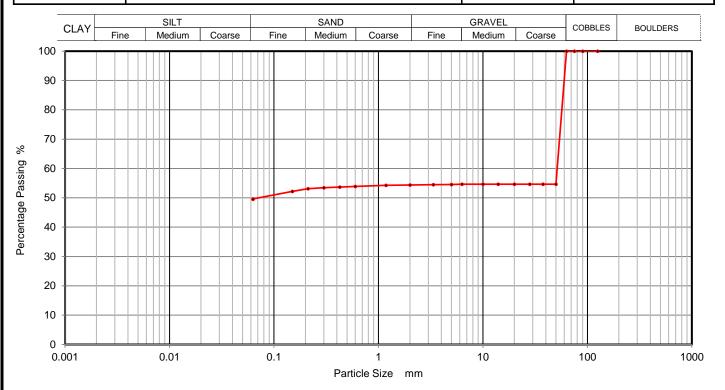
Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	11
Silt and Clay	89

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M12
Site Name	Foynes Port	Sample No.	
Soil Description	Brown fine to coarse sandy SILT/CLAY	Depth Top	6.50
	Blown line to coalse sallby SILT/CLAT	Depth Base	
		Sample Type	В

Siev	ving	Sedimentation	
Particle Size	9/ Dessing	Particle Size	% Passing
mm	% Passing	mm	% Fassing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	99		
0.6	98		
0.425	98		
0.3	98		
0.212	98		
0.15	97		
0.063	88		

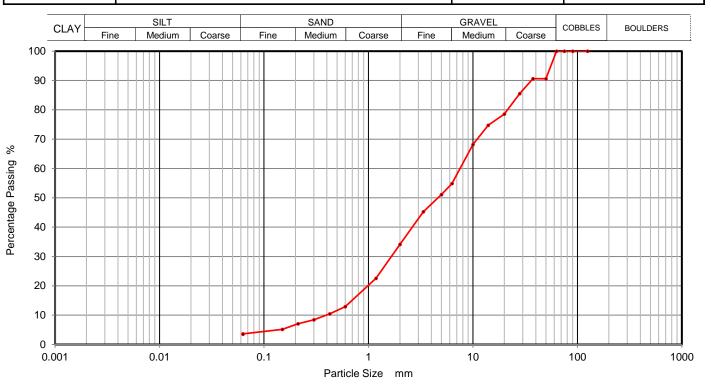

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	0	
Sand	12	
Silt and Clay	88	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION		35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M12
Site Name	Foynes Port	Sample No.	
Soil Description		Depth Top	9.50
	Brown slightly fine to coarse sandy fine to coarse gravelly SILT/CLAY	Depth Base	
		Sample Type	В

Siev	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	55		
37.5	55		
28	55		
20	55		
14	55		
10	55		
6.3	55		
5	55		
3.35	54		
2	54		
1.18	54		
0.6	54		
0.425	54		
0.3	53		
0.212	53		
0.15	52		
0.063	50		

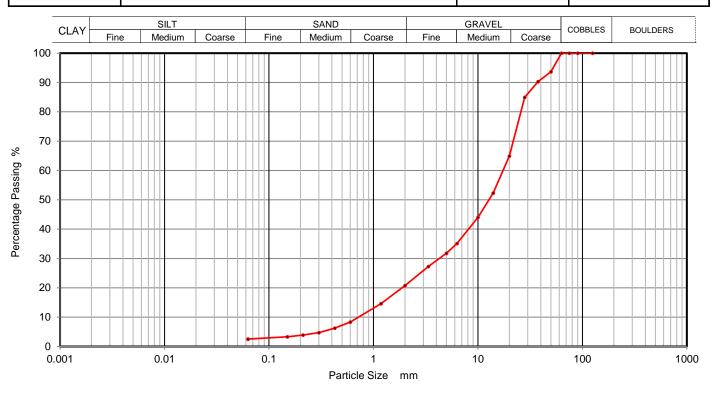

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	46	
Sand	4	
Silt and Clay	50	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M12
Site Name	Foynes Port	Sample No.	
Soil Description	D. II. II. II. II. II. ODAVISI	Depth Top	12.50
	Brown slightly silty fine to coarse sandy fine to coarse GRAVEL	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	91		
37.5	91		
28	86		
20	79		
14	75		
10	68		
6.3	55		
5	51		
3.35	45		
2	34		
1.18	23		
0.6	13		
0.425	10		
0.3	8		
0.212	7		
0.15	5		
0.063	4		

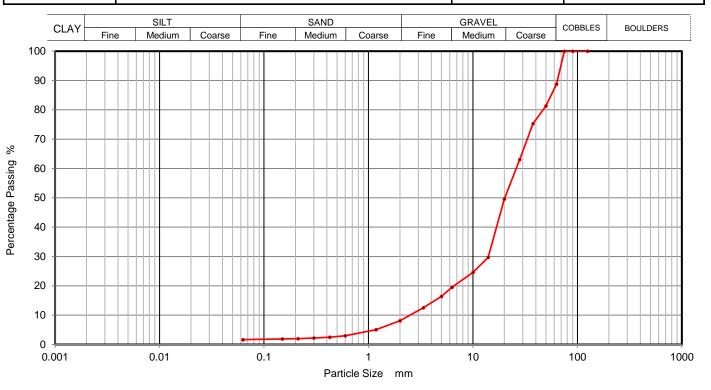

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	66	
Sand	30	
Silt and Clay	4	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M12
Site Name	Foynes Port	Sample No.	
Soil Description	Drawn aliabata cita fina ta como condu fina ta como CDAVE	Depth Top	14.00
	Brown slightly silty fine to coarse sandy fine to coarse GRAVEL	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	94		
37.5	90		
28	85		
20	65		
14	52		
10	44		
6.3	35		
5	32		
3.35	27		
2	21		
1.18	15		
0.6	8		
0.425	6		
0.3	5		
0.212	4		
0.15	3		
0.063	3		


Sample Proportions	% dry mass	
Cobbles	0	
Gravel	79	
Sand	18	
Silt and Clay	3	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION		35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M12
Site Name	Foynes Port	Sample No.	
Soil Description	Grey slightly silty slightly fine to coarse sandy fine to coarse GRAVEL	Depth Top	15.50
	with some cobbles	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 1 assing	mm	70 1 assing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	89		
50	81		
37.5	75		
28	63		
20	50		
14	30		
10	25		
6.3	20		
5	16		
3.35	13		
2	8		
1.18	5		
0.6	3		
0.425	2		
0.3	2		
0.212	2		
0.15	2		
0.063	2		

Sample Proportions	% dry mass
Cobbles	11
Gravel	81
Sand	6
Silt and Clay	2

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990	Contract Number	35579
GOIL		Borehole/Pit No.	M15
Site Name	Foynes Port	Sample No.	
Soil Description		Depth Top	0.50
	Grey fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedimentation		
Particle Size	9/ Dessing	Particle Size	9/ Dessing	
mm	% Passing	mm	% Passing	
125	100	0.0200		
90	100	0.0060		
75	100	0.0019		
63	100			
50	100			
37.5	100			
28	100			
20	100			
14	100			
10	100			
6.3	100			
5	100			
3.35	100			
2	100			
1.18	100			
0.6	99			
0.425	99			
0.3	98			
0.212	98			
0.15	96			
0.063	84			

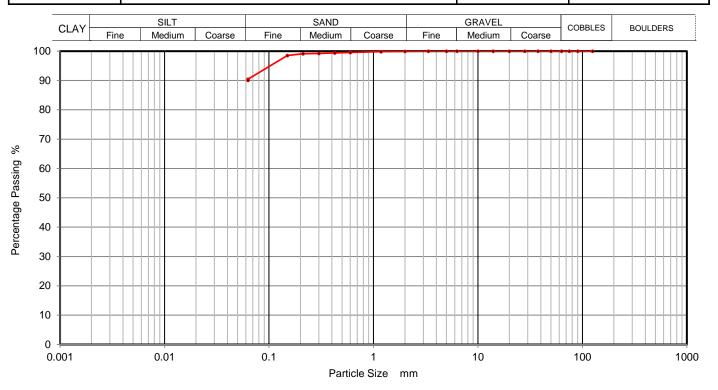
Sample Proportions % dry mass	
Cobbles	0
Gravel	0
Sand	16
Silt and Clay	84

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990	Contract Number	35579
GOIL		Borehole/Pit No.	M15
Site Name	Foynes Port	Sample No.	
Soil Description		Depth Top	1.00
	Grey fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 1 assing	mm	70 1 assing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	98		
0.212	98		
0.15	96		
0.063	82		


Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	18
Silt and Clay	82

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

PARTICLE SIZE DISTRIBUTION		Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M15
Site Name	Foynes Port	Sample No.	
Soil Description	0 ()	Depth Top	3.00
	Grey fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Siev	ving	Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 Fassing	mm	70 Fassing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	99		
0.3	99		
0.212	99		
0.15	99		
0.063	90		

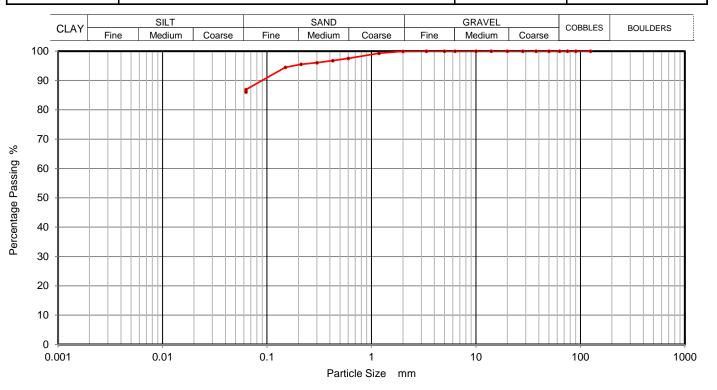
Sample Proportions	% dry mass	
Cobbles	0	
Gravel	0	
Sand	10	
Silt and Clay	90	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

PARTICLE SIZE DISTRIBUTION		Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M15
Site Name	Foynes Port	Sample No.	
Soil Description	D	Depth Top	4.50
	Brown fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Siev	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	98		
0.212	98		
0.15	97		
0.063	83		


Sample Proportions	% dry mass	
Cobbles	0	
Gravel	0	
Sand	17	
Silt and Clay	83	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

PARTICLE SIZE DISTRIBUTION		Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M15
Site Name	Foynes Port	Sample No.	
Soil Description	D (Depth Top	7.00
	Brown fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	9/ Dessing	Particle Size	% Passing
mm	% Passing	mm	% Fassing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	99		
0.6	98		
0.425	97		
0.3	96		
0.212	96		
0.15	94		
0.063	87		


Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	13
Silt and Clay	87

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION		35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M15
Site Name	Foynes Port	Sample No.	
Soil Description	Decree of the first according from the contract of the CH T/OLAY	Depth Top	8.00
	Brown slightly fine gravelly fine to coarse sandy SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 T assiring	mm	70 T d33HIG
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	99		
2	99		
1.18	99		
0.6	98		
0.425	98		
0.3	97		
0.212	96		
0.15	93		
0.063	75		

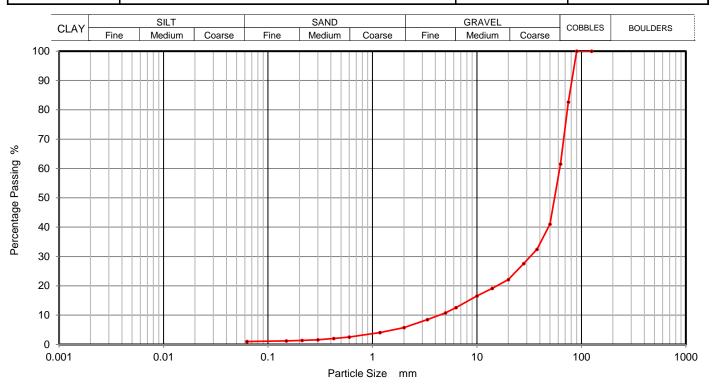

Sample Proportions	% dry mass
Cobbles	0
Gravel	1
Sand	24
Silt and Clay	75

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M15
Site Name	Foynes Port	Sample No.	
Soil Description	Brown slightly fine to medium gravelly fine to coarse sandy	Depth Top	9.50
	SILT/CLAY	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	99		
10	98		
6.3	97		
5	97		
3.35	96		
2	94		
1.18	92		
0.6	89		
0.425	88		
0.3	86		
0.212	85		
0.15	83		
0.063	75		

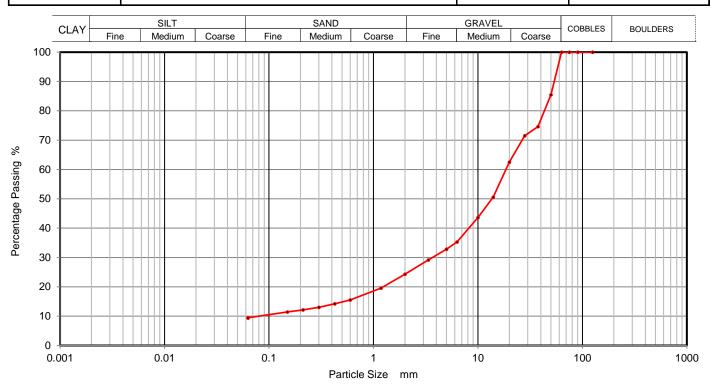

Sample Proportions	% dry mass
Cobbles	0
Gravel	6
Sand	19
Silt and Clay	75

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Contract Number	35579
GOIL		Borehole/Pit No.	M15
Site Name	Foynes Port	Sample No.	
Soil Description	Brown slightly silty slightly fine to coarse sandy fine to coarse	Depth Top	11.00
	GRAVEL with many cobbles	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	83	0.0019	
63	62		
50	41		
37.5	32		
28	28		
20	22		
14	19		
10	17		
6.3	13		
5	11		
3.35	8		
2	6		
1.18	4		
0.6	3		
0.425	2		
0.3	2		
0.212	1		
0.15	1		
0.063	1		

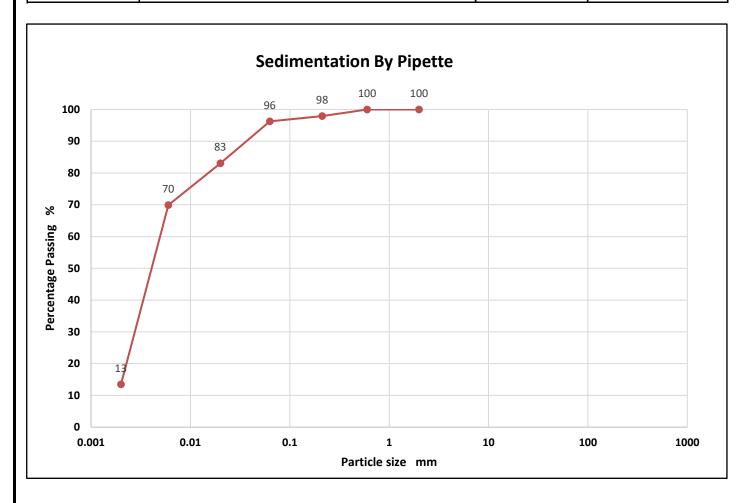

Sample Proportions	% dry mass
Cobbles	38
Gravel	56
Sand	5
Silt and Clay	1

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	20/07/2017	Wayne Honey	W. Honey
RO/MH	Approved	21/07/2017	Ben Sharp	

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M15
Site Name	Foynes Port	Sample No.	
Soil Description	Grey slightly silty slightly clayey fine to coarse sandy fine to coarse	Depth Top	12.50
	GRAVEL	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	85		
37.5	75		
28	72		
20	63		
14	51		
10	44		
6.3	35		
5	33		
3.35	29		
2	24		
1.18	20		
0.6	16		
0.425	14		
0.3	13		
0.212	12		
0.15	11		
0.063	9		


Sample Proportions	% dry mass	
Cobbles	0	
Gravel	76	
Sand	15	
Silt and Clay	9	

Grading Analysis	
Uniformity Coefficient	

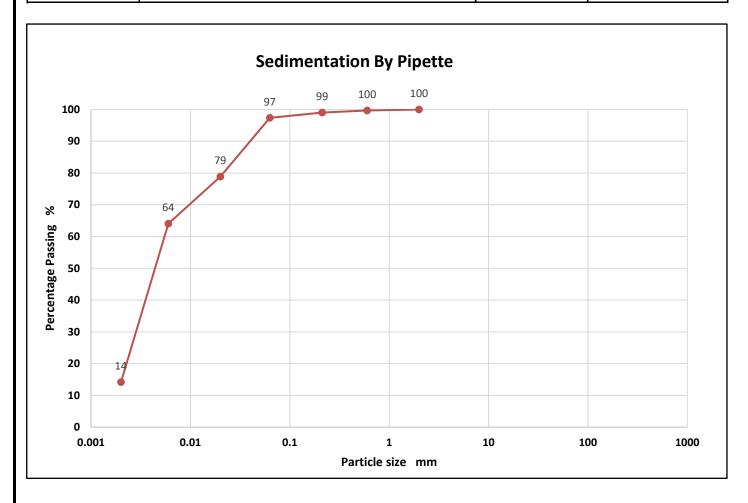
Operators	Checked	07/08/2017	Wayne Honey	W. Honey
RO/MH	Approved	08/08/2017	Ben Sharp	

CCTI	Sedimentation By Pipette Analyisis	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Clause 9.4	Borehole/Pit No.	L05
Site Name	Foynes Port	Sample No.	
Soil Description	Croy alightly condy alovey CHT	Depth Top	3.50
	Grey slightly sandy clayey SILT	Depth Base	
		Sample Type	В

Top Sieve Analysis

BS Test Sieve	Percentage Passing
2.00	100
0.60	100
0.212	98
0.063	96

Sedimentation Analysis


Particle Diameter	Percentage Passing
0.02	83
0.006	70
0.002	13

Soil Fraction	Total Percentage
Gravel	0
Sand	4
Silt	83
Clay	13

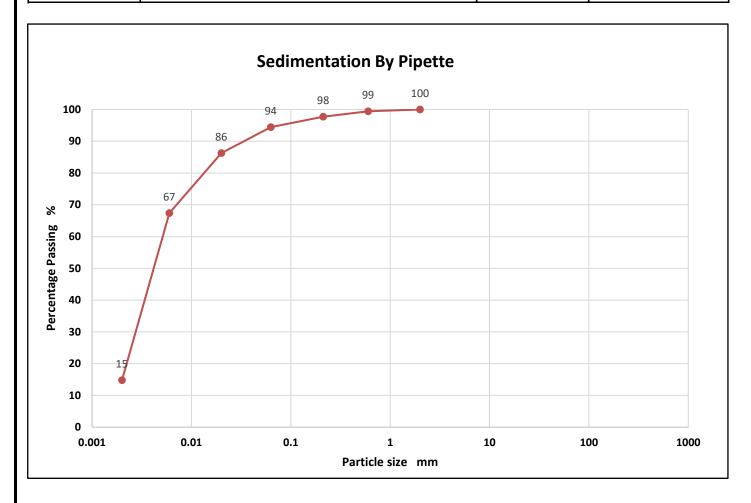
Operators	Checked	01/08/2017	Wayne Honey	W. Honey
RO	Approved	02/08/2017	Ben Sharp	3

CCTI	Sedimentation By Pipette Analyisis	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Clause 9.4	Borehole/Pit No.	M04
Site Name	Foynes Port	Sample No.	
Soil Description	Crow alightly goody alovey SILT	Depth Top	3.50
	Grey slightly sandy clayey SILT	Depth Base	
		Sample Type	В

Top Sieve Analysis

BS Test Sieve	Percentage Passing
2.00	100
0.60	100
0.212	99
0.063	97

Sedimentation Analysis


Particle Diameter	Percentage Passing
0.02	79
0.006	64
0.002	14

Soil Fraction	Total Percentage
Gravel	0
Sand	3
Silt	83
Clay	14

Operators	Checked	22/07/2017	Wayne Honey	W. Honey
RO	Approved	23/07/2017	Ben Sharp	25

CCTI	Sedimentation By Pipette Analyisis	Contract Number	35579
GOIL	BS 1377 Part 2:1990 Clause 9.4	Borehole/Pit No.	M06
Site Name	Foynes Port	Sample No.	
Soil Description	Crov alightly goody alovey SILT	Depth Top	4.00
	Grey slightly sandy clayey SILT	Depth Base	
		Sample Type	В

Top Sieve Analysis

BS Test Sieve	Percentage Passing
2.00	100
0.60	99
0.212	98
0.063	94

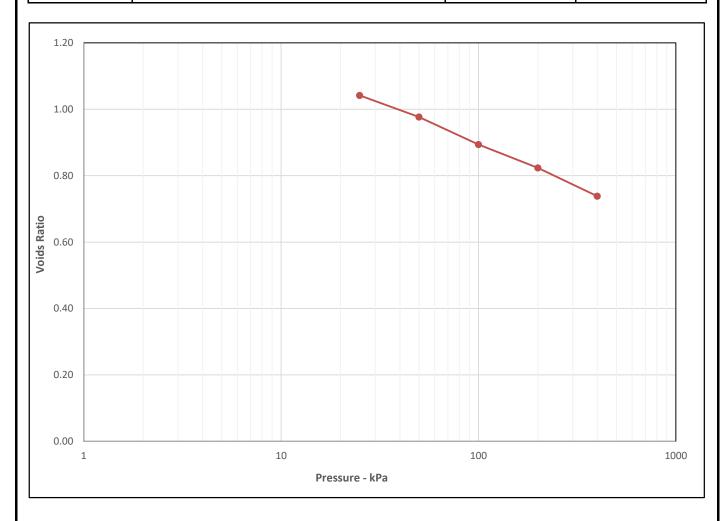
Sedimentation Analysis

Particle Diameter	Percentage Passing
0.02	86
0.006	67
0.002	15

Soil Fraction	Total Percentage
Gravel	0
Sand	6
Silt	80
Clay	15

Operators	Checked	22/07/2017	Wayne Honey	W. Honey
RO	Approved	23/07/2017	Ben Sharp	25

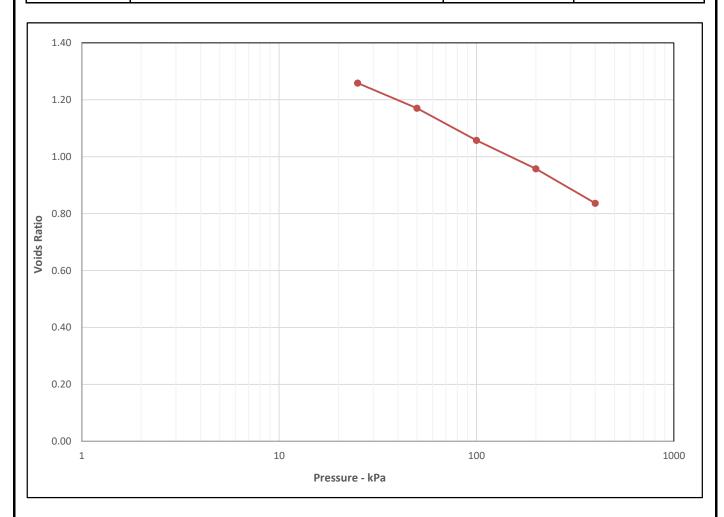
GSTL	SUMMARY OF SHEAR STRENGTH TESTS (TOTAL STRESS) (BS 1377 : PART 7 : 3 : 1990)	
Contract Number	35579	
Site Name	Foynes Port	


ВН	Sample	Sample	D	epth (r	m)	Moisture	Location of Test	Diameter of Tube	Vane Size	Disturbed /	Hand	l Vane
Borehole	Number	Туре		op (.	,	Content	Horizon	(mm)	Va.10 0.20	Undisturbed	Peak	Residual
BHL04		UT	1.00	-		48			33mm	Undisturbed	10	4
BHL04		UT	6.50	-		35			33mm	Undisturbed	9	3
BHL05		UT	2.00	-		59			33mm	Undisturbed	19	6
BHL05		UT	3.00	-		53			33mm	Undisturbed	22	7
BHL05		UT	11.00	-		54			33mm	Undisturbed	29	10
BHM03		UT	2.00			50			33mm	Undisturbed	5	1
BHM03		UT	3.00	-		58			33mm	Undisturbed	15	4
BHM03		UT	9.00			28			33mm	Undisturbed	19	8
BHM04		UT	6.50	-		29			33mm	Undisturbed	32	8
BHM04		UT	9.50	-		37			33mm	Undisturbed	18	6
BHM04		UT	13.00			37			33mm	Undisturbed	11	7
BHM05		UT	1.00	-		63			33mm	Undisturbed	8	4
BHM05		UT	5.00	-		45			33mm	Undisturbed	12	8
BHM05		UT	9.00			52			33mm	Undisturbed	9	9.5
BHM05		UT	9.50	-		50			33mm	Undisturbed	21	7
BHM05		UT	12.00	-		44			33mm	Undisturbed	28	7
BHM06		UT	7.50			43			33mm	Undisturbed	30	6
BHM06		UT	10.50	-		43			33mm	Undisturbed	33	9
BHM08		UT	1.00			63			33mm	Undisturbed	7	2
BHM08		UT	2.00	-		49			33mm	Undisturbed	13	7
BHM08		UT	3.00			55			33mm	Undisturbed	13	7
BHM08		UT	4.00			48			33mm	Undisturbed	7	1
BHM11		UT	3.00	-		45			33mm	Undisturbed	17	7
BHM11		UT	5.00			34			33mm	Undisturbed	14	8
BHM11		UT	8.00			41			33mm	Undisturbed	17	4
BHM11		UT	11.00	-		47			33mm	Undisturbed	29	11
				-								
				-								
				-								
				-								1
				-								
				-								
				-								†

<u>Key</u>	Reported As
Moisture Content	%
Hand Vane	kPa

Operators	Checked	07/08/2017	Wayne Honey	W. Honey
C1/11	Approved	08/08/2017	Ben Sharp	

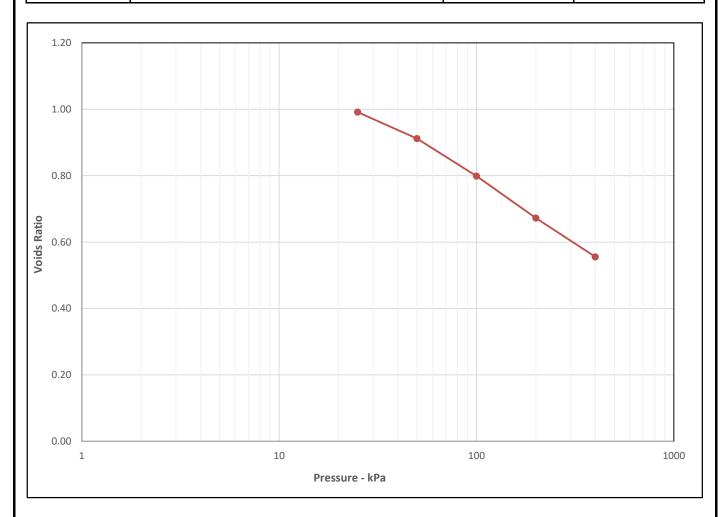
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	L04
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy CLAY containing organic material.	Depth Top (m)	1.00
	Dark grey Sandy CLAT Containing Organic material.	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pres	sure R	Range	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	49	0	-	25	4.9	6.3		-			
Bulk Density (Mg/m3)	1.70	25	-	50	1.3	5.3		-			
Dry Density (Mg/m3)	1.14	50	-	100	0.84	7.1		-			
Voids Ratio	1.3247	100	-	200	0.370	9		-			
Degree of saturation	98.0	200	-	400	0.23	10		-			
Height (mm)	18.84		-					-			
Diameter (mm)	74.85		-					-			
Particle Density (Mg/m3)	2.65		-								

Operators	Checked	05-07-17	Emma Sharp	Eu D
LG	Approved	06-07-17	Paul Evans	EP Gans

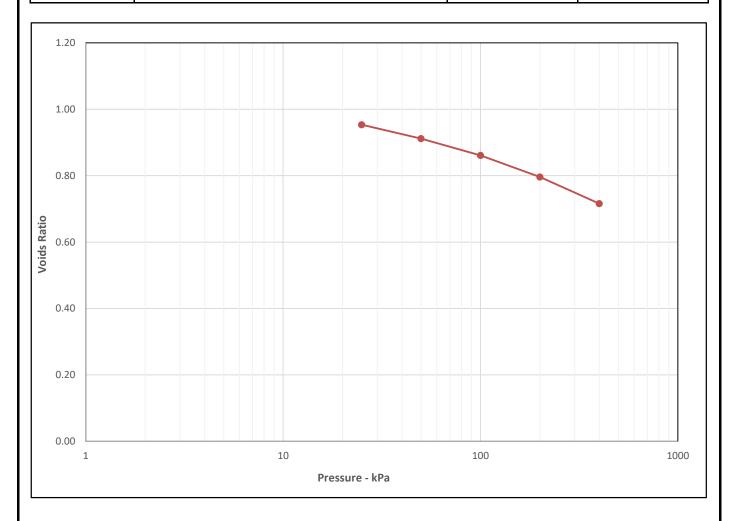
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	L04
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy CLAY containing organic material.	Depth Top (m)	2.00
	Dark grey Sandy CLAT Containing Organic material.	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pres	sure R	ange	Mv m2/MN	Cv m2/yr	Pres	sure F	Range	Mv m2/MN	Cv m2/yr
Moisture Content (%)	66	0	-	25	5.6	2.2		-			
Bulk Density (Mg/m3)	1.67	25	-	50	1.6	2					
Dry Density (Mg/m3)	1.01	50	-	100	1	1.2		-			
Voids Ratio	1.6268	100	-	200	0.480	2.6		-			
Degree of saturation	106.9	200	-	400	0.31	3.8					
Height (mm)	19.77		-					-			
Diameter (mm)	74.91										
Particle Density (Mg/m3)	2.65		•					•			

Operators	Checked	05-07-17	Emma Sharp	Eud .
LG	Approved	06-07-17	Paul Evans	EP Grans

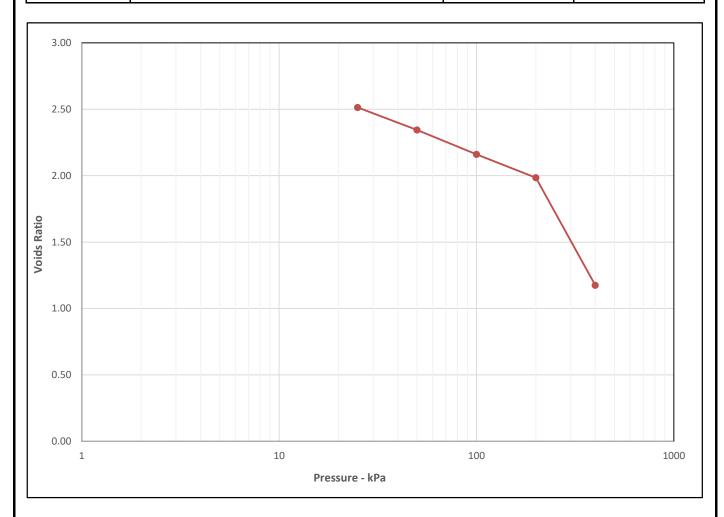
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GJIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	L04
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy CLAY containing organic material.	Depth Top (m)	3.00
	Dark grey Sandy CLAT Containing Organic material.	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pres	sure R	Range	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	61	0	-	25	5.5	5.3		-			
Bulk Density (Mg/m3)	1.84	25	-	50	1.6	4.6		-			
Dry Density (Mg/m3)	1.15	50	-	100	1.2	4.6		-			
Voids Ratio	1.3082	100	-	200	0.700	0.47		-			
Degree of saturation	122.9	200	-	400	0.35	4.8		-			
Height (mm)	18.77		-					-			
Diameter (mm)	74.96							-			
Particle Density (Mg/m3)	2.65		•								

Operators	Checked	05-07-17	Emma Sharp	Eu D
LG	Approved	06-07-17	Paul Evans	EP GONS

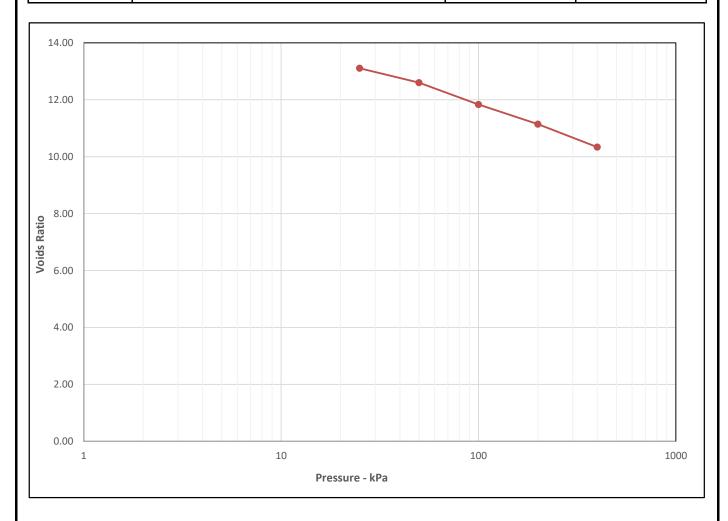
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GJIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	L04
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy CLAY containing organic material.	Depth Top (m)	12.50
	Dark grey Sandy CLAT Containing Organic material.	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pres	sure F	re Range Mv m2/MN Cv Pressure Range		Mv m2/MN	Cv m2/yr			
Moisture Content (%)	45	0	-	25	2.6	0.81	-			
Bulk Density (Mg/m3)	1.84	25	-	50	0.85	2.3	-			
Dry Density (Mg/m3)	1.27	50	-	100	0.53	5.8	-			
Voids Ratio	1.0866	100	-	200	0.350	5.3	-			
Degree of saturation	109.9	200	-	400	0.22	3.6	-			
Height (mm)	19.57		-				-			
Diameter (mm)	75		-				-			
Particle Density (Mg/m3)	2.65		-							

Operators	Checked	05-07-17	Emma Sharp	Eu D
LG	Approved	06-07-17	Paul Evans	EP Gans

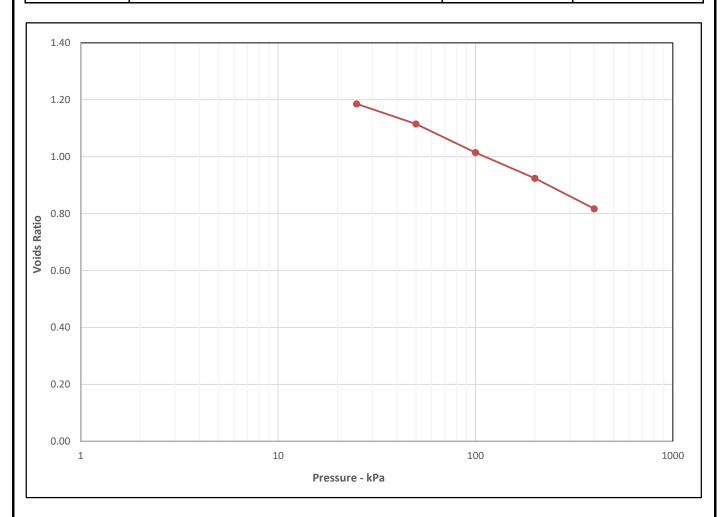
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	L05
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy CLAY containing organic material.	Depth Top (m)	1.00
	Dark grey Sandy CLAT Containing Organic material.	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pres	sure F	Range	Mv m2/MN	Cv m2/yr Pressure Range		ange	Mv m2/MN	Cv m2/yr	
Moisture Content (%)	97	0	-	25	5.7	8.2		-			
Bulk Density (Mg/m3)	1.28	25	-	50	1.9	3.6		-			
Dry Density (Mg/m3)	0.65	50	-	100	1.1	3.2		-			
Voids Ratio	3.0998	100	-	200	0.560	5.5		-			
Degree of saturation	83.2	200	-	400	1.4	6.2		-			
Height (mm)	19.68		-					-			
Diameter (mm)	74.6		-					-			
Particle Density (Mg/m3)	2.65		-					-			

Operators	Checked	05-07-17	Emma Sharp	Eu D
LG	Approved	06-07-17	Paul Evans	EP Gans

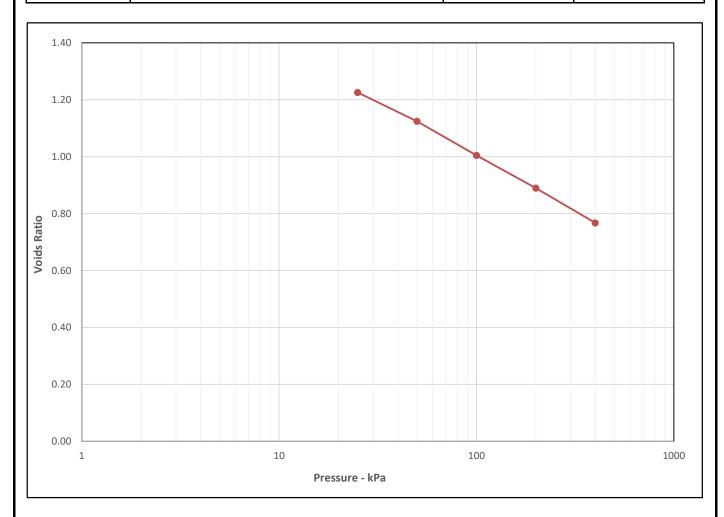
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	L05
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy CLAY containing organic material.	Depth Top (m)	2.00
	Dark grey Sandy CLAT Containing Organic material.	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks Cv Calculated Using T90		Sample Type	U



Initial Sample Conditions		Pres	sure F	Range	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	188	0	-	25	5.5	4.6		-			
Bulk Density (Mg/m3)	0.47	25	-	50	1.4	3		-			
Dry Density (Mg/m3)	0.16	50	-	100	1.1	0.97		-			
Voids Ratio	15.3728	100	-	200	0.540	3.2		-			
Degree of saturation	32.5	200	-	400	0.33	2		-			
Height (mm)	18.2		-					-			
Diameter (mm)	74.96		-					-			
Particle Density (Mg/m3)	2.65		-					-			

Operators	Checked	05-07-17	Emma Sharp	Eud
LG	Approved	06-07-17	Paul Evans	EP Grans

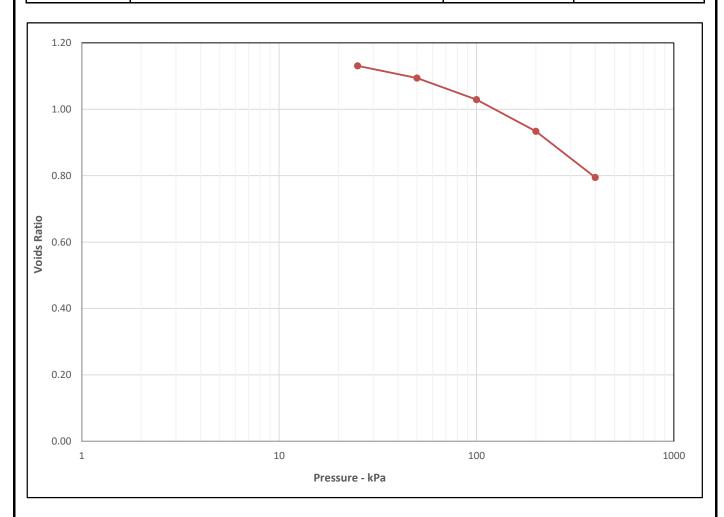
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	L05
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy CLAY containing organic material.	Depth Top (m)	3.00
	Dark grey Sandy CLAT Containing Organic material.	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pres	sure F	Range	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	55	0	-	25	4	0.92		-			
Bulk Density (Mg/m3)	1.69	25	-	50	1.3	1.4		-			
Dry Density (Mg/m3)	1.09	50	-	100	0.95	1.3		-			
Voids Ratio	1.4270	100	-	200	0.450	1.6		-			
Degree of saturation	102.4	200	-	400	0.28	2.5		-			
Height (mm)	19.91		-					-			
Diameter (mm)	49.95		-					-			
Particle Density (Mg/m3)	2.65		-					-			

Operators	Checked	05-07-17	Emma Sharp	Eu D
LG	Approved	06-07-17	Paul Evans	EP Gans

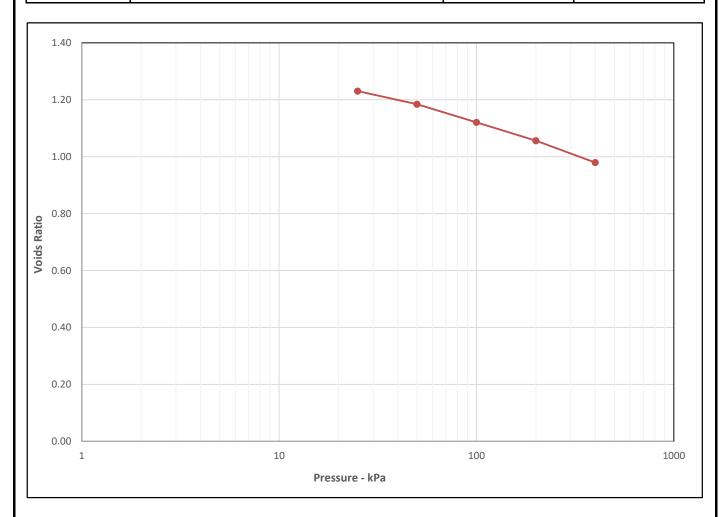
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	L05
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy CLAY containing organic material.	Depth Top (m)	4.00
	Dark grey Sandy CLAT Containing Organic material.	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pres	ressure Range Mv m2/MN Cv m2/yr Pressure Range		Mv m2/MN	Cv m2/yr				
Moisture Content (%)	55	0	-	25	3.9	4.7	-			
Bulk Density (Mg/m3)	1.67	25	-	50	1.8	1.9	-			
Dry Density (Mg/m3)	1.07	50	-	100	1.1	3.6	-			
Voids Ratio	1.4695	100	-	200	0.570	2.2	-			
Degree of saturation	99.8	200	-	400	0.32	2.9	-			
Height (mm)	19.86		-				-			
Diameter (mm)	74.98		-				-			
Particle Density (Mg/m3)	2.65		-				-			_

Operators	Checked	05-07-17	Emma Sharp	Eud
LG	Approved	06-07-17	Paul Evans	EP Grans

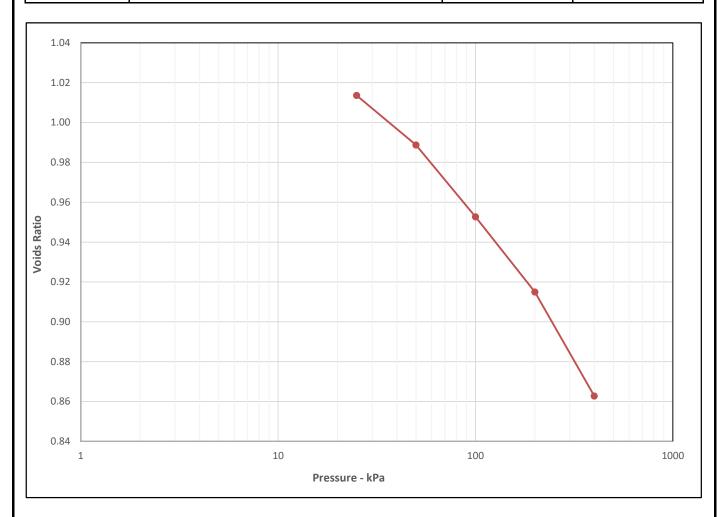
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	L05
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy CLAY containing organic material.	Depth Top (m)	8.00
	Dark grey Sandy CLAT Containing Organic material.	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pres	sure R	Range	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	45	0	-	25	2.2	0.89		-			
Bulk Density (Mg/m3)	1.70	25	-	50	0.68	0.34		-			
Dry Density (Mg/m3)	1.17	50	-	100	0.62	1.8		-			
Voids Ratio	1.2559	100	-	200	0.470	0.95		-			
Degree of saturation	94.1	200	-	400	0.36	1.2		-			
Height (mm)	18.07		-					-			
Diameter (mm)	74.97							-			
Particle Density (Mg/m3)	2.65		•								

Operators	Checked	05-07-17	Emma Sharp	Eud .
LG	Approved	06-07-17	Paul Evans	EP Grans

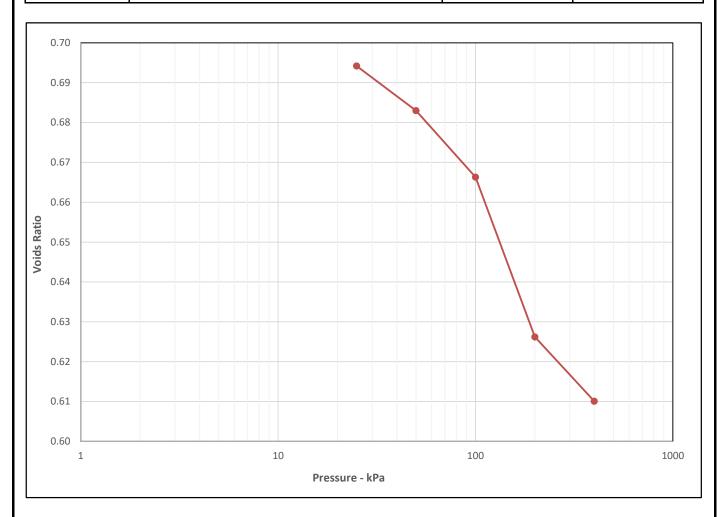
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	L05
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy CLAY containing organic material.	Depth Top (m)	11.00
	Dark grey Sandy CLAT Containing Organic material.	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pres	sure R	ange	Mv m2/MN	Cv m2/yr	Pres	sure F	Range	Mv m2/MN	Cv m2/yr
Moisture Content (%)	57	0	-	25	2.9	2.5		-			
Bulk Density (Mg/m3)	1.72	25	-	50	0.83	3.4		-			
Dry Density (Mg/m3)	1.10	50	-	100	0.58	4.2		-			
Voids Ratio	1.4061	100	-	200	0.300	5.6		-			
Degree of saturation	106.7	200	-	400	0.19	7.9		-			
Height (mm)	19.97		-					-			
Diameter (mm)	49.95		-					-			
Particle Density (Mg/m3)	2.65		-			•		-			

Operators	Checked	05-07-17	Emma Sharp	Eud
LG	Approved	06-07-17	Paul Evans	EP Grans

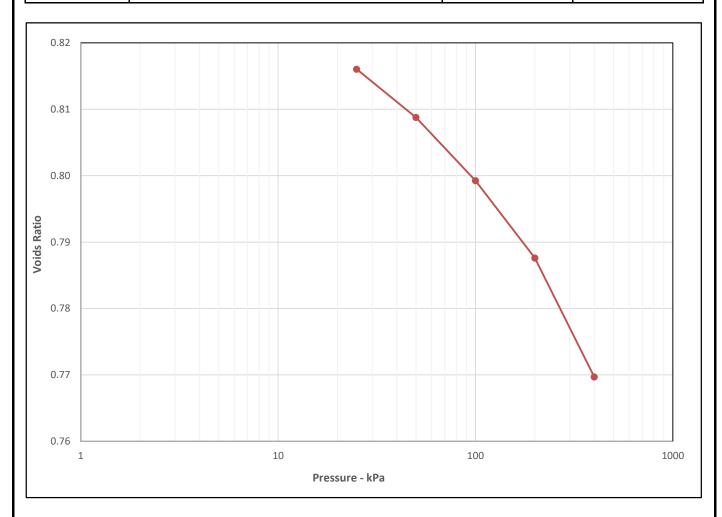
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	L05
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy CLAY containing organic material.	Depth Top (m)	14.00
	Dark grey Sandy CLAT Containing Organic material.	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pres	sure F	Range	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	67	0	-	25	1.3	0.0074		-			
Bulk Density (Mg/m3)	2.12	25	-	50	0.49	0.84		-			
Dry Density (Mg/m3)	1.27	50	-	100	0.36	2		-			
Voids Ratio	1.0833	100	-	200	0.190	2.1		-			
Degree of saturation	163.8	200	-	400	0.14	1.8		-			
Height (mm)	18.02		-					-			
Diameter (mm)	75.05		-					-			
Particle Density (Mg/m3)	2.65		-								_

Operators	Checked	05-07-17	Emma Sharp	Eud
LG	Approved	06-07-17	Paul Evans	EP Grans

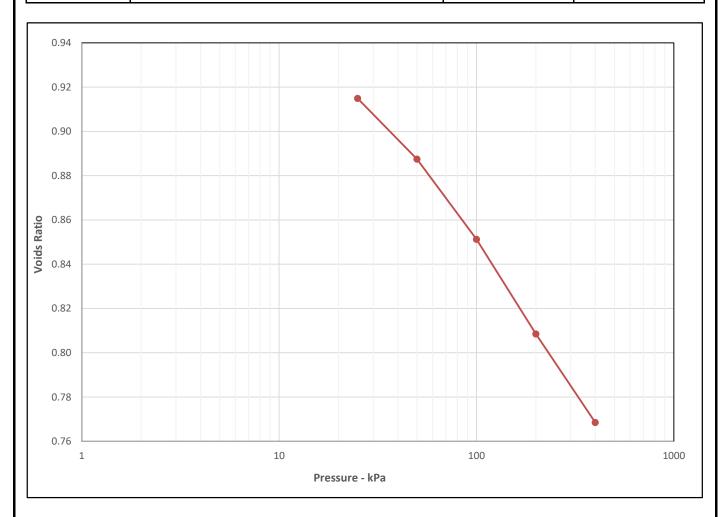
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GJIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	M01
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy CLAY containing organic material.	Depth Top (m)	6.00
	Dark grey Sandy CLAT Containing Organic material.	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pressure Range Mv m2/MN Cv m2/yr Pressure Range		Mv m2/MN	Cv m2/yr					
Moisture Content (%)	27	0	-	25	0.52	17	-			
Bulk Density (Mg/m3)	1.96	25	-	50	0.26	17	-			
Dry Density (Mg/m3)	1.54	50	-	100	0.2	3.3	-			
Voids Ratio	0.7165	100	-	200	0.240	16	-			
Degree of saturation	100.9	200	-	400	0.05	8.9	-			
Height (mm)	19.77		-				-			
Diameter (mm)	74.71		-				-			
Particle Density (Mg/m3)	2.65		-				-			

Operators	Checked	05-07-17	Emma Sharp	Eud
LG	Approved	06-07-17	Paul Evans	EP Grans

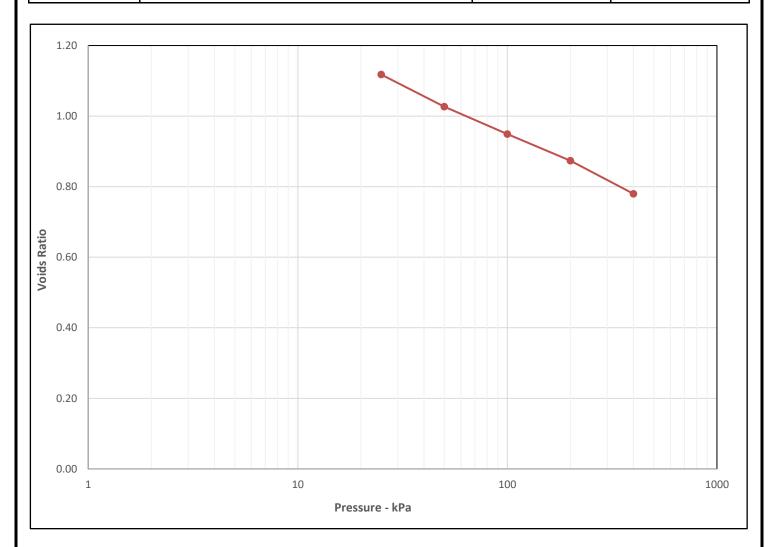
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	M02
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy CLAY containing organic material.	Depth Top (m)	2.00
	Dark grey Sandy CLAT Containing Organic material.	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pressure Range Mv m2/MN Cv m2/yr Pressure Range		Mv m2/MN	Cv m2/yr					
Moisture Content (%)	33	0	-	25	0.42	13	-			
Bulk Density (Mg/m3)	1.92	25	-	50	0.16	13	-			
Dry Density (Mg/m3)	1.44	50	-	100	0.11	11	-			
Voids Ratio	0.8353	100	-	200	0.065	12	-			
Degree of saturation	104.5	200	-	400	0.05	15	-			
Height (mm)	19.68		-				-			
Diameter (mm)	74.6		-				-			
Particle Density (Mg/m3)	2.65		-				-			

Operators	Checked	05-07-17	Emma Sharp	Eud
LG	Approved	06-07-17	Paul Evans	EP Grans

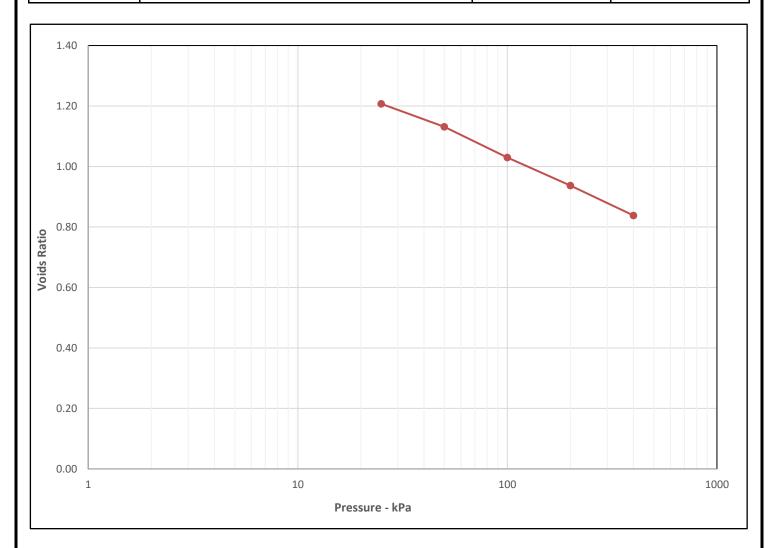
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GSIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	M02
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy CLAY containing organic material.	Depth Top (m)	5.00
	Dark grey Sandy CLAT Containing Organic material.	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pressure Range Mv m2/MN Cv m2/yr Pressure Range		Range	Mv m2/MN	Cv m2/yr				
Moisture Content (%)	39	0	-	25	0.43	11	-			
Bulk Density (Mg/m3)	1.90	25	-	50	0.57	14	-			
Dry Density (Mg/m3)	1.37	50	-	100	0.38	11	-			
Voids Ratio	0.9358	100	-	200	0.230	17	-			
Degree of saturation	110.2	200	-	400	0.11	13	-			
Height (mm)	19.93		-				-			
Diameter (mm)	50.06		-				•			
Particle Density (Mg/m3)	2.65		-							_

Operators	Checked	05-07-17	Emma Sharp	Eu D
LG	Approved	06-07-17	Paul Evans	EP Gans

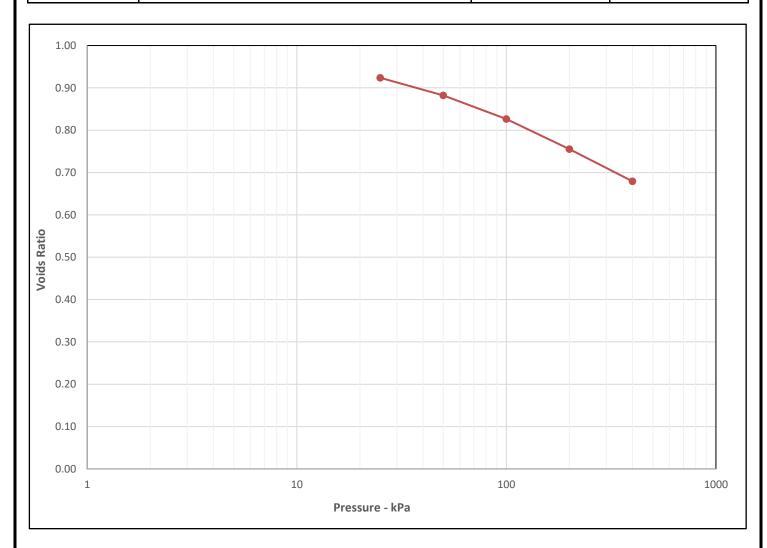
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	M03
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy CLAY containing organic material.	Depth Top (m)	1.00
	Dank grey sandy CLAT containing organic material.	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pres	sure R	ange	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	51	0	-	25	2.6	22		-			
Bulk Density (Mg/m3)	1.77	25	-	50	1.7	9.8		-			
Dry Density (Mg/m3)	1.17	50	-	100	0.77	9		-			
Voids Ratio	1.2670	100	-	200	0.390	13		-			
Degree of saturation	106.8	200	-	400	0.25	8.6		-			
Height (mm)	19.88		-					-			
Diameter (mm)	75.05		-					-			
Particle Density (Mg/m3)	2.65		-					-			

Operators	Checked	02/08/2017	Emma Sharp	Eud
LG	Approved	03/08/2017	Paul Evans	DP Grans

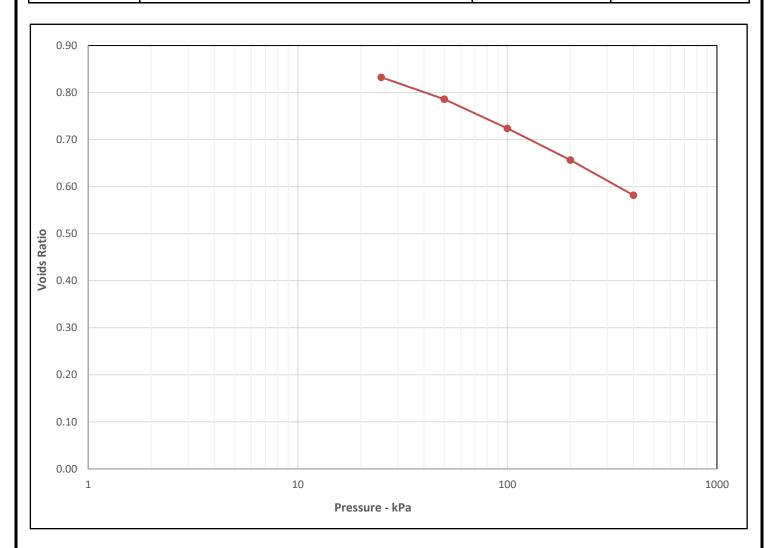
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GJIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	M03
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy organic CLAY	Depth Top (m)	3.00
	Dark grey saridy organic CLAT	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pres	sure R	Range	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	59	0	-	25	4.4	4.3		-			
Bulk Density (Mg/m3)	1.70	25	-	50	1.4	4.2		-			
Dry Density (Mg/m3)	1.07	50	-	100	0.95	4.6		-			
Voids Ratio	1.4810	100	-	200	0.460	7.4		-			
Degree of saturation	105.7	200	-	400	0.25	8.6		-			
Height (mm)	19.75		-					-			
Diameter (mm)	74.84		-					-			
Particle Density (Mg/m3)	2.65		-					-			

Operators	Checked	16/07/2017	Wayne Honey	W. Honey
LG	Approved	17/07/2017	Ben Sharp	

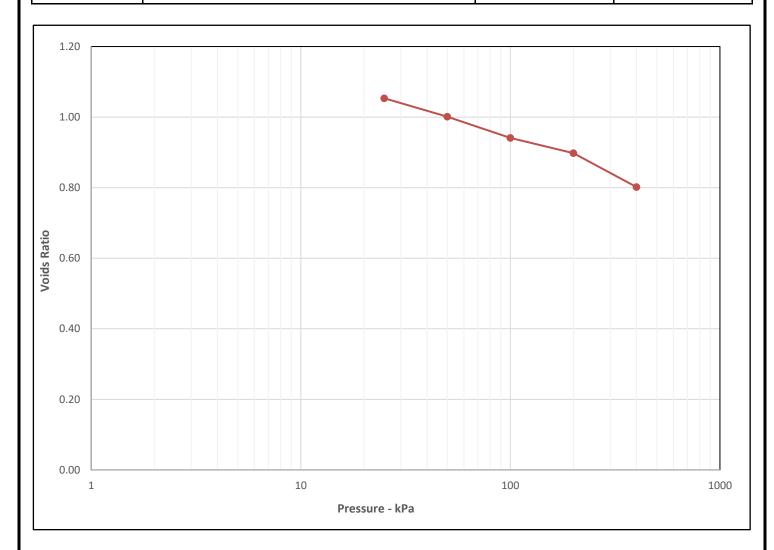
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GJIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	M03
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy organic CLAY	Depth Top (m)	5.00
	Dark grey sarity organic CLAT	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pres	sure R	Range	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	42	0	-	25	2.6	9.8		-			
Bulk Density (Mg/m3)	1.83	25	-	50	0.87	14		-			
Dry Density (Mg/m3)	1.29	50	-	100	0.59	13		-			
Voids Ratio	1.0554	100	-	200	0.390	9.8		-			
Degree of saturation	104.4	200	-	400	0.22	6.9		-			
Height (mm)	18.77		-					-			
Diameter (mm)	74.96		-					-			
Particle Density (Mg/m3)	2.65		-					-			

Operators	Checked	16/07/2017	Wayne Honey	W. Honey
LG	Approved	17/07/2017	Ben Sharp	

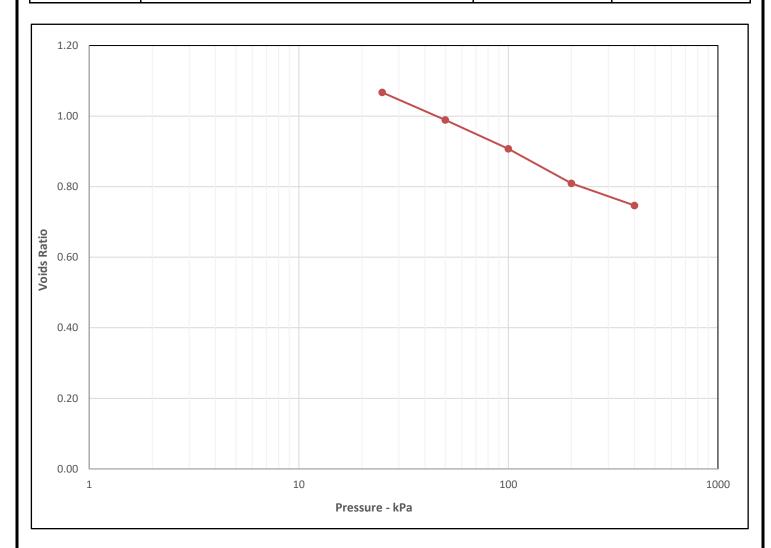
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GJIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	M03
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy organic CLAY	Depth Top (m)	12.00
	Dark grey sarity organic CLAT	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pres	sure R	ange	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	39	0	-	25	2.4	1.7		-			
Bulk Density (Mg/m3)	1.88	25	-	50	1	1		-			
Dry Density (Mg/m3)	1.36	50	-	100	0.69	6.2		-			
Voids Ratio	0.9489	100	-	200	0.390	7.8		-			
Degree of saturation	107.8	200	-	400	0.23	3.2		-			
Height (mm)	19.76		-					-			
Diameter (mm)	75		-					-			
Particle Density (Mg/m3)	2.65		-			•		-			

Operators	Checked	16/07/2017	Wayne Honey	W. Honey
LG	Approved	17/07/2017	Ben Sharp	

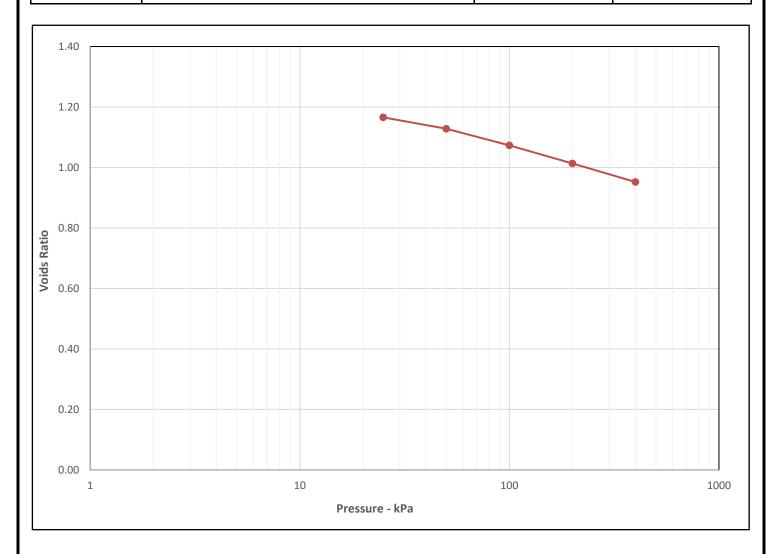
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GJIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	M03
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy organic CLAY	Depth Top (m)	15.00
	Dark grey sarity organic CLAT	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pres	sure R	ange	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	46	0	-	25	3	0.63		-			
Bulk Density (Mg/m3)	1.75	25	-	50	1	3.3		-			
Dry Density (Mg/m3)	1.19	50	-	100	0.6	1		-			
Voids Ratio	1.2195	100	-	200	0.220	1.4		-			
Degree of saturation	100.4	200	-	400	0.25	2.2		-			
Height (mm)	19.88		-					-			
Diameter (mm)	75.05		-					-			
Particle Density (Mg/m3)	2.65		-					-			

Operators	Checked	16/07/2017	Wayne Honey	W. Honey
LG	Approved	17/07/2017	Ben Sharp	

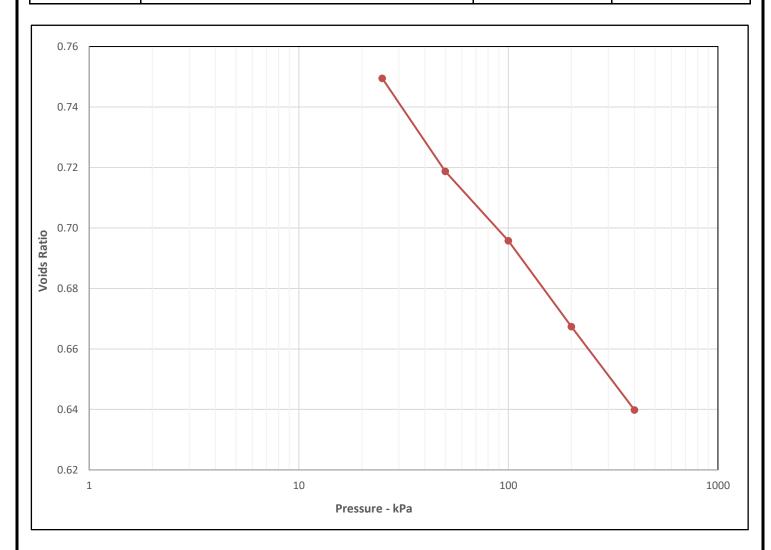
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	M04
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy organic CLAY	Depth Top (m)	2.50
	Dark grey sarity organic CLAT	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pres	sure R	Range	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	49	0	-	25	4	9.9		-			
Bulk Density (Mg/m3)	1.72	25	-	50	1.5	5.9		-			
Dry Density (Mg/m3)	1.15	50	-	100	0.82	3.5		-			
Voids Ratio	1.2977	100	-	200	0.510	5.3		-			
Degree of saturation	100.1	200	-	400	0.17	6.5		-			
Height (mm)	19.75		-					-			
Diameter (mm)	74.84		-					-			
Particle Density (Mg/m3)	2.65		-					-			

Operators	Checked	16/07/2017	Wayne Honey	W. Honey
LG	Approved	17/07/2017	Ben Sharp	

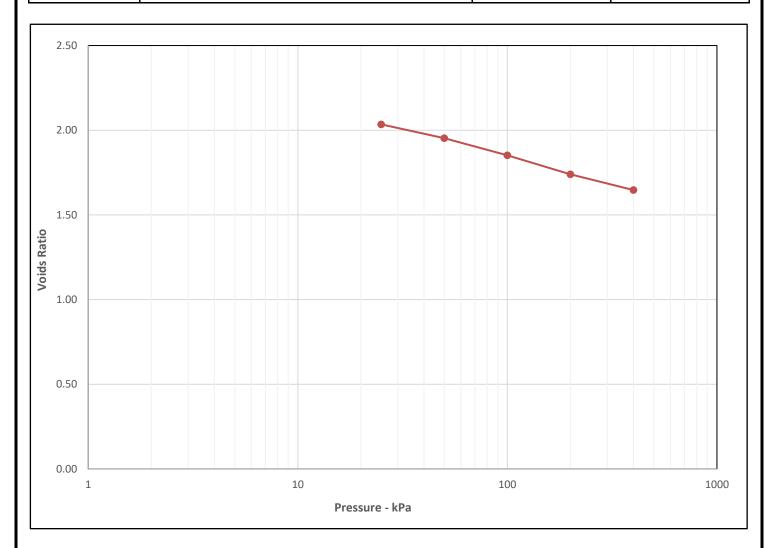
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	M04
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey very sandy organic CLAY	Depth Top (m)	4.00
	Daik grey very saridy organic GLAT	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pres	sure R	ange	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	49	0	-	25	1.6	7.7		-			
Bulk Density (Mg/m3)	1.75	25	-	50	0.7	16		-			
Dry Density (Mg/m3)	1.17	50	-	100	0.51	16		-			
Voids Ratio	1.2574	100	-	200	0.290	9		-			
Degree of saturation	103.3	200	-	400	0.15	9.7		-			
Height (mm)	19.96		-					-			
Diameter (mm)	50.05		-					-			
Particle Density (Mg/m3)	2.65		-					-			·

Operators	Checked	16/07/2017	Wayne Honey	W. Honey
LG	Approved	17/07/2017	Ben Sharp	

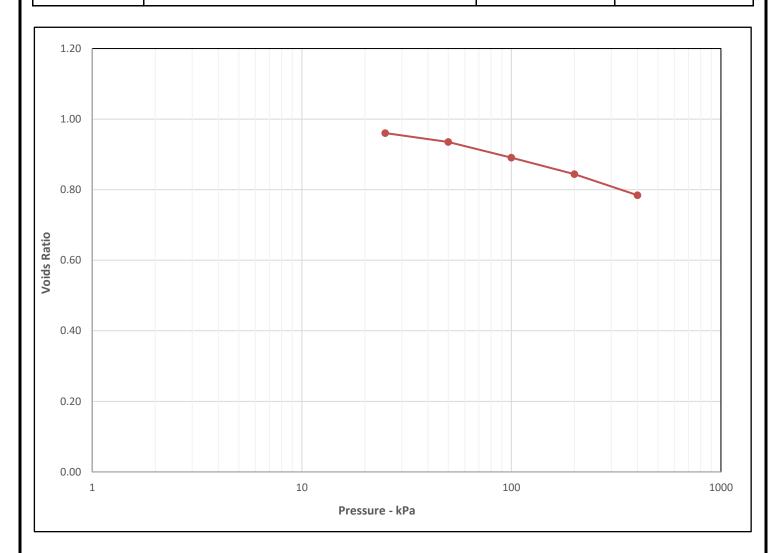
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	M04
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy organic CLAY	Depth Top (m)	9.50
	Dark grey sarity organic CLAT	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pres	sure R	ange	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	36	0	-	25	3	4.1		-			
Bulk Density (Mg/m3)	1.91	25	-	50	0.7	4.2		-			
Dry Density (Mg/m3)	1.40	50	-	100	0.27	4.1		-			
Voids Ratio	0.8900	100	-	200	0.170	6.4		-			
Degree of saturation	108.5	200	-	400	0.083	12		-			
Height (mm)	19.76		-					-			
Diameter (mm)	75		-					-			
Particle Density (Mg/m3)	2.65		-					-			

Operators	Checked	16/07/2017	Wayne Honey	W. Honey
LG	Approved	17/07/2017	Ben Sharp	

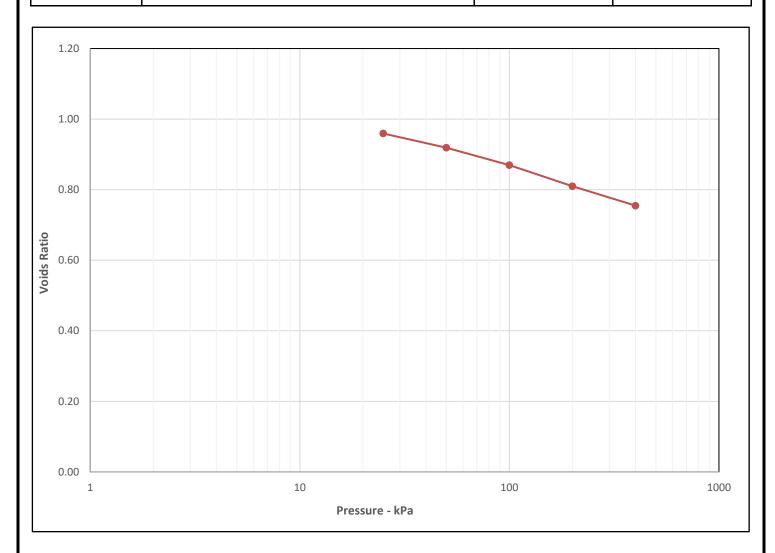
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GJIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	M05
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy organic CLAY	Depth Top (m)	3.00
	Dark grey sarity organic CLAT	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pressure Range		Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr		
Moisture Content (%)	103	0	-	25	2.3	11		-			
Bulk Density (Mg/m3)	1.67	25	-	50	1.1	13		-			
Dry Density (Mg/m3)	0.82	50	-	100	0.69	12		-			
Voids Ratio	2.2209	100	-	200	0.390	15		-			
Degree of saturation	123.0	200	-	400	0.17	11		-			
Height (mm)	19.91		-					-			
Diameter (mm)	49.95		-					-			
Particle Density (Mg/m3)	2.65		-					-			

Operators	Checked	17/07/2017	Wayne Honey	W. Honey
LG	Approved	18/07/2017	Ben Sharp	

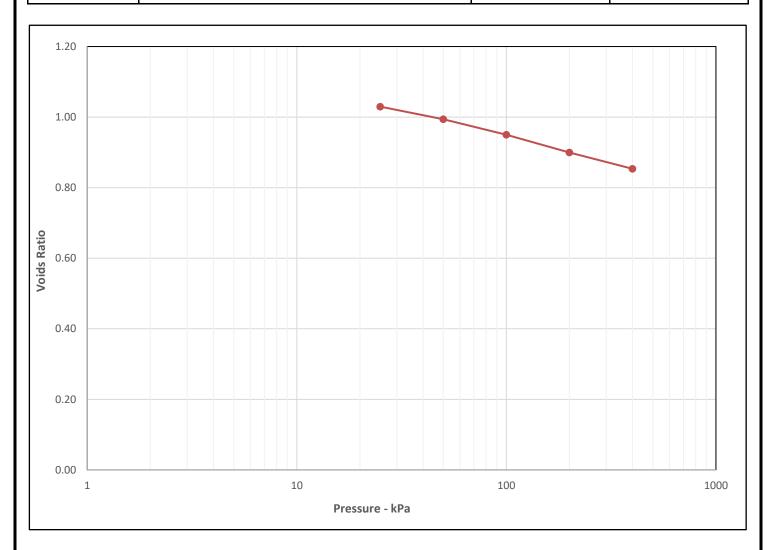
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	M05
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy organic CLAY	Depth Top (m)	7.00
	Dark grey sandy organic CLAT	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pressure Range		Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr		
Moisture Content (%)	44	0	-	25	1.7	1.5		-			
Bulk Density (Mg/m3)	1.86	25	-	50	0.52	0.043		-			
Dry Density (Mg/m3)	1.29	50	-	100	0.46	1.3		-			
Voids Ratio	1.0501	100	-	200	0.250	2.3		-			
Degree of saturation	110.4	200	-	400	0.16	3.3		-			
Height (mm)	18.64		-					-			
Diameter (mm)	74.63		-					-			
Particle Density (Mg/m3)	2.65		-					-			

Operators	Checked	17/07/2017	Wayne Honey	W. Honey
LG	Approved	18/07/2017	Ben Sharp	

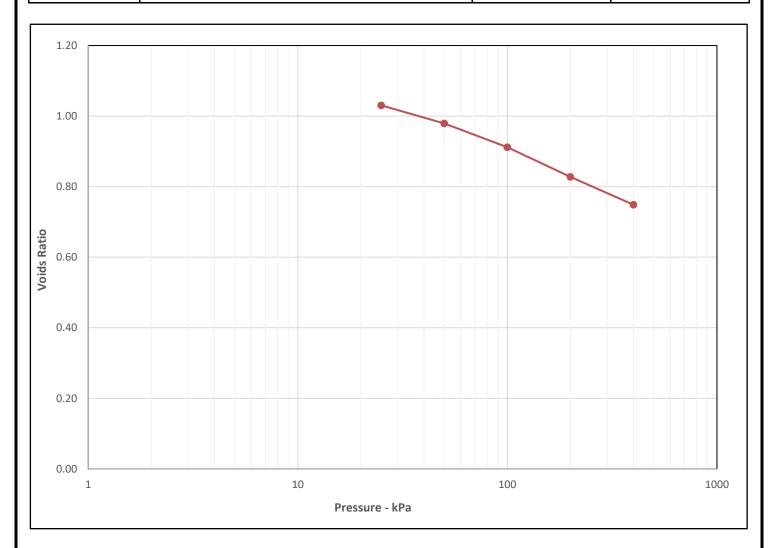
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	M05
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy organic CLAY	Depth Top (m)	9.00
	Dark grey sandy organic CLAT	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pressure Range		Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr		
Moisture Content (%)	50	0	-	25	2.7	1.9		-			
Bulk Density (Mg/m3)	1.89	25	-	50	0.83	2.5		-			
Dry Density (Mg/m3)	1.26	50	-	100	0.51	3.3		-			
Voids Ratio	1.1034	100	-	200	0.320	7.2		-			
Degree of saturation	120.5	200	-	400	0.15	7.3		-			
Height (mm)	19.88		-					-			
Diameter (mm)	75.05		-					-			
Particle Density (Mg/m3)	2.65		-					-			

Operators	Checked	17/07/2017	Wayne Honey	W. Honey
LG	Approved	18/07/2017	Ben Sharp	

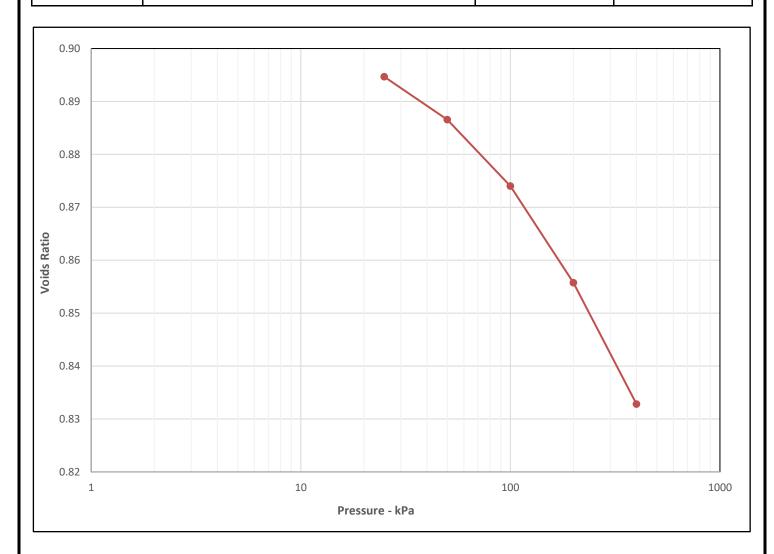
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	M05
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy organic CLAY	Depth Top (m)	9.50
	Dark grey sarity organic CLAT	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pres	sure R	ange	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	51	0	-	25	1.7	1.8		-			
Bulk Density (Mg/m3)	1.89	25	-	50	0.71	2.6		-			
Dry Density (Mg/m3)	1.25	50	-	100	0.44	3.2		-			
Voids Ratio	1.1216	100	-	200	0.260	7.1		-			
Degree of saturation	121.4	200	-	400	0.12	6.9		-			
Height (mm)	19.82		-					-			
Diameter (mm)	75.01		-					-			
Particle Density (Mg/m3)	2.65		-			·		-			

Operators	Checked	03/08/2017	Wayne Honey	W. Honey
LG	Approved	04/08/2017	Ben Sharp	

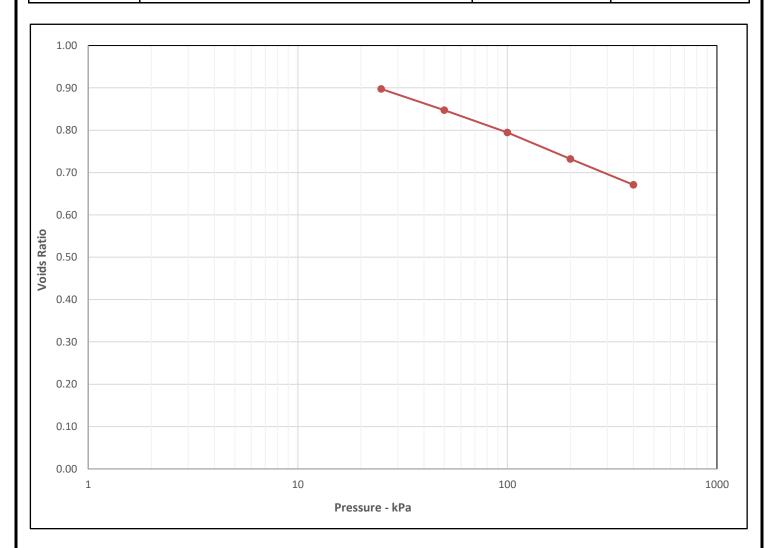
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GJIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	M05
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy organic CLAY	Depth Top (m)	12.00
	Dark grey sarity organic CLAT	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pres	sure R	ange	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	48	0	-	25	3.1	1.2		-			
Bulk Density (Mg/m3)	1.78	25	-	50	1	1.9		-			
Dry Density (Mg/m3)	1.20	50	-	100	0.68	2.3		-			
Voids Ratio	1.2007	100	-	200	0.440	3.1		-			
Degree of saturation	105.2	200	-	400	0.22	3.4		-			
Height (mm)	19.95		-					-			
Diameter (mm)	49.91		-					-			
Particle Density (Mg/m3)	2.65		-					-			

Operators	Checked	17/07/2017	Wayne Honey	W. Honey
LG	Approved	18/07/2017	Ben Sharp	

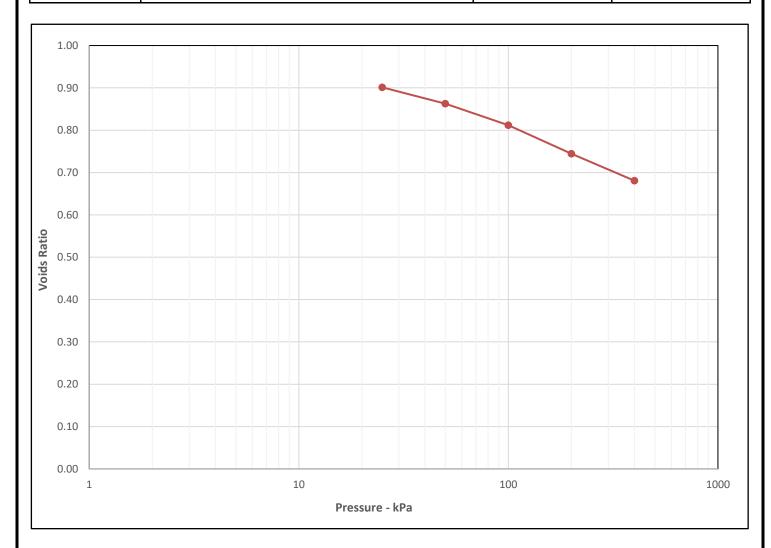
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	M06
Site Name	Foynes Port	Sample No.	
Soil Description	Grey clayey SAND	Depth Top (m)	4.50
	Grey dayey SAND	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pres	sure R	ange	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	32	0	-	25	0.32	25		-			
Bulk Density (Mg/m3)	1.84	25	-	50	0.17	8.4		-			
Dry Density (Mg/m3)	1.39	50	-	100	0.13	7.1		-			
Voids Ratio	0.9098	100	-	200	0.097	5.4		-			
Degree of saturation	94.4	200	-	400	0.062	12		-			
Height (mm)	19.97		-					-			
Diameter (mm)	49.95		-					-			
Particle Density (Mg/m3)	2.65		-					-			

Operators	Checked	17/07/2017	Wayne Honey	W. Honey
LG	Approved	18/07/2017	Ben Sharp	

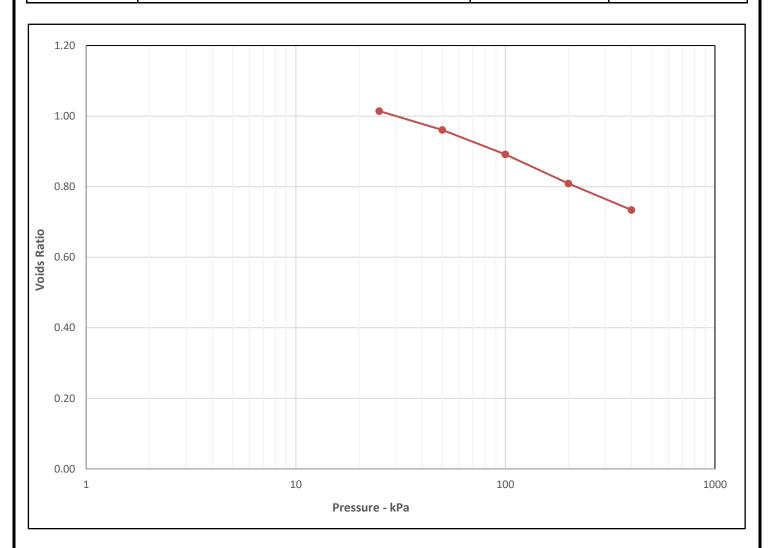
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GJIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	M06
Site Name	Foynes Port	Sample No.	
Soil Description	Grey slightly sandy organic CLAY	Depth Top (m)	7.50
	Grey slightly sarray organic CLAT	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pres	sure R	ange	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	43	0	-	25	2.7	2.2		-			
Bulk Density (Mg/m3)	1.86	25	-	50	1.1	0.88		-			
Dry Density (Mg/m3)	1.30	50	-	100	0.57	0.52		-			
Voids Ratio	1.0329	100	-	200	0.350	1.5		-			
Degree of saturation	110.3	200	-	400	0.18	2.6		-			
Height (mm)	18.2		-					-			
Diameter (mm)	74.96		-					-			
Particle Density (Mg/m3)	2.65		-			·		-			

Operators	Checked	17/07/2017	Wayne Honey	W. Honey
LG	Approved	18/07/2017	Ben Sharp	

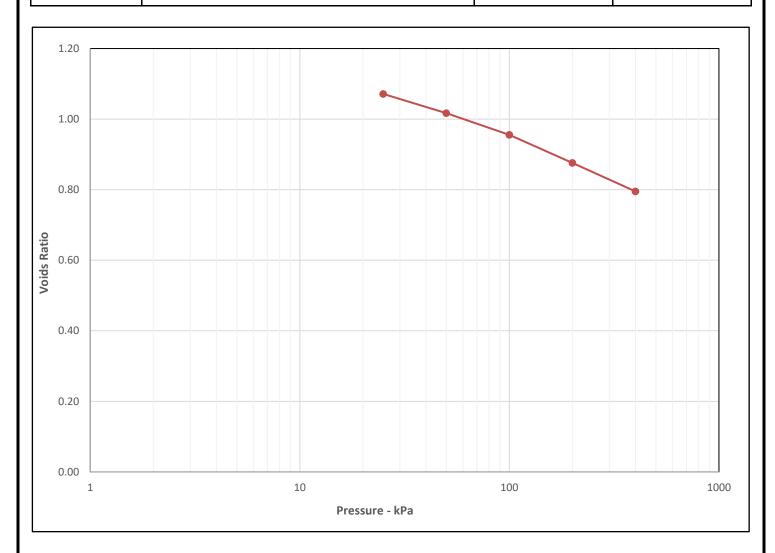
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	M06
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy organic CLAY	Depth Top (m)	8.50
	Dark grey sarity organic CLAT	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pres	sure R	ange	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	35	0	-	25	2.6	5.5		-			
Bulk Density (Mg/m3)	1.76	25	-	50	0.81	4.5		-			
Dry Density (Mg/m3)	1.30	50	-	100	0.54	5.7		-			
Voids Ratio	1.0317	100	-	200	0.370	7.2		-			
Degree of saturation	89.0	200	-	400	0.18	6.5		-			
Height (mm)	19.86		-					-			
Diameter (mm)	49.97		-					-			
Particle Density (Mg/m3)	2.65		-					-			

Operators	Checked	17/07/2017	Wayne Honey	W. Honey
LG	Approved	18/07/2017	Ben Sharp	

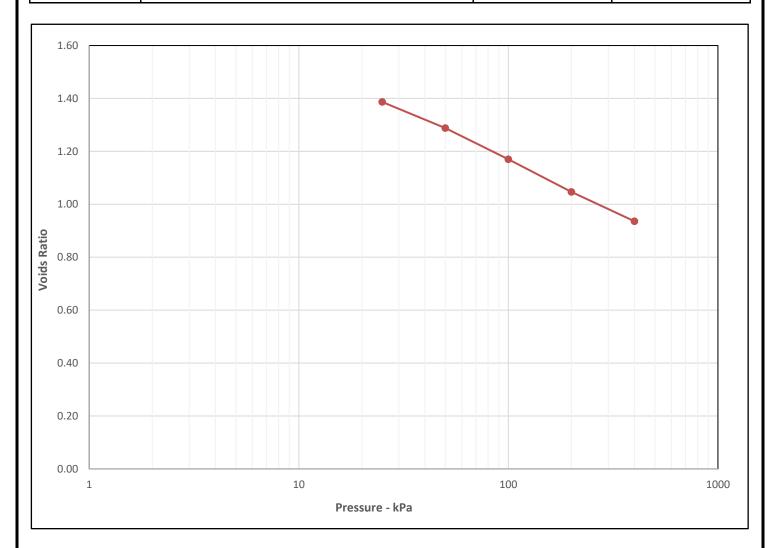
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	M06
Site Name	Foynes Port	Sample No.	
Soil Description	Grey slightly sandy organic CLAY	Depth Top (m)	10.50
	Grey slightly sarray organic CLAT	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pres	sure R	ange	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	46	0	-	25	2.8	5.3		-			
Bulk Density (Mg/m3)	1.78	25	-	50	1.1	3.7		-			
Dry Density (Mg/m3)	1.22	50	-	100	0.71	3.9		-			
Voids Ratio	1.1675	100	-	200	0.440	3.8		-			
Degree of saturation	104.2	200	-	400	0.21	4.6		-			
Height (mm)	19.91		-					-			
Diameter (mm)	49.95		-					-			
Particle Density (Mg/m3)	2.65		-			•		-			

Operators	Checked	17/07/2017	Wayne Honey	W. Honey
LG	Approved	18/07/2017	Ben Sharp	

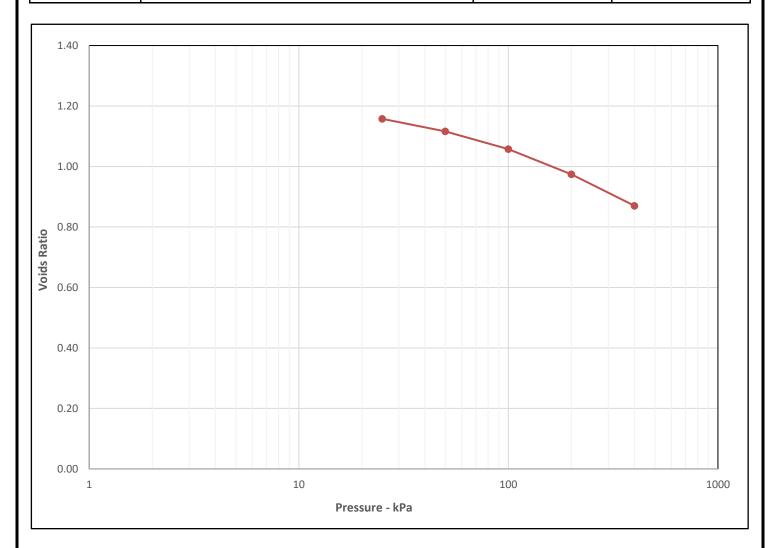
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	M08
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy organic CLAY	Depth Top (m)	2.00
	Dark grey sandy organic CLAT	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pres	sure R	ange	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	53	0	-	25	4.1	6.3		-			
Bulk Density (Mg/m3)	1.76	25	-	50	1.1	8.8		-			
Dry Density (Mg/m3)	1.15	50	-	100	0.61	6.1		-			
Voids Ratio	1.3074	100	-	200	0.410	4.8		-			
Degree of saturation	107.9	200	-	400	0.22	7.3		-			
Height (mm)	19.96		-					-			
Diameter (mm)	50.05		-					-			
Particle Density (Mg/m3)	2.65		-					-			

Operators	Checked	17/07/2017	Wayne Honey	W. Honey
LG	Approved	18/07/2017	Ben Sharp	

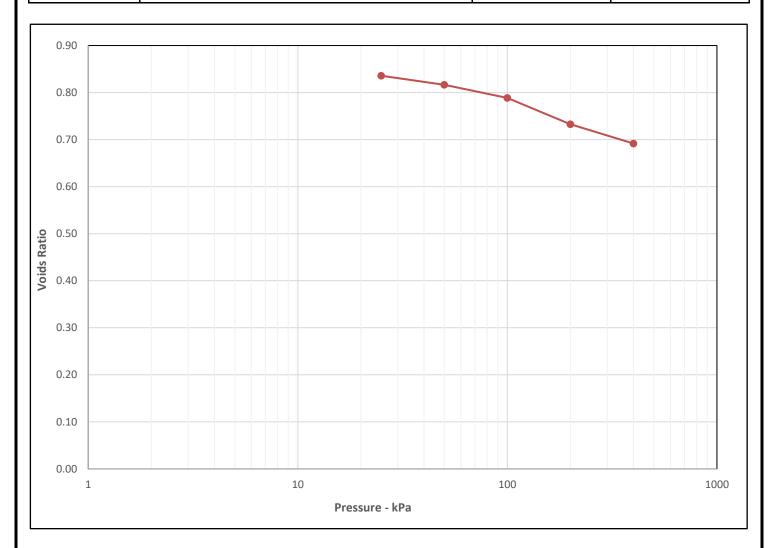
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GJIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	M08
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy organic CLAY	Depth Top (m)	5.00
	Dark grey sarity organic CLAT	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pres	sure R	ange	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	63	0	-	25	3.4	10		-			
Bulk Density (Mg/m3)	1.65	25	-	50	1.7	6.1		-			
Dry Density (Mg/m3)	1.02	50	-	100	1	4.8		-			
Voids Ratio	1.6108	100	-	200	0.570	5		-			
Degree of saturation	103.4	200	-	400	0.27	4.1		-			
Height (mm)	19.82		-					-			
Diameter (mm)	75.01		-					-			
Particle Density (Mg/m3)	2.65		-					-			

Operators	Checked	17/07/2017	Wayne Honey	W. Honey
LG	Approved	18/07/2017	Ben Sharp	

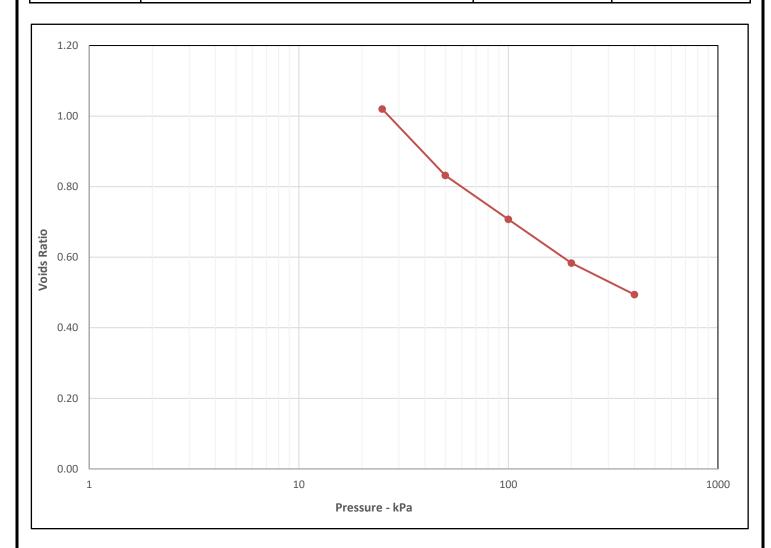
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	M08
Site Name	Foynes Port	Sample No.	
Soil Description	Grey slightly sandy silty organic CLAY	Depth Top (m)	11.50
	Grey Silgritiy Saridy Silty Organic GEAT	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pres	sure R	ange	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	50	0	-	25	1.6	7.8		-			
Bulk Density (Mg/m3)	1.76	25	-	50	0.77	4.1		-			
Dry Density (Mg/m3)	1.18	50	-	100	0.56	6		-			
Voids Ratio	1.2486	100	-	200	0.400	5.6		-			
Degree of saturation	105.4	200	-	400	0.26	5		-			
Height (mm)	19.86		-					-			
Diameter (mm)	49.97		-					-			
Particle Density (Mg/m3)	2.65		-			•		-			•

Operators	Checked	17/07/2017	Wayne Honey	W. Honey
LG	Approved	18/07/2017	Ben Sharp	

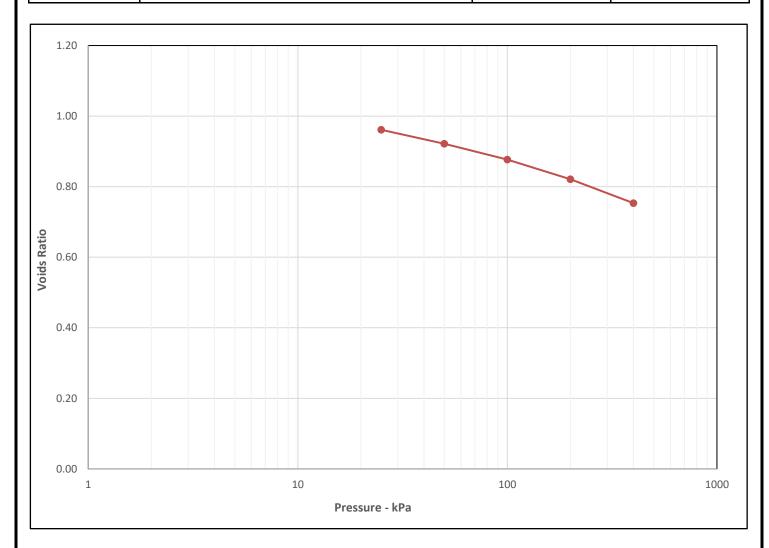
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	M11
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy organic CLAY	Depth Top (m)	6.50
	Dark grey sarity organic CLAT	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pres	sure R	Range	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	33	0	-	25	1	4.7		-			
Bulk Density (Mg/m3)	1.86	25	-	50	0.42	4.4		-			
Dry Density (Mg/m3)	1.41	50	-	100	0.31	4.3		-			
Voids Ratio	0.8849	100	-	200	0.310	2.1		-			
Degree of saturation	97.5	200	-	400	0.12	9.4		-			
Height (mm)	19.77		-					-			
Diameter (mm)	74.91		-					-			
Particle Density (Mg/m3)	2.65		-			•		-			

Operators	Checked	17/07/2017	Wayne Honey	W. Honey
LG	Approved	18/07/2017	Ben Sharp	

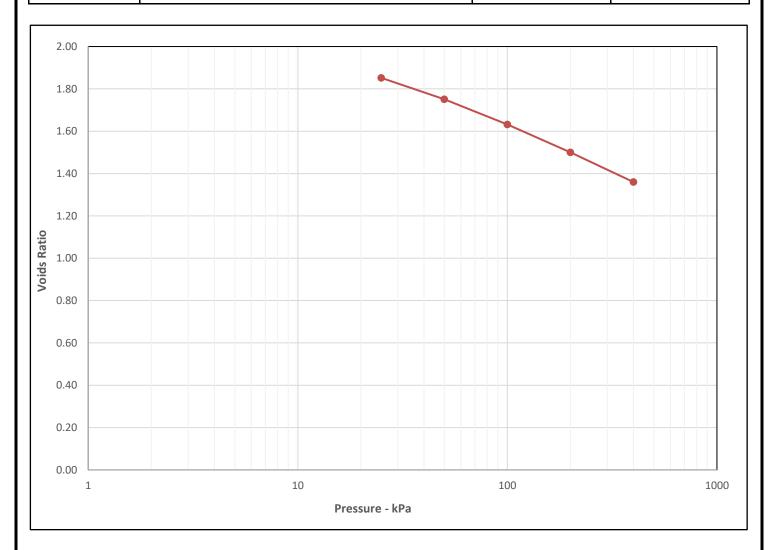
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	M13
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy organic CLAY	Depth Top (m)	2.10
	Dark grey sarity organic CLAT	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pres	sure R	Range	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	49	0	-	25	4.5	4.8		-			
Bulk Density (Mg/m3)	1.74	25	-	50	3.7	8		-			
Dry Density (Mg/m3)	1.17	50	-	100	1.4	5.5		-			
Voids Ratio	1.2739	100	-	200	0.730	5.4		-			
Degree of saturation	102.6	200	-	400	0.28	6		-			
Height (mm)	18.02		-					-			
Diameter (mm)	75.05		-					-			
Particle Density (Mg/m3)	2.65		-			·		-			

Operators	Checked	17/07/2017	Wayne Honey	W. Honey
LG	Approved	18/07/2017	Ben Sharp	

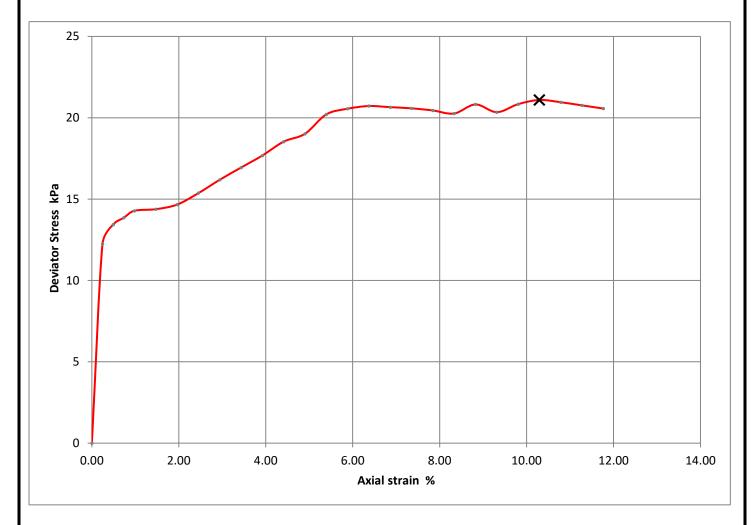
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GJIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	M15
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy organic CLAY	Depth Top (m)	2.00
	Dark grey sarity organic CLAT	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U



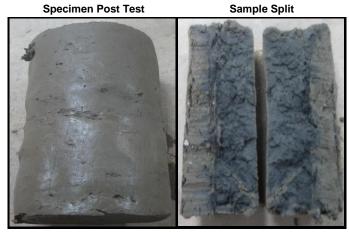
Initial Sample Conditions		Pres	sure R	ange	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	44	0	-	25	2.1	6.1		-			
Bulk Density (Mg/m3)	1.84	25	-	50	0.81	5.2		-			
Dry Density (Mg/m3)	1.28	50	-	100	0.47	4.6		-			
Voids Ratio	1.0685	100	-	200	0.300	9.1		-			
Degree of saturation	108.7	200	-	400	0.19	9.1		-			
Height (mm)	18.2		-					-			
Diameter (mm)	74.96		-					-			
Particle Density (Mg/m3)	2.65		-					-			

Operators	Checked	17/07/2017	Wayne Honey	W. Honey
LG	Approved	18/07/2017	Ben Sharp	

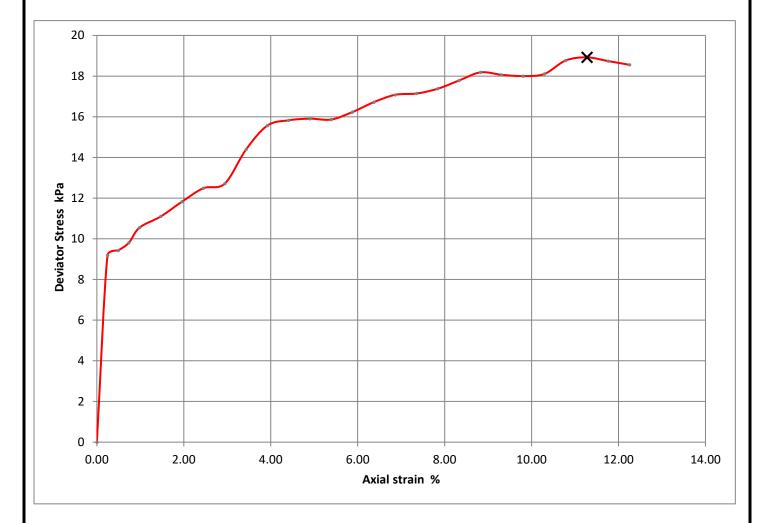
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	35579
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	M15
Site Name	Foynes Port	Sample No.	
Soil Description	Dark grey sandy organic CLAY	Depth Top (m)	6.00
	Dark grey sarity organic CLAT	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U

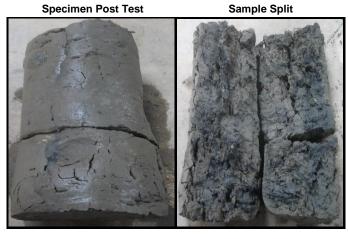


Initial Sample Conditions		Pres	sure R	ange	Mv m2/MN	Cv m2/yr	Pres	sure F	Range	Mv m2/MN	Cv m2/yr
Moisture Content (%)	98	0	-	25	3	10		-			
Bulk Density (Mg/m3)	1.70	25	-	50	1.4	2.4		-			
Dry Density (Mg/m3)	0.86	50	-	100	0.87	3.3		-			
Voids Ratio	2.0846	100	-	200	0.500	3		-			
Degree of saturation	124.9	200	-	400	0.28	4.3		-			
Height (mm)	19.93		-					-			
Diameter (mm)	50.06		-					-			
Particle Density (Mg/m3)	2.65		-					-			

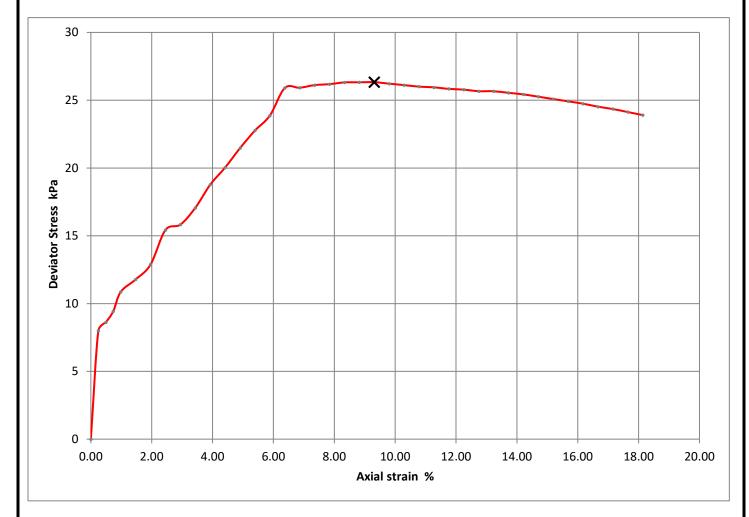

Operators	Checked	17/07/2017	Wayne Honey	W. Honey
LG	Approved	18/07/2017	Ben Sharp	

GSTL	Single Stage Unconsolidated-Undrained Triaxial Test		35579
GOIL	BS 1377 : 1990 Part 7 : 8	Borehole/Pit No.	L04
Site Name	Foynes Port	Sample No.	
Soil Description	Brownish grey sandy silty CLAY	Depth Top (m)	6.50
	Blownish grey sandy sing CLAT	Depth Base (m)	
		Sample Type	UT

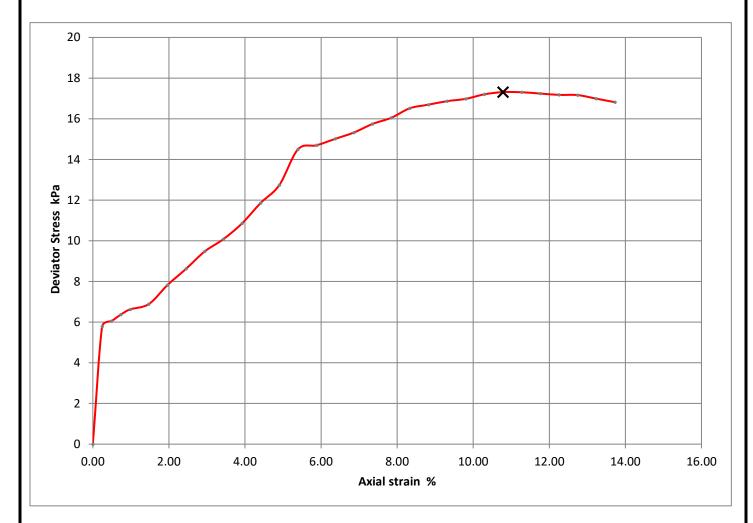

Moisture Content (%)	53
Bulk Density (Mg/m ³)	1.71
Dry Density (Mg/m ³)	1.12
Specimen Length (mm)	204
Specimen Diameter (mm)	104
Cell Pressure (kPa)	180
Deviator Stress (kPa)	21
Undrained Shear Strength (kPa)	11
Failure Strain (%)	10.29
Mode Of Failure	Plastic
Membrane Used/Thickness	Rubber/0.3mm
Rate of Strain (%/min)	1.00



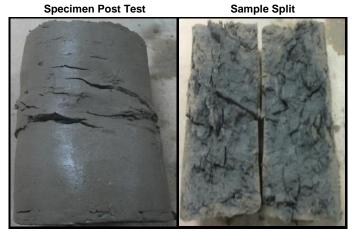
GSTL	Single Stage Unconsolidated-Undrained Triaxial Test		35579
GOIL	BS 1377 : 1990 Part 7 : 8	Borehole/Pit No.	L05
Site Name	Foynes Port	Sample No.	
Soil Description	Drownish grove conductifity CLAV	Depth Top (m)	1.00
	Brownish grey sandy silty CLAY	Depth Base (m)	
		Sample Type	UT

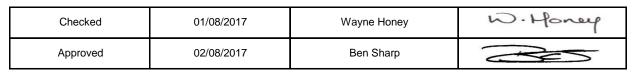

Moisture Content (%)	51
Bulk Density (Mg/m ³)	1.62
Dry Density (Mg/m ³)	1.07
Specimen Length (mm)	204
Specimen Diameter (mm)	104
Cell Pressure (kPa)	70
Deviator Stress (kPa)	19
Undrained Shear Strength (kPa)	9
Failure Strain (%)	11.27
Mode Of Failure	Plastic
Membrane Used/Thickness	Rubber/0.3mm
Rate of Strain (%/min)	1.00

GSTL	Single Stage Unconsolidated-Undrained Triaxial Test		35579
GOIL	BS 1377 : 1990 Part 7 : 8	Borehole/Pit No.	L05
Site Name	Foynes Port	Sample No.	
Soil Description	Brownish grey sandy silty CLAY	Depth Top (m)	4.00
	Blownish grey sandy sing CLAT	Depth Base (m)	
		Sample Type	UT

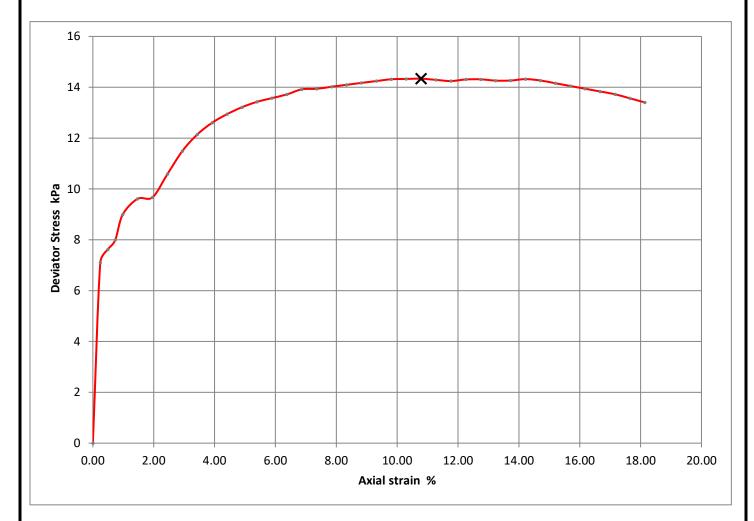

Moisture Content (%)	55
Bulk Density (Mg/m ³)	1.64
Dry Density (Mg/m ³)	1.06
Specimen Length (mm)	204
Specimen Diameter (mm)	104
Cell Pressure (kPa)	130
Deviator Stress (kPa)	26
Undrained Shear Strength (kPa)	13
Failure Strain (%)	9.31
Mode Of Failure	Plastic
Membrane Used/Thickness	Rubber/0.3mm
Rate of Strain (%/min)	1.00

Specimen Post Test	Sample Split

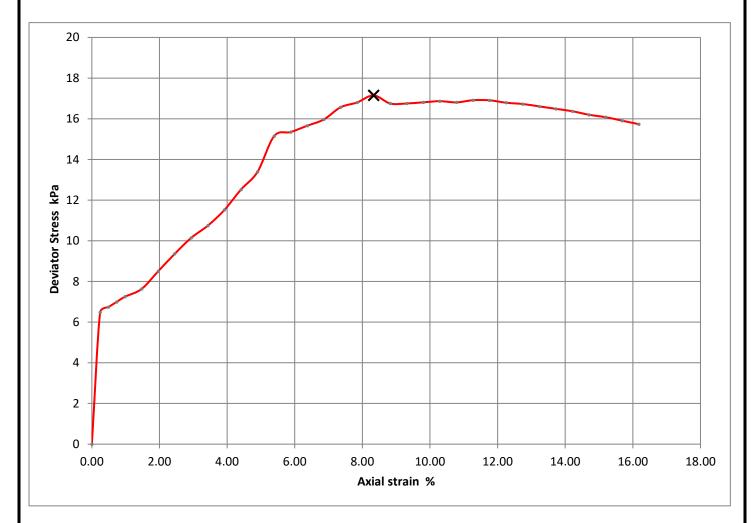

Checked	02/08/2017	Wayne Honey	W. Honey
Approved	03/08/2017	Ben Sharp	



Single Stage Unconsolidated-Undrained Test		Contract Number	35579
GOIL	BS 1377 : 1990 Part 7 : 8	Borehole/Pit No.	M03
Site Name	Foynes Port	Sample No.	
Soil Description	Brownish grey sandy silty CLAY	Depth Top (m)	2.00
	Blownish grey sandy sing CLAT	Depth Base (m)	
		Sample Type	UT


Moisture Content (%)	50
Bulk Density (Mg/m ³)	1.70
Dry Density (Mg/m ³)	1.13
Specimen Length (mm)	204
Specimen Diameter (mm)	104
Cell Pressure (kPa)	90
Deviator Stress (kPa)	17
Undrained Shear Strength (kPa)	9
Failure Strain (%)	10.78
Mode Of Failure	Plastic
Membrane Used/Thickness	Rubber/0.3mm
Rate of Strain (%/min)	1.00

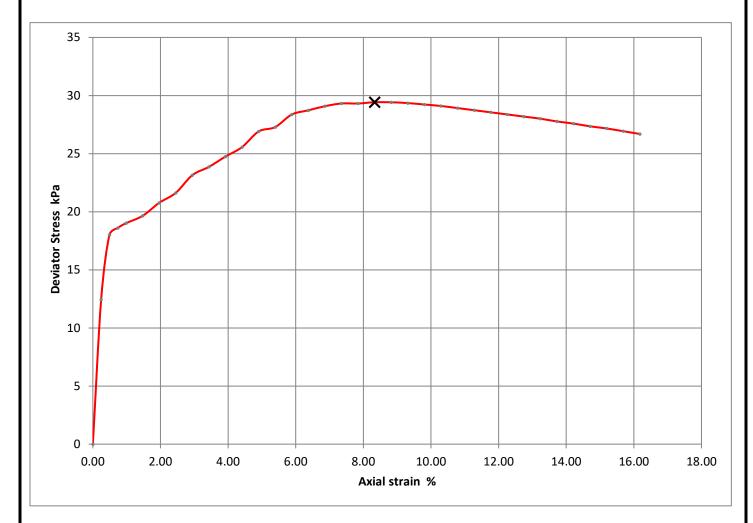
CCTI	Single Stage Unconsolidated-Undrained Triaxial Test	Contract Number	35579
GOIL	BS 1377 : 1990 Part 7 : 8	Borehole/Pit No.	M03
Site Name	Foynes Port	Sample No.	
Soil Description	Brownish grey sandy silty CLAY	Depth Top (m)	4.00
	Blownish grey Sahuy Silty CLAT	Depth Base (m)	
		Sample Type	UT


Moisture Content (%)	51
Bulk Density (Mg/m ³)	1.70
Dry Density (Mg/m³)	1.13
Specimen Length (mm)	204
Specimen Diameter (mm)	104
Cell Pressure (kPa)	130
Deviator Stress (kPa)	14
Undrained Shear Strength (kPa)	7
Failure Strain (%)	10.78
Mode Of Failure	Plastic
Membrane Used/Thickness	Rubber/0.3mm
Rate of Strain (%/min)	1.00

Specimen Post Test	Sample Split

Checked	02/08/2017	Wayne Honey	W. Honey
Approved	03/08/2017	Ben Sharp	

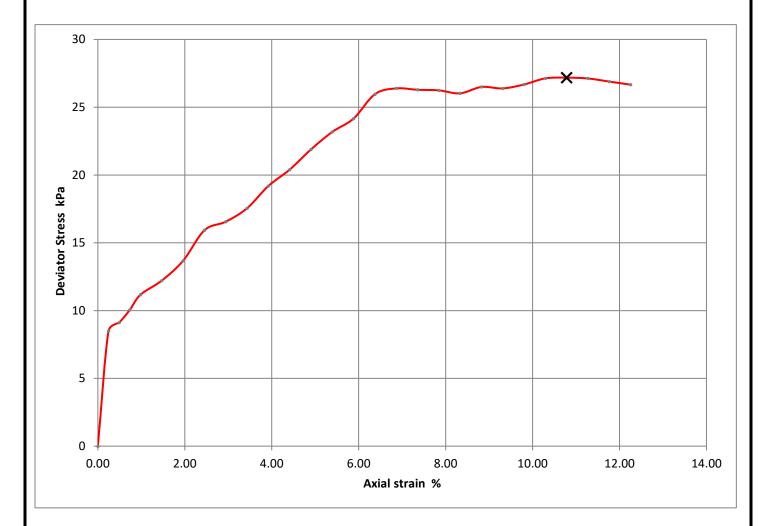
GSTL	Single Stage Unconsolidated-Undrained Triaxial Test	Contract Number	35579
GOIL	BS 1377 : 1990 Part 7 : 8	Borehole/Pit No.	M04
Site Name	Foynes Port	Sample No.	
Soil Description	Brownish grey sandy silty CLAY	Depth Top (m)	3.50
	Blownish grey sandy sing CLAT	Depth Base (m)	
		Sample Type	UT


Moisture Content (%)	57
Bulk Density (Mg/m ³)	1.72
Dry Density (Mg/m ³)	1.09
Specimen Length (mm)	204
Specimen Diameter (mm)	104
Cell Pressure (kPa)	120
Deviator Stress (kPa)	17
Undrained Shear Strength (kPa)	9
Failure Strain (%)	8.33
Mode Of Failure	Plastic
Membrane Used/Thickness	Rubber/0.3mm
Rate of Strain (%/min)	1.00

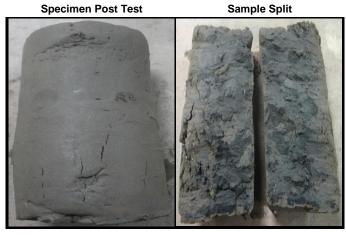
Specimen Post Test	Sample Split

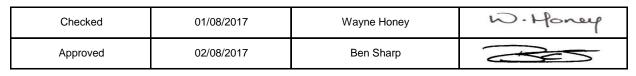
Checked	02/08/2017	Wayne Honey	W. Honey
Approved	03/08/2017	Ben Sharp	

GSTL	Single Stage Unconsolidated-Undrained Triaxial Test	Contract Number	35579
GOIL	BS 1377 : 1990 Part 7 : 8	Borehole/Pit No.	M04
Site Name	Foynes Port	Sample No.	
Soil Description	Brownish grey sandy silty CLAY	Depth Top (m)	4.00
	Blownish grey sandy sing CLAT	Depth Base (m)	
		Sample Type	UT

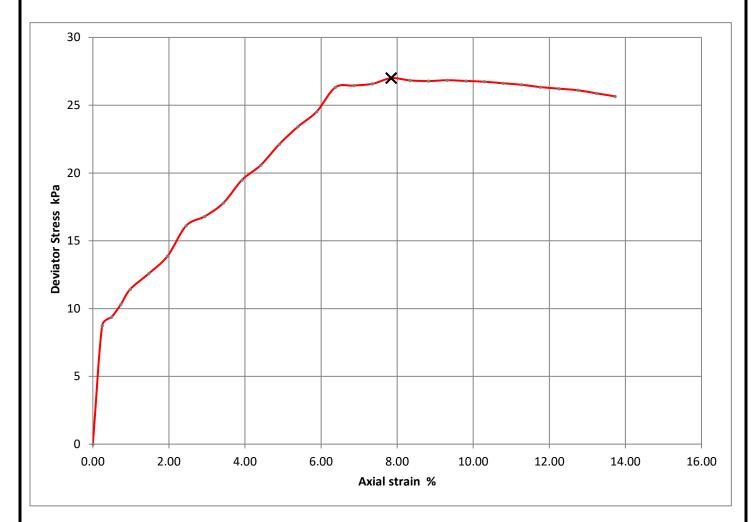

Moisture Content (%)	50
Bulk Density (Mg/m ³)	1.73
Dry Density (Mg/m ³)	1.16
Specimen Length (mm)	204
Specimen Diameter (mm)	104
Cell Pressure (kPa)	130
Deviator Stress (kPa)	29
Undrained Shear Strength (kPa)	15
Failure Strain (%)	8.33
Mode Of Failure	Plastic
Membrane Used/Thickness	Rubber/0.3mm
Rate of Strain (%/min)	1.00

Specimen Post Test	Sample Split

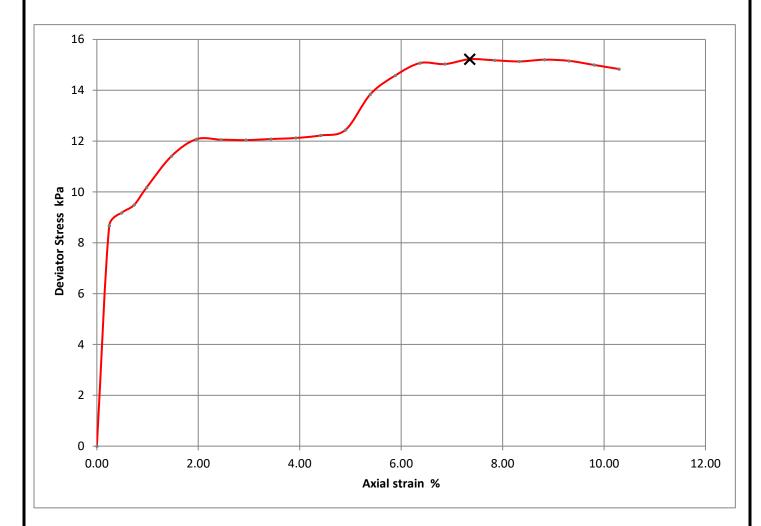

Checked	02/08/2017	Wayne Honey	W. Honey
Approved	03/08/2017	Ben Sharp	



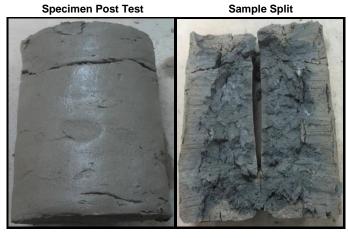
GSTL	Single Stage Unconsolidated-Undrained Triaxial Test		35579
GOIL	BS 1377 : 1990 Part 7 : 8	Borehole/Pit No.	M05
Site Name	Foynes Port	Sample No.	
Soil Description	Brownish grey sandy silty CLAY	Depth Top (m)	3.00
		Depth Base (m)	3.50
		Sample Type	UT


Moisture Content (%)	48
Bulk Density (Mg/m ³)	1.67
Dry Density (Mg/m ³)	1.13
Specimen Length (mm)	204
Specimen Diameter (mm)	104
Cell Pressure (kPa)	110
Deviator Stress (kPa)	27
Undrained Shear Strength (kPa)	14
Failure Strain (%)	10.78
Mode Of Failure	Plastic
Membrane Used/Thickness	Rubber/0.3mm
Rate of Strain (%/min)	1.00

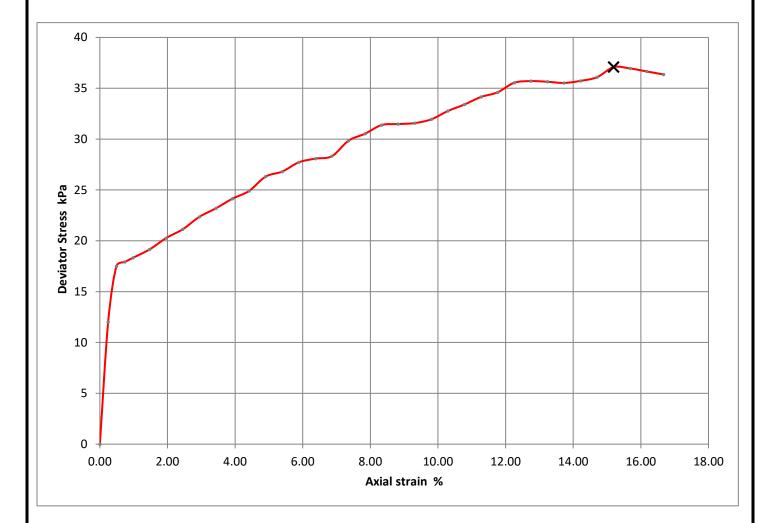
GSTL	Single Stage Unconsolidated-Undrained Triaxial Test	Contract Number	35579
GOIL	BS 1377 : 1990 Part 7 : 8	Borehole/Pit No.	M06
Site Name	Foynes Port	Sample No.	
Soil Description	Brownish grey sandy silty CLAY	Depth Top (m)	4.50
		Depth Base (m)	
		Sample Type	UT

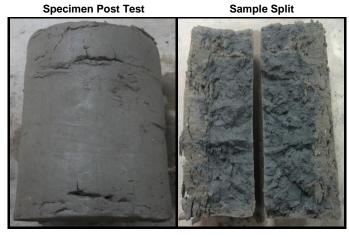

Moisture Content (%)	43
Bulk Density (Mg/m ³)	1.70
Dry Density (Mg/m ³)	1.19
Specimen Length (mm)	204
Specimen Diameter (mm)	104
Cell Pressure (kPa)	130
Deviator Stress (kPa)	27
Undrained Shear Strength (kPa)	13
Failure Strain (%)	7.84
Mode Of Failure	Plastic
Membrane Used/Thickness	Rubber/0.3mm
Rate of Strain (%/min)	1.00

Specimen Post Test	Sample Split

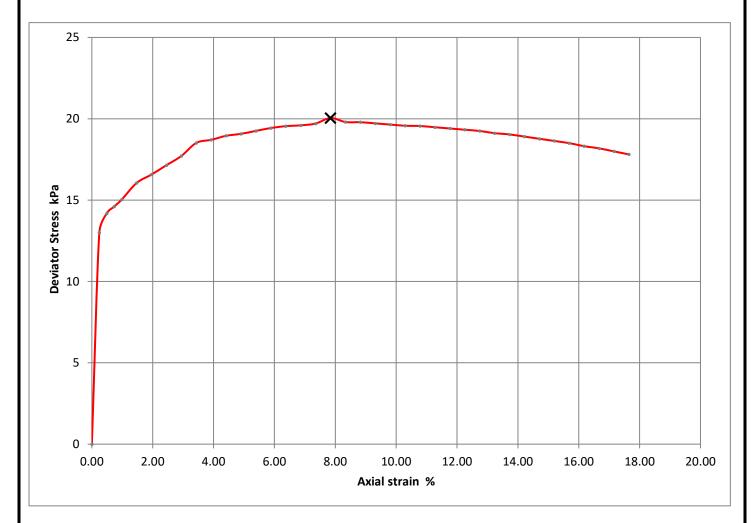

Checked	02/08/2017	Wayne Honey	W. Honey
Approved	03/08/2017	Ben Sharp	

CCTI	Single Stage Unconsolidated-Undrained Triaxial Test	Contract Number	35579
GSIL	BS 1377 : 1990 Part 7 : 8	Borehole/Pit No.	M08
Site Name	Foynes Port	Sample No.	
Soil Description	Droumich grov conductity CLAV	Depth Top (m)	1.00
	Brownish grey sandy silty CLAY	Depth Base (m)	
		Sample Type	UT

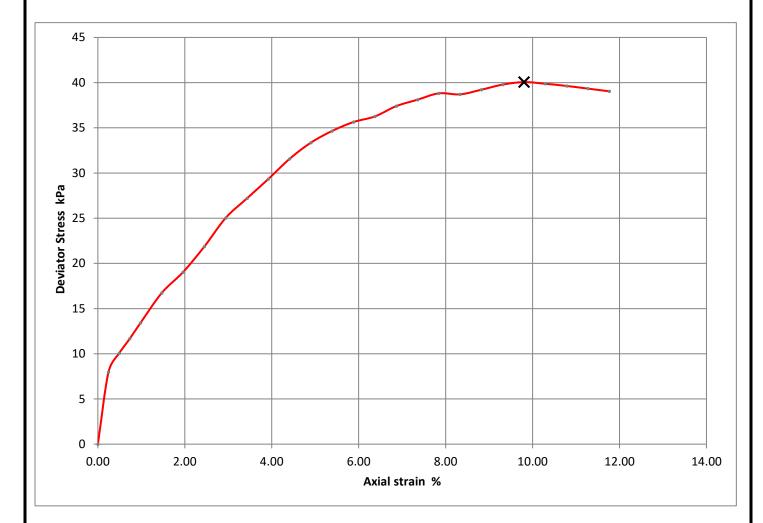

Moisture Content (%)	59
Bulk Density (Mg/m ³)	1.64
Dry Density (Mg/m ³)	1.03
Specimen Length (mm)	204
Specimen Diameter (mm)	104
Cell Pressure (kPa)	70
Deviator Stress (kPa)	15
Undrained Shear Strength (kPa)	8
Failure Strain (%)	7.35
Mode Of Failure	Plastic
Membrane Used/Thickness	Rubber/0.3mm
Rate of Strain (%/min)	1.00



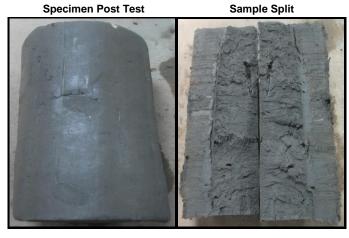
GSTL	Single Stage Unconsolidated-Undrained Triaxial Test		35579
GOIL	BS 1377 : 1990 Part 7 : 8	Borehole/Pit No.	M08
Site Name	Foynes Port	Sample No.	
Soil Description	Drownish grove conductifity CLAV	Depth Top (m)	4.00
	Brownish grey sandy silty CLAY	Depth Base (m)	
		Sample Type	UT

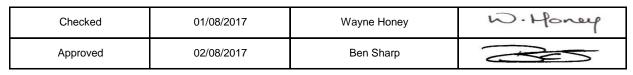

Moisture Content (%)	51
Bulk Density (Mg/m ³)	1.72
Dry Density (Mg/m ³)	1.14
Specimen Length (mm)	204
Specimen Diameter (mm)	104
Cell Pressure (kPa)	130
Deviator Stress (kPa)	37
Undrained Shear Strength (kPa)	19
Failure Strain (%)	15.20
Mode Of Failure	Plastic
Membrane Used/Thickness	Rubber/0.3mm
Rate of Strain (%/min)	1.00

GSTL	Single Stage Unconsolidated-Undrained Triaxial Test		35579
GOIL	BS 1377 : 1990 Part 7 : 8	Borehole/Pit No.	M08
Site Name	Foynes Port	Sample No.	
Soil Description	Brownish grey sandy silty CLAY	Depth Top (m)	5.00
		Depth Base (m)	
		Sample Type	UT


Maiatana Oantanat (0/)	00
Moisture Content (%)	60
Bulk Density (Mg/m ³)	1.72
Dry Density (Mg/m ³)	1.07
Specimen Length (mm)	204
Specimen Diameter (mm)	104
Cell Pressure (kPa)	150
Deviator Stress (kPa)	20
Undrained Shear Strength (kPa)	10
Failure Strain (%)	7.84
Mode Of Failure	Plastic
Membrane Used/Thickness	Rubber/0.3mm
Rate of Strain (%/min)	1.00

Specimen Post Test	Sample Split


Checked	02/08/2017	Wayne Honey	W. Honey
Approved	03/08/2017	Ben Sharp	



GSTL	Single Stage Unconsolidated-Undrained Triaxial Test	Contract Number	35579
GOIL	BS 1377 : 1990 Part 7 : 8	Borehole/Pit No.	M11
Site Name	Foynes Port	Sample No.	
Soil Description	Brownish grey sandy silty CLAY	Depth Top (m)	6.50
	Blownish grey sandy sing CLAT	Depth Base (m)	
		Sample Type	UT

Moisture Content (%)	39
Bulk Density (Mg/m ³)	1.68
Dry Density (Mg/m ³)	1.21
Specimen Length (mm)	204
Specimen Diameter (mm)	104
Cell Pressure (kPa)	180
Deviator Stress (kPa)	40
Undrained Shear Strength (kPa)	20
Failure Strain (%)	9.80
Mode Of Failure	Plastic
Membrane Used/Thickness	Rubber/0.3mm
Rate of Strain (%/min)	1.00

BS 1377: Part 8: 1990

Specimen Details

Borehole		L04
Sample No.		
Depth	m	2
Date		24/07/2017
Disturbed / Undisturbed		Undisturbed

Description of Specimen

· · · · · · · · · · · · · · · · · · ·		
	Grey clayey firm SILT	

Initial Specimen Conditions

zinciai opecinicii conaidono		
Height	mm	204.00
Diameter	mm	104.00
Area	mm²	8494.87
Volume	cm ³	1732.95
Mass	g	2637.50
Dry Mass	g	1709.40
Density	Mg/m ³	1.52
Dry Density	Mg/m ³	0.99
Moisture Content	%	54
Specific Gravity	kN/m³	2.65
(assumed/measured)		assumed

Final Specimen Conditions

opco		
Moisture Content	%	37
Density	Mg/m ³	1.42
Dry Density	Mg/m³	1.03

EP Cons Checked and Approved By

02/08/17 Date

Client Ref

Foynes Port

Contract No

BS 1377: Part 8: 1990

Specimen Details

Borehole		L04
Sample No.		
Depth	m	2
Date		24/07/2017

Test Setup

Date started	21/06/2017
Date Finished	22/07/2017
Top Drain Used	у
Base Drain Used	У
Side Drains Used	у
Pressure System Number	P1
Cell Number	C1

Saturation

Cell Pressure Incr.	kPa	100.00
Back Pressure Incr.	kPa	95.00
Differential Pressure	kPa	5.00
Final Cell Pressure	kPa	400.00
Final Pore Pressure	kPa	400.00
Final B Value		0.91

Consolidation

Effective Pressure	kPa	20.00	45.00	70.00
Cell Pressure	kPa	400.00	400.00	400.00
Back Pressure	kPa	380.00	355.00	330.00
Excess Pore Pressure	kPa	20.00	25.00	22.00
Pore Pressure at End	kPa	380.00	355.00	330.00
Consolidated Volume	cm ³	1703.85	1682.95	1653.05
Consolidated Height	mm	202.86	196.21	188.82
Consolidated Area	mm ²	8399.77	8577.40	8755.29
Vol. Compressibility	m ² /MN	0.04419	0.03455	0.05384
Consolidation Coef.	m²/yr.	0.51026	0.17300	0.04513

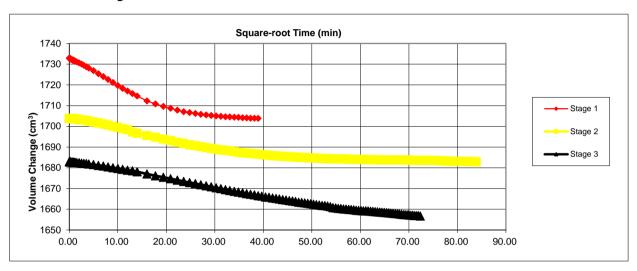
EP Grows Checked and Approved By

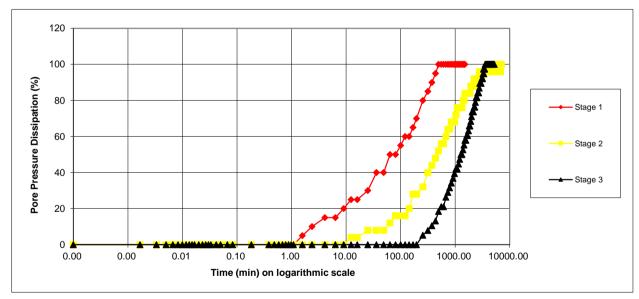
02/08/17 Date

Client Ref

Foynes Port

Contract No




BS 1377: Part 8: 1990

Specimen Details

Borehole		L04
Sample No.		
Depth	m	2
Date		24/07/2017

Consolidation Stage

02/08/17 Date

Client Ref

Foynes Port

Contract No

BS 1377: Part 8: 1990

Specimen Details

Borehole	-	L04
Sample No.		
Depth	m	2
Date		24/07/2017

Shearing

Initial Cell Pressure	kPa	400	400	400
Initial Pore Pressure	kPa	380	355	330
Rate of Strain	mm/min	0.0101	0.0033	0.0008
Max Deviator Stress				
Axial Strain		4.535	7.732	12.303
Axial Stress	kPa	90.353	127.20	175.19
Cor. Deviator stress	kPa	87.367	122.90	170.65
Effective Major Stress	kPa	102.367	149.90	210.65
Effective Minor Stress	kPa	16.000	27.00	40.00
Effective Stress Ratio		6.398	5.552	5.27
s'	kPa	59.183	88.45	125.33
ť'	kPa	43.183	61.45	85.33
Max Effective Priciple	Stress F	Ratio		
Axial Strain		1.878	5.510	8.993
Axial Stress	kPa	71.140	112.917	156.469
Cor. Deviator stress	kPa	70.853	108.843	152.125
Effective Major Stress	kPa	80.853	127.843	179.125
Effective Minor Stress	kPa	10.000	19.000	27.000
Effective Stress Ratio		8.085	6.729	6.634
s'	kPa	45.426	73.422	103.063
t'	kPa	35.426	54.422	76.063
Shear Resistance Angle	degs			45.0
Cohesion c'	kPa			5

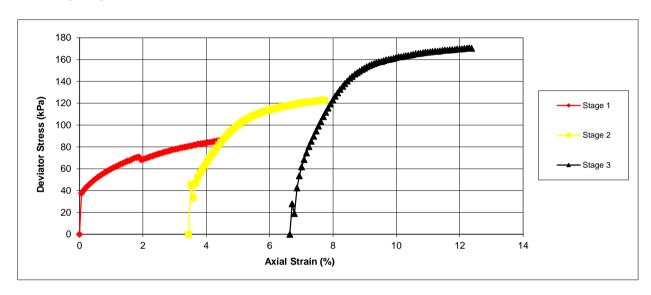
Shecked and Approved By

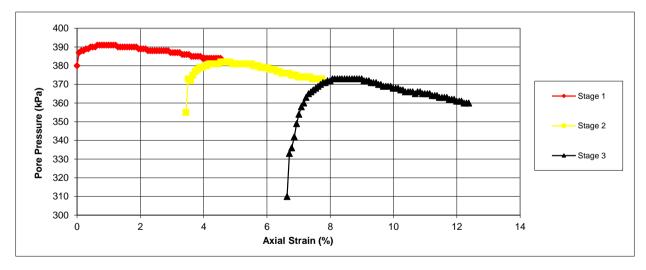
02/08/17 Date

Client Ref

Foynes Port

Contract No




BS 1377: Part 8: 1990

Specimen Details

Borehole		L04
Sample No.		
Depth	m	2
Date		24/07/2017

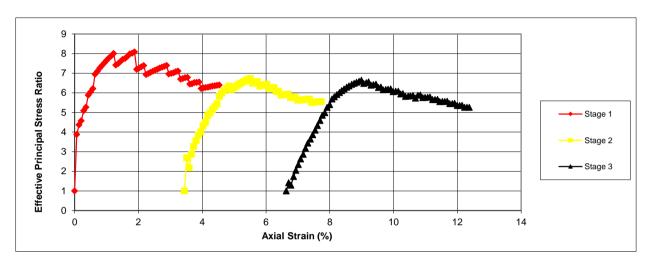
Shearing Stage

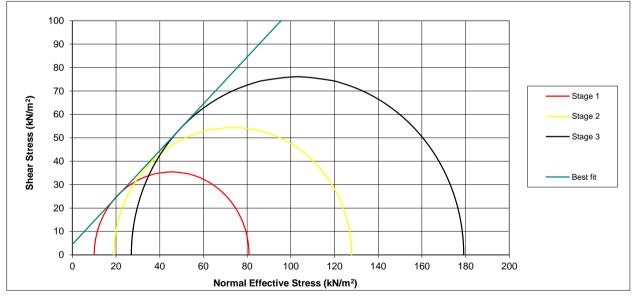
SP Grows Checked and Approved By

02/08/17 Date

Client Ref

Foynes Port


Contract No


BS 1377: Part 8: 1990


Specimen Details

Borehole		L04
Sample No.		
Depth	m	2
Date		24/07/2017

Shearing Stage

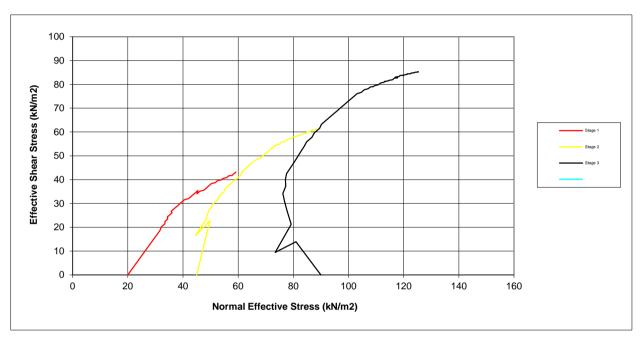
Checked and Approved By

02/08/17 Date

Client Ref

Foynes Port

Contract No



BS 1377: Part 8: 1990

Specimen Details

Borehole		L04
Sample No.		
Depth	m	2
Date		24/07/2017

Shearing Stage

DP Goos Checked and Approved By

02/08/17 Date

Client Ref

Foynes Port

Contract No

Consolidated Undrained Triaxial Compression Test BS 1377 : Part 8 : 1990

Specimen Details

Borehole		L04
Sample No.		
Depth	m	2
Date		24/07/2017

02/08/17 Date

Client Ref

Foynes Port

Contract No

BS 1377: Part 8: 1990

Specimen Details

Borehole		L05
Sample No.		
Depth	m	4
Date		27/07/2017
Disturbed / Undisturbed		Undisturbed

Description of Specimen

Grey slightly brown slightly fine gravelly clayey firm SILT

Initial Specimen Conditions

Height	mm	203.00
Diameter	mm	103.00
Area	mm^2	8332.29
Volume	cm ³	1691.45
Mass	g	2656.30
Dry Mass	g	1700.60
Density	Mg/m ³	1.57
Dry Density	Mg/m ³	1.01
Moisture Content	%	56
Specific Gravity	kN/m ³	2.65
(assumed/	measured)	assumed

Final Specimen Conditions

Moisture Content	%	45
Density	Mg/m ³	1.54
Dry Density	Mg/m³	1.06

E P Gov S Checked and Approved By

02/08/17 Date

Client Ref

Foynes Port

Contract No

BS 1377: Part 8: 1990

Specimen Details

Borehole		L05
Sample No.		
Depth	m	4
Date		27/07/2017

Test Setup

Date started	29/06/2017
Date Finished	26/07/2017
Top Drain Used	у
Base Drain Used	У
Side Drains Used	У
Pressure System Number	P7
Cell Number	C7

Saturation

Cell Pressure Incr.	kPa	100.00
Back Pressure Incr.	kPa	95.00
Differential Pressure	kPa	5.00
Final Cell Pressure	kPa	400.00
Final Pore Pressure	kPa	399.00
Final B Value		0.97

Consolidation

Effective Pressure	kPa	40.00	65.00	90.00
Cell Pressure	kPa	400.00	400.00	400.00
Back Pressure	kPa	360.00	335.00	310.00
Excess Pore Pressure	kPa	38.00	41.00	45.00
Pore Pressure at End	kPa	360.00	335.00	300.00
Consolidated Volume	cm ³	1665.55	1643.65	1610.55
Consolidated Height	mm	201.96	195.04	185.40
Consolidated Area	mm^2	8247.23	8427.54	8687.79
Vol. Compressibility	m^2/MN	0.04253	0.03925	0.06713
Consolidation Coef.	m²/yr.	0.35438	0.14319	0.09308

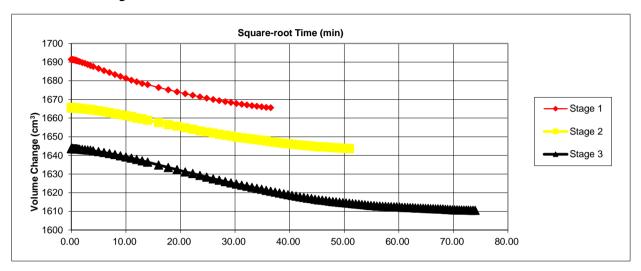
EP Grows Checked and Approved By

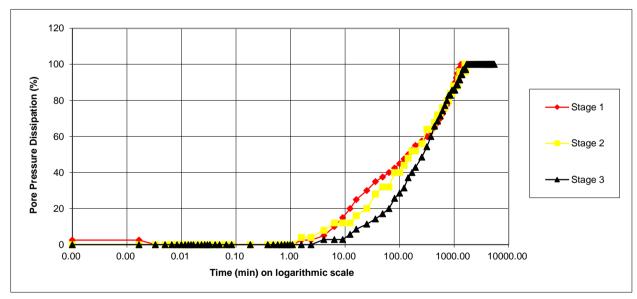
02/08/17 Date

Client Ref

Foynes Port

Contract No




BS 1377: Part 8: 1990

Specimen Details

Borehole		L05
Sample No.		
Depth	m	4
Date		27/07/2017

Consolidation Stage

02/08/17 Date

Client Ref

Foynes Port

Contract No

BS 1377: Part 8: 1990

Specimen Details

Borehole		L05
Sample No.		
Depth	m	4
Date		27/07/2017

Shearing

Initial Cell Pressure	kPa	400	400	400
Initial Pore Pressure	kPa	360	335	300
Rate of Strain	mm/min	0.0071	0.0028	0.0017
Max Deviator Stress				
Axial Strain		4.174	8.561	13.001
Axial Stress	kPa	58.747	90.84	107.06
Cor. Deviator stress	kPa	55.783	86.44	102.47
Effective Major Stress	kPa	88.783	139.44	165.47
Effective Minor Stress	kPa	34.000	53.00	63.00
Effective Stress Ratio		2.611	2.631	2.63
s'	kPa	61.391	96.22	114.24
t'	kPa	27.391	43.22	51.24
Max Effective Priciple	Stress F	Ratio		
Axial Strain		1.911	6.341	10.827
Axial Stress	kPa	47.803	84.174	102.374
Cor. Deviator stress	kPa	47.510	80.007	97.913
Effective Major Stress	kPa	76.510	128.007	155.913
Effective Minor Stress	kPa	29.000	48.000	58.000
Effective Stress Ratio		2.638	2.667	2.688
s'	kPa	52.755	88.003	106.957
t'	kPa	23.755	40.003	48.957
Shear Resistance Angle	degs			27.0
Cohesion c'	kPa			0

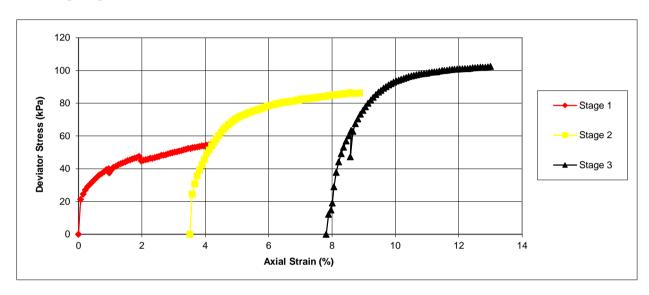
Shecked and Approved By

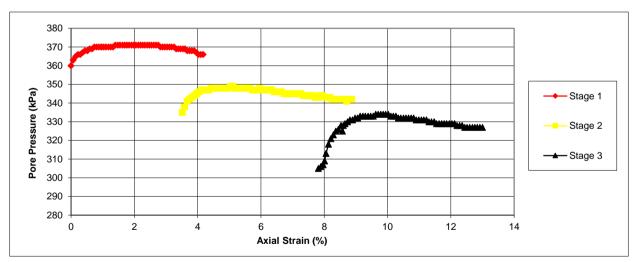
02/08/17 Date

Client Ref

Foynes Port

Contract No




BS 1377: Part 8: 1990

Specimen Details

Borehole		L05
Sample No.		
Depth	m	4
Date		27/07/2017

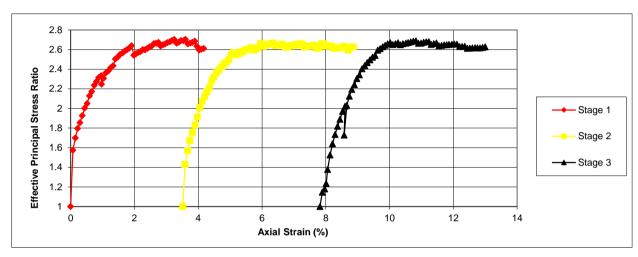
Shearing Stage

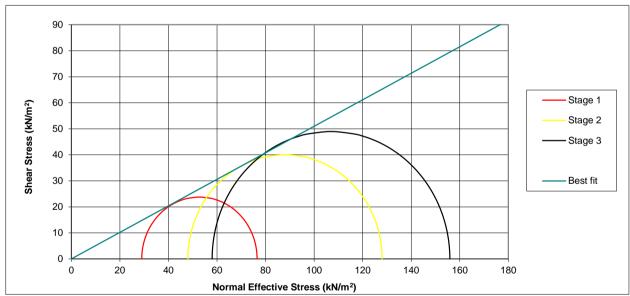
SP Grows Checked and Approved By

02/08/17 Date

Client Ref

Foynes Port


Contract No


BS 1377: Part 8: 1990

Specimen Details

Borehole		L05
Sample No.		
Depth	m	4
Date		27/07/2017

Shearing Stage

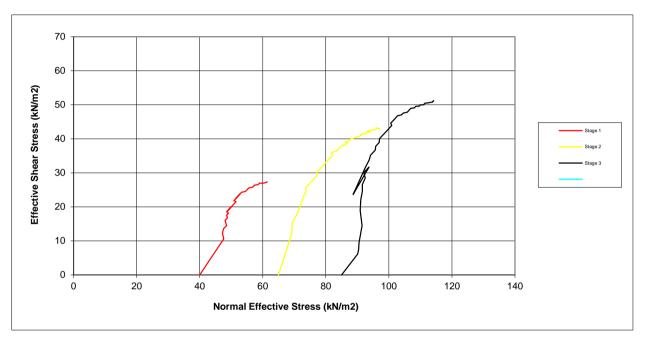
Checked and Approved By

02/08/17 Date

Client Ref

Foynes Port

Contract No



BS 1377: Part 8: 1990

Specimen Details

Borehole		L05
Sample No.		
Depth	m	4
Date		27/07/2017

Shearing Stage

DP Goos Checked and Approved By

02/08/17 Date

Client Ref

Foynes Port

Contract No

Consolidated Undrained Triaxial Compression Test BS 1377 : Part 8 : 1990

Specimen Details

Borehole		L05
Sample No.		
Depth	m	4
Date		27/07/2017

DP Grons **Checked and Approved By**

02/08/17 Date

Client Ref

Foynes Port

Contract No

BS 1377: Part 8: 1990

Specimen Details

Borehole		L05
Sample No.		
Depth	from(m)	8.00
Depth	to(m)	
Date		08/07/2017
Disturbed / Undisturbed		Undisturbed

Description of Specimen

Grey slightly brown silty firm CLAY

Initial Specimen Conditions

zinciai opecinien con		
Height	mm	204.00
Diameter	mm	104.00
Area	mm ²	8494.87
Volume	cm ³	1732.95
Mass	g	2746.40
Dry Mass	g	2053.60
Density	Mg/m ³	1.58
Dry Density	Mg/m ³	1.19
Moisture Content	%	34
Specific Gravity	kN/m ³	2.65
(assumed/r	measured)	assumed

Final Specimen Conditions

Moisture Content	%	18
Density	Mg/m ³	1.44
Dry Density	Mg/m³	1.22

E P Roys Checked and Approved By

02/08/17 Date

Client Ref

Foynes Port

Contract No

BS 1377: Part 8: 1990

Specimen Details

Borehole		L05
Sample No.		
	from(m)	8.00
Depth Depth	to(m)	

Test Setup

Date started	01/07/2017
Date Finished	07/07/2017
Top Drain Used	у
Base Drain Used	у
Side Drains Used	у
Pressure System Number	P2
Cell Number	C2

Saturation

Cell Pressure Incr.	kPa	100.00
Back Pressure Incr.	kPa	95.00
Differential Pressure	kPa	5.00
Final Cell Pressure	kPa	200.00
Final Pore Pressure	kPa	298.00
Final B Value		0.98

Consolidation

Effective Pressure	kPa	80.00	105.00	130.00
Cell Pressure	kPa	300.00	300.00	300.00
Back Pressure	kPa	220.00	195.00	170.00
Excess Pore Pressure	kPa	78.00	72.00	64.00
Pore Pressure at End	kPa	220.00	195.00	170.00
Consolidated Volume	cm ³	1703.75	1693.15	1682.15
Consolidated Height	mm	202.85	195.10	187.22
Consolidated Area	mm ²	8399.44	8678.26	8985.07
Vol. Compressibility	m ² /MN	0.07659	0.03191	0.03822
Consolidation Coef.	m²/yr.	0.99367	0.93400	0.88139

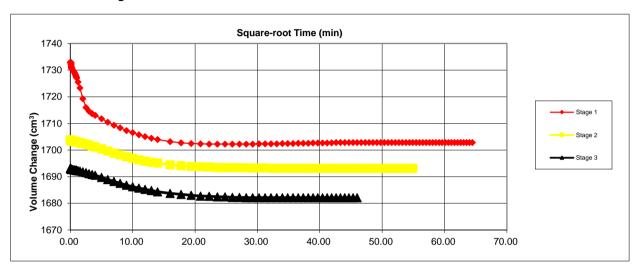
EP Grows Checked and Approved By

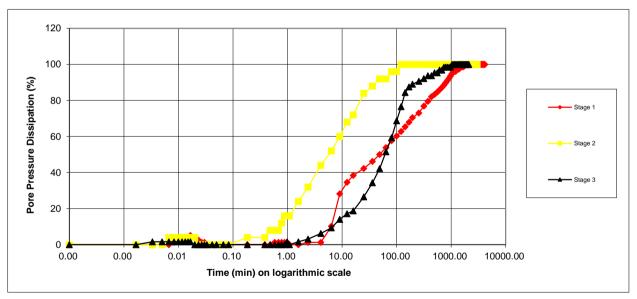
02/08/17 Date

Client Ref

Foynes Port

Contract No




BS 1377: Part 8: 1990

Specimen Details

Borehole		L05	
Sample No.			
Depth	from(m)	8.00	
Depth	to(m)		

Consolidation Stage

02/08/17 Date

Client Ref

Foynes Port

Contract No

BS 1377: Part 8: 1990

Specimen Details

Borehole		L05
Sample No.		
Depth	from(m)	8.00
Depth	to(m)	

Shearing

Initial Cell Pressure	kPa	300	300	300
Initial Pore Pressure	kPa	220	195	170
Rate of Strain	mm/min	0.0196	0.0178	0.0161
Max Deviator Stress				
Axial Strain		5.354	7.794	13.825
Axial Stress	kPa	119.037	121.70	147.84
Cor. Deviator stress	kPa	115.990	117.39	143.21
Effective Major Stress	kPa	186.990	198.39	252.21
Effective Minor Stress	kPa	72.000	81.00	109.00
Effective Stress Ratio		2.597	2.449	2.31
s'	kPa	129.495	139.70	180.60
t'	kPa	57.495	58.70	71.60
Max Effective Priciple	Stress F	latio		
Axial Strain		3.076	6.892	10.172
Axial Stress	kPa	101.511	116.191	135.003
Cor. Deviator stress	kPa	97.634	111.973	142.547
Effective Major Stress	kPa	160.634	186.973	215.590
Effective Minor Stress	kPa	63.000	75.000	85.000
Effective Stress Ratio		2.550	2.493	2.536
s'	kPa	111.817	130.986	150.295
ť'	kPa	48.817	55.986	65.295
Shear Resistance Angle	degs			25.7
Cohesion c'	kPa			0

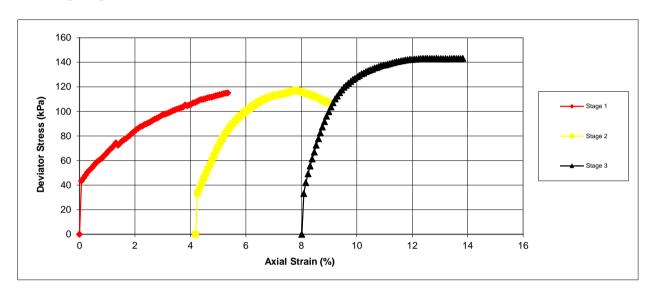
Shecked and Approved By

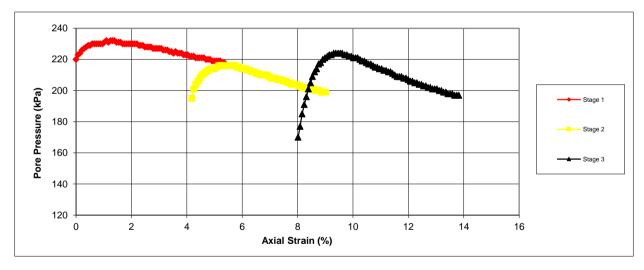
02/08/17 Date

Client Ref

Foynes Port

Contract No




BS 1377: Part 8: 1990

Specimen Details

Borehole		L05
Sample No.		
Depth	from(m)	8.00
Depth	to(m)	

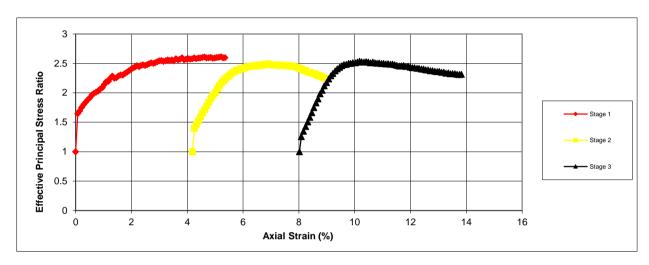
Shearing Stage

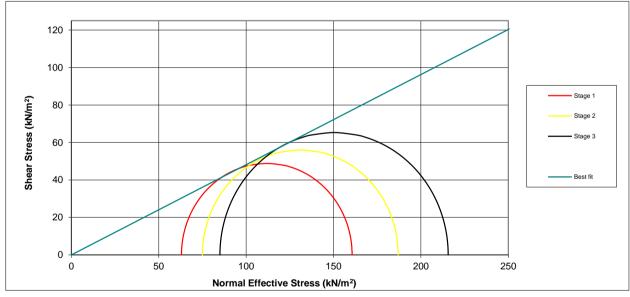
SP Grows Checked and Approved By

02/08/17 Date

Client Ref

Foynes Port


Contract No


BS 1377: Part 8: 1990

Specimen Details

Borehole		L05	
Sample No.			
Depth	from(m)	8.00	
Depth Depth	to(m)		

Shearing Stage

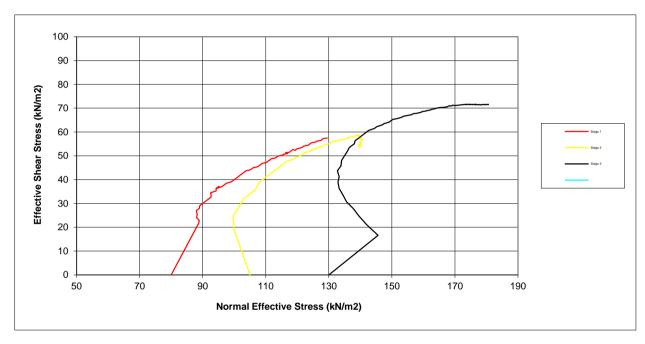
02/08/17 Date

Checked and Approved By

Client Ref

Foynes Port

Contract No



BS 1377: Part 8: 1990

Specimen Details

Borehole		L05	
Sample No.			
Depth	from(m)	8.00	
Depth Depth	to(m)		

Shearing Stage

DP Govs Checked and Approved By

02/08/17 Date

Client Ref

Foynes Port

Contract No

Consolidated Undrained Triaxial Compression Test BS 1377 : Part 8 : 1990

Specimen Details

Borehole		L05	
Sample No.			
Depth Depth	from(m)	8.00	
Depth	to(m)		

DP Grans **Checked and Approved By**

02/08/17 Date

Client Ref

Foynes Port

Contract No

BS 1377: Part 8: 1990

Specimen Details

Borehole		M04
Sample No.		
Depth	m	2.50
Date		08/07/2017
Disturbed / Undisturbed		Undisturbed

Description of Specimen

Brown silty soft CLAY	

Initial Specimen Conditions

Height	mm	196.00
Diameter	mm	103.00
Area	mm^2	8332.29
Volume	cm ³	1633.13
Mass	g	3195.90
Dry Mass	g	2585.10
Density	Mg/m ³	1.96
Dry Density	Mg/m ³	1.58
Moisture Content	%	24
Specific Gravity	kN/m ³	2.65
(assumed,	/measured)	assumed

Final Specimen Conditions

opco		
Moisture Content	%	18
Density	Mg/m ³	1.97
Dry Density	Mg/m³	1.66

EP Cons Checked and Approved By

02/08/17 Date

Client Ref

Foynes Port

Contract No

BS 1377: Part 8: 1990

Specimen Details

Borehole		M04
Sample No.		2.5
Depth	m	2.5
Date		08/07/2017

Test Setup

Date started	01/07/2017
Date Finished	07/07/2017
Top Drain Used	у
Base Drain Used	у
Side Drains Used	у
Pressure System Number	P5
Cell Number	C5

Saturation

Cell Pressure Incr.	kPa	100.00
Back Pressure Incr.	kPa	95.00
Differential Pressure	kPa	5.00
Final Cell Pressure	kPa	400.00
Final Pore Pressure	kPa	392.00
Final B Value		0.97

Consolidation

Effective Pressure	kPa	25.00	50.00	75.00
Cell Pressure	kPa	400.00	400.00	400.00
Back Pressure	kPa	375.00	350.00	325.00
Excess Pore Pressure	kPa	16.00	26.00	30.00
Pore Pressure at End	kPa	375.00	350.00	325.00
Consolidated Volume	cm ³	1607.23	1585.33	1553.83
Consolidated Height	mm	194.96	188.04	178. 4 6
Consolidated Area	mm^2	8244.19	8431.07	8707.55
Vol. Compressibility	m^2/MN	0.04229	0.03893	0.06114
Consolidation Coef.	m²/yr.	0.35438	0.14319	0.09308

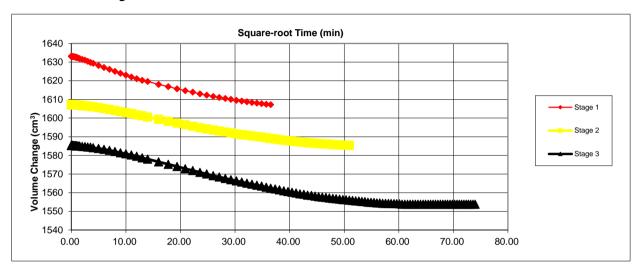
EP Grows Checked and Approved By

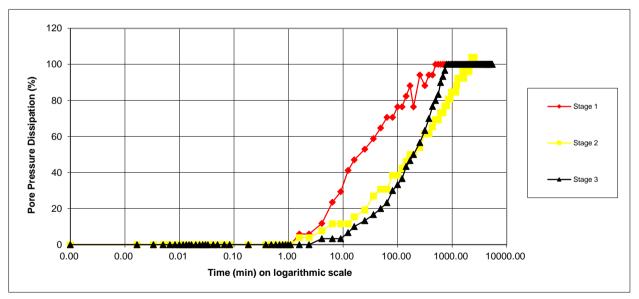
02/08/17 Date

Client Ref

Foynes Port

Contract No




BS 1377: Part 8: 1990

Specimen Details

Borehole		M04
Sample No.		
Depth	m	2.5
Date		08/07/2017

Consolidation Stage

02/08/17 Date

Client Ref

Foynes Port

Contract No

BS 1377: Part 8: 1990

Specimen Details

Borehole		M04
Sample No.		
Depth	m	2.5
Date		08/07/2017

Shearing

Initial Cell Pressure	kPa	400	400	400
Initial Pore Pressure	kPa	375	350	325
Rate of Strain	mm/min	0.0069	0.0027	0.0017
Max Deviator Stress				
Axial Strain		4.324	8.875	13.488
Axial Stress	kPa	45.841	90.62	117.25
Cor. Deviator stress	kPa	42.866	86.19	112.64
Effective Major Stress	kPa	61.866	126.19	165.64
Effective Minor Stress	kPa	20.000	40.00	53.00
Effective Stress Ratio		3.093	3.155	3.13
s'	kPa	40.933	83.10	109.32
t'	kPa	20.933	43.10	56.32
Max Effective Priciple Stress Ratio				
Axial Strain		1.980	6.572	11.230
Axial Stress	kPa	37.333	84.047	112.220
Cor. Deviator stress	kPa	37.036	79.856	107.735
Effective Major Stress	kPa	52.036	114.856	155.735
Effective Minor Stress	kPa	15.000	35.000	48.000
Effective Stress Ratio		3.469	3.282	3.244
s'	kPa	33.518	74.928	101.868
t'	kPa	18.518	39.928	53.868
Shear Resistance Angle	degs			31.0
Cohesion c'	kPa			2

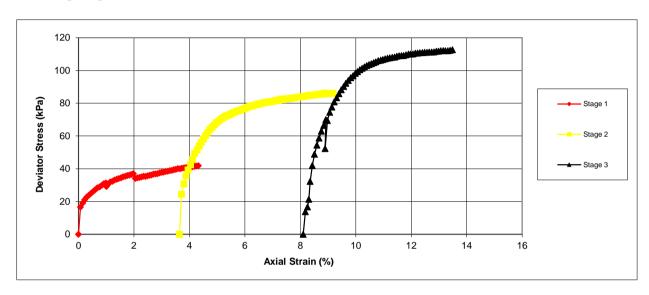
Shecked and Approved By

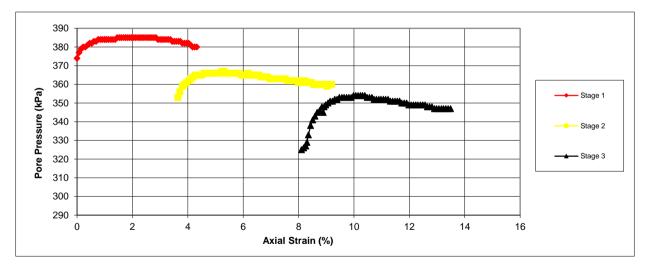
02/08/17 Date

Client Ref

Foynes Port

Contract No




BS 1377: Part 8: 1990

Specimen Details

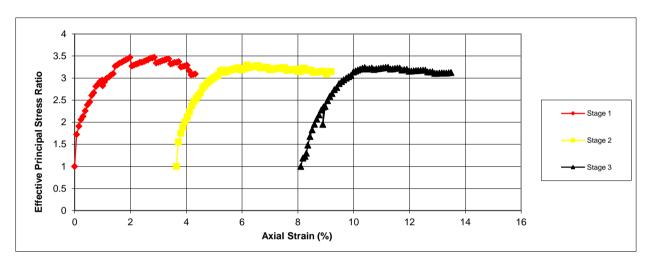
Borehole		M04
Sample No.		
Depth	m	2.5
Date		08/07/2017

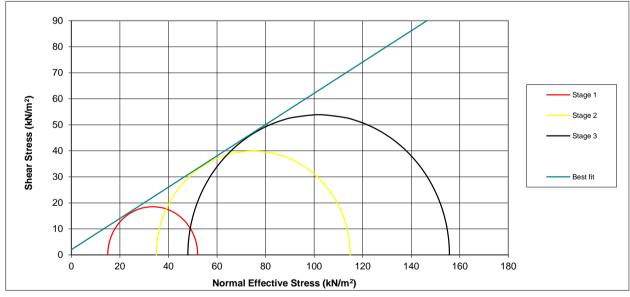
Shearing Stage

02/08/17 Date

Client Ref

Foynes Port


Contract No


BS 1377: Part 8: 1990

Specimen Details

Borehole		M04
Sample No.		
Depth	m	2.5
Date		08/07/2017

Shearing Stage

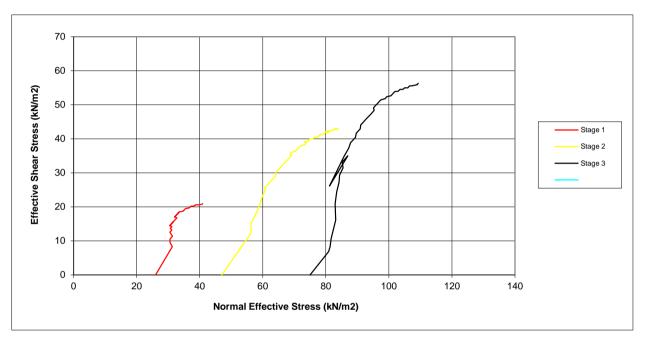
Checked and Approved By

02/08/17 Date

Client Ref

Foynes Port

Contract No



BS 1377: Part 8: 1990

Specimen Details

Borehole		M04
Sample No.		
Depth	m	2.5
Date		08/07/2017

Shearing Stage

DP Goos Checked and Approved By

02/08/17 Date

Client Ref

Foynes Port

Contract No

Consolidated Undrained Triaxial Compression Test BS 1377 : Part 8 : 1990

Specimen Details

Borehole		M04
Sample No.		
Depth	m	2.5
Date		08/07/2017

DP Grans **Checked and Approved By**

02/08/17 Date

Client Ref

Foynes Port

Contract No

BS 1377: Part 8: 1990

Specimen Details

Borehole		M04
Sample No.		
Depth	m	4
Date		28/07/2017
Disturbed / Undisturbed		Undisturbed

Description of Specimen

ı	the first of the control of the cont
	Grey clayey firm SILT
	Grey clayey IIIII SIET

Initial Specimen Conditions

Height	mm	204.00	
Diameter	mm	104.00	
Area	mm ²	8494.87	
Volume	cm ³	1732.95	
Mass	g	3370.00	
Dry Mass	g	2541.80	
Density	Mg/m ³	1.94	
Dry Density	Mg/m ³	1.47	
Moisture Content	%	33	
Specific Gravity	kN/m ³	2.65	
(assumed/measured)		assumed	

Final Specimen Conditions

· ····································		
Moisture Content	%	27
Density	Mg/m ³	1.94
Dry Density	Mg/m³	1.53

EP Cons Checked and Approved By

02/08/17 Date

Client Ref

Foynes Port

Contract No

BS 1377: Part 8: 1990

Specimen Details

Borehole		M04
Sample No.		
Depth	m	4
Date		28/07/2017

Test Setup

Date started	29/06/2017
Date Finished	26/07/2017
Top Drain Used	у
Base Drain Used	у
Side Drains Used	у
Pressure System Number	P11
Cell Number	C11

Saturation

Cell Pressure Incr.	kPa	100.00
Back Pressure Incr.	kPa	95.00
Differential Pressure	kPa	5.00
Final Cell Pressure	kPa	300.00
Final Pore Pressure	kPa	297.00
Final B Value		0.97

Consolidation

Effective Pressure	kPa	40.00	65.00	90.00
Cell Pressure	kPa	300.00	300.00	300.00
Back Pressure	kPa	260.00	235.00	210.00
Excess Pore Pressure	kPa	37.00	29.00	33.00
Pore Pressure at End	kPa	260.00	235.00	210.00
Consolidated Volume	cm ³	1695.55	1679.85	1662.45
Consolidated Height	mm	202.53	195.46	188.56
Consolidated Area	mm^2	8372.64	8594.31	8816.71
Vol. Compressibility	m^2/MN	0.08301	0.03940	0.04932
Consolidation Coef.	m²/yr.	0.92191	0.41331	0.25295

DP Glors

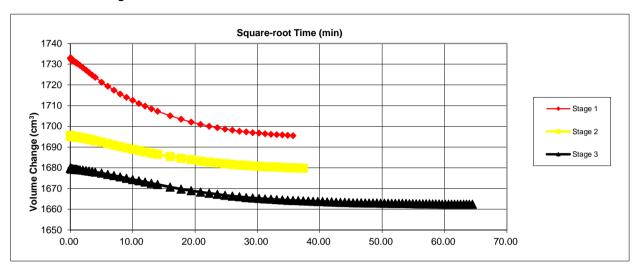
Checked and Approved By

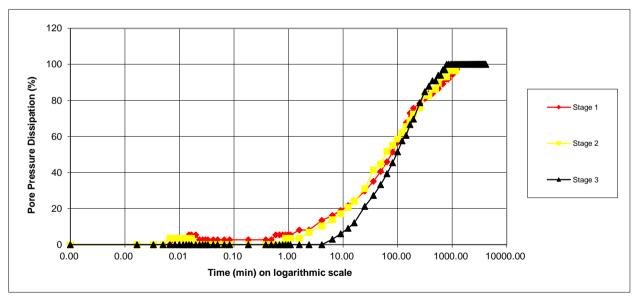
02/08/17 Date

Client Ref

Foynes Port

Contract No




BS 1377: Part 8: 1990

Specimen Details

Borehole		M04
Sample No.		
Depth	m	4
Date		28/07/2017

Consolidation Stage

02/08/17 Date

Client Ref

Foynes Port

Contract No

BS 1377: Part 8: 1990

Specimen Details

Borehole	-	M04
Sample No.		
Depth	m	4
Date		28/07/2017

Shearing

Silearing				
Initial Cell Pressure	kPa	300	300	300
Initial Pore Pressure	kPa	260	235	210
Rate of Strain	mm/min	0.0182	0.0079	0.0046
Max Deviator Stress				
Axial Strain		4.656	7.548	11.965
Axial Stress	kPa	111.712	191.88	229.22
Cor. Deviator stress	kPa	108.717	187.59	224.70
Effective Major Stress	kPa	145.717	262.59	327.70
Effective Minor Stress	kPa	38.000	75.00	103.00
Effective Stress Ratio		3.835	3.501	3.18
s'	kPa	91.858	168.80	215.35
t'	kPa	53.858	93.80	112.35
Max Effective Priciple	Stress R	Ratio		
Axial Strain		3.659	5.629	8.524
Axial Stress	kPa	99.303	162.623	192.556
Cor. Deviator stress	kPa	95.382	158.536	188.239
Effective Major Stress	kPa	129.382	221.536	262.239
Effective Minor Stress	kPa	34.000	63.000	74.000
Effective Stress Ratio		3.805	3.516	3.544
s'	kPa	81.691	142.268	168.120
ť'	kPa	47.691	79.268	94.120
Shear Resistance Angle	degs			32.5
Cohesion c'	kPa			4
L				

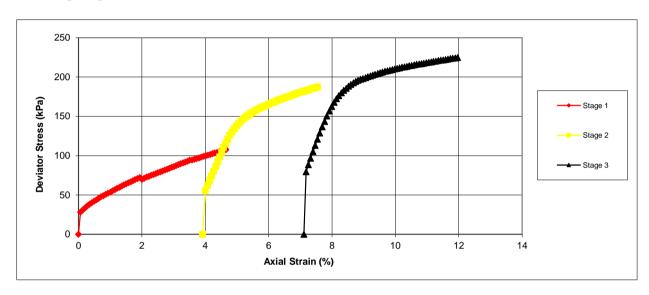
Shecked and Approved By

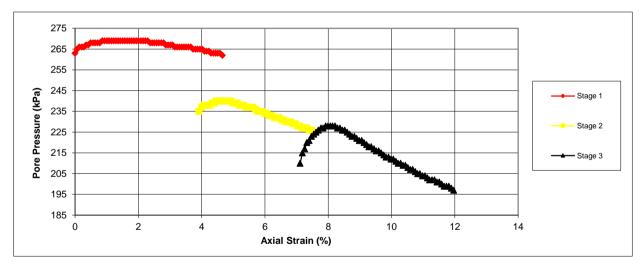
02/08/17 Date

Client Ref

Foynes Port

Contract No




BS 1377: Part 8: 1990

Specimen Details

Borehole		M04
Sample No.		
Depth	m	4
Date		28/07/2017

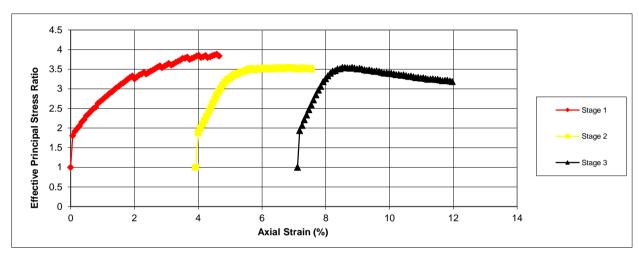
Shearing Stage

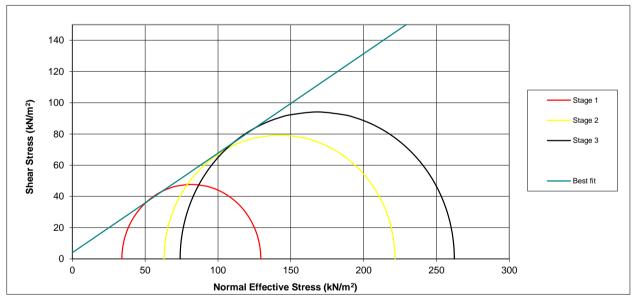
SP Grows Checked and Approved By

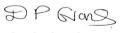
02/08/17 Date

Client Ref

Foynes Port


Contract No


BS 1377: Part 8: 1990


Specimen Details

Borehole		M04
Sample No.		
Depth	m	4
Date		28/07/2017

Shearing Stage

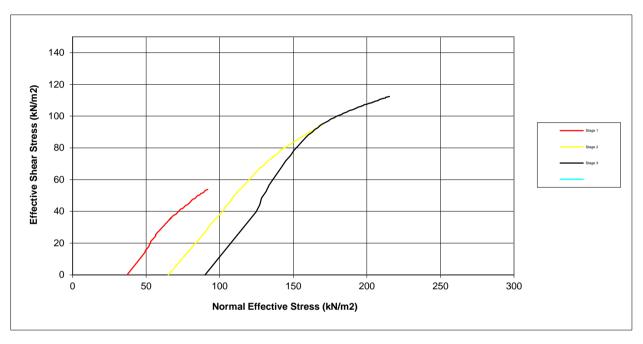
Checked and Approved By

02/08/17 Date

Client Ref

Foynes Port

Contract No



BS 1377: Part 8: 1990

Specimen Details

Borehole		M04
Sample No.		
Depth	m	4
Date		28/07/2017

Shearing Stage

Checked and Approved By

02/08/17 Date

Client Ref

Foynes Port

Contract No

Consolidated Undrained Triaxial Compression Test BS 1377 : Part 8 : 1990

Specimen Details

Borehole		M04
Sample No.		
Depth	m	4
Date		28/07/2017

DP Grans **Checked and Approved By**

02/08/17 Date

Client Ref

Foynes Port

Contract No

BS 1377: Part 8: 1990

Specimen Details

Borehole		M06
Sample No.		UT
Depth	from(m)	4.50
Depth	to(m)	
Date		18/07/2017
Disturbed / Undisturbed		Undisturbed

Description of Specimen

Grey clayey soft SILT

Initial Specimen Conditions

Height	mm	204.00
Diameter	mm	104.00
Area	mm ²	8494.87
Volume	cm ³	1732.95
Mass	g	3318.80
Dry Mass	g	2541.80
Density	Mg/m ³	1.92
Dry Density	Mg/m ³	1.47
Moisture Content	%	31
Specific Gravity	kN/m ³	2.65
(assumed/r	neasured)	assumed

Final Specimen Conditions

Maiatawa Cambant	0/	27
Moisture Content	%	2/
Density	Mg/m ³	2.17
Dry Density	Mg/m³	1.71

E P Roys Checked and Approved By

02/08/17 Date

Client Ref

GS7L GEO SITE & TESTING SERVICES LTD **Foynes Port**

Contract No

BS 1377: Part 8: 1990

Specimen Details

Borehole		M06	
Sample No.		UT	
Depth	from(m)	4.50	
Depth Depth	to(m)		

Test Setup

Date started	29/06/2017
Date Finished	17/07/2017
Top Drain Used	у
Base Drain Used	у
Side Drains Used	у
Pressure System Number	P8
Cell Number	C8

Saturation

Cell Pressure Incr.	kPa	100.00
Back Pressure Incr.	kPa	95.00
Differential Pressure	kPa	5.00
Final Cell Pressure	kPa	200.00
Final Pore Pressure	kPa	193.00
Final B Value		0.99

Consolidation

Effective Pressure	kPa	45.00	75.00	95.00
Cell Pressure	kPa	200.00	200.00	200.00
Back Pressure	kPa	155.00	125.00	105.00
Excess Pore Pressure	kPa	38.00	53.00	70.00
Pore Pressure at End	kPa	155.00	125.00	105.00
Consolidated Volume	cm ³	1547.75	1506.55	1482.45
Consolidated Height	mm	196.73	192.38	183.27
Consolidated Area	mm^2	7889.64	7832.49	8089.58
Vol. Compressibility	m^2/MN	0.68948	0.21295	0.15235
Consolidation Coef.	m²/yr.	3.52557	0.62357	6.07335

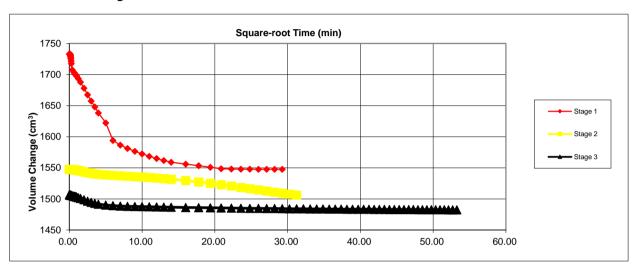
EP Grows Checked and Approved By

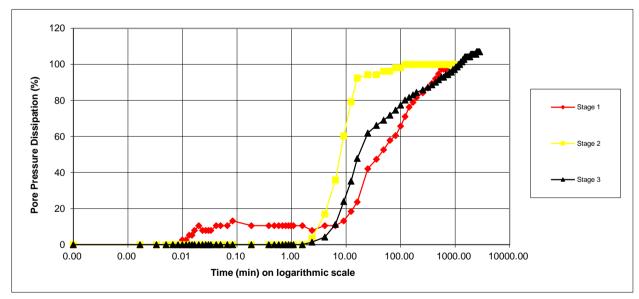
02/08/17 Date

Client Ref

Foynes Port

Contract No




BS 1377: Part 8: 1990

Specimen Details

Borehole		M06
Sample No.		UT
Depth	from(m)	4 .50
Depth Depth	to(m)	

Consolidation Stage

02/08/17 Date

Client Ref

Foynes Port

Contract No

BS 1377: Part 8: 1990

Specimen Details

Borehole		M06	
Sample No.		UT	
Depth	from(m)	4.50	
Depth	to(m)		

Shearing

Initial Cell Pressure	kPa	200	200	200		
Initial Pore Pressure	kPa	155	125	105		
Rate of Strain	mm/min	0.0676	0.0117	0.1085		
Max Deviator Stress						
Axial Strain		5.815	10.095	14.709		
Axial Stress	kPa	259.170	439.50	498.48		
Cor. Deviator stress	kPa	256.088	434.95	475.80		
Effective Major Stress	kPa	334.088	579.95	640.80		
Effective Minor Stress	kPa	79.000	145.00	165.00		
Effective Stress Ratio		4.229	4.000	3.88		
s'	kPa	206.5 44	362.48	402.90		
t'	kPa	127.544	217.48	237.90		
Max Effective Priciple Stress Ratio						
Axial Strain		5.815	9.944	13.083		
Axial Stress	kPa	259.170	434.982	473.053		
Cor. Deviator stress	kPa	255.088	430.447	468.470		
Effective Major Stress	kPa	334.088	573. 44 7	616.470		
Effective Minor Stress	kPa	79.000	143.000	148.000		
Effective Stress Ratio		4.229	4.010	4.165		
s'	kPa	206.5 44	358.223	382.235		
t'	kPa	127.544	215.223	234.235		
Shear Resistance Angle	degs			38.0		
Cohesion c'	kPa			0		

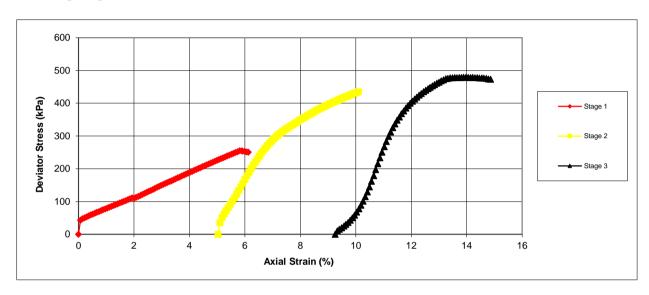
Shecked and Approved By

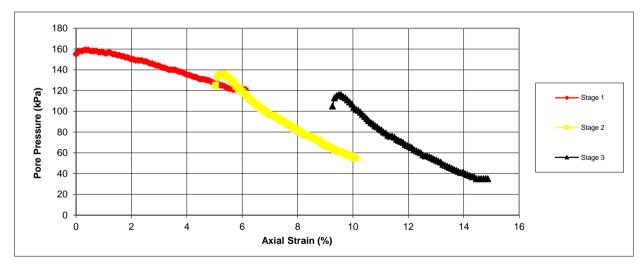
02/08/17 Date

Client Ref

Foynes Port

Contract No




BS 1377: Part 8: 1990

Specimen Details

Borehole	M06
Sample No.	UT
Depth fro	om(m) 4.50
Depth from to	(m)

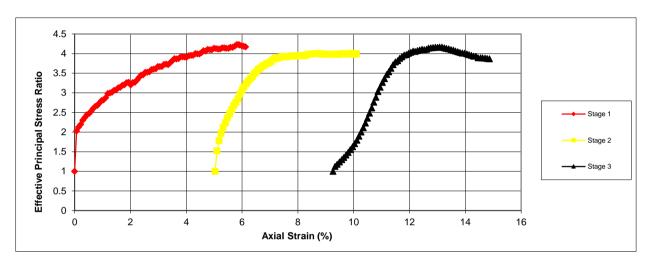
Shearing Stage

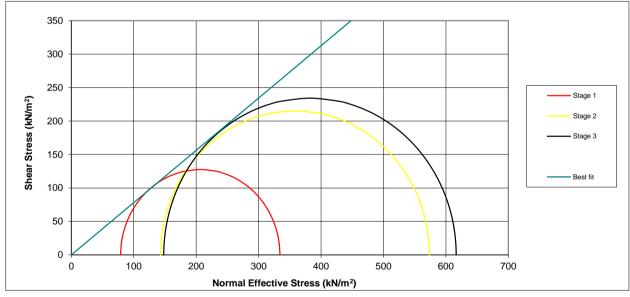
SP Grows Checked and Approved By

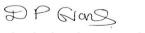
02/08/17 Date

Client Ref

Foynes Port


Contract No


BS 1377: Part 8: 1990


Specimen Details

Borehole		M06
Sample No.		UT
Depth	from(m)	4.50
Depth Depth	to(m)	

Shearing Stage

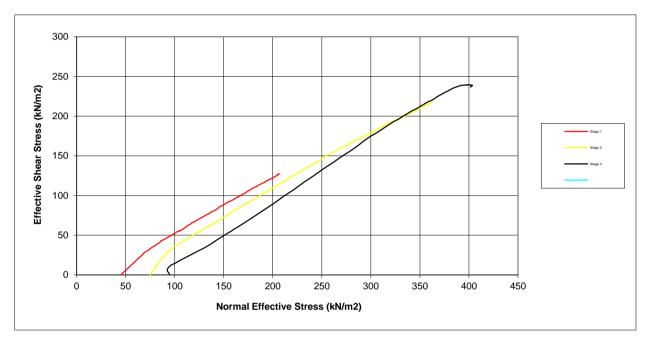
02/08/17 Date

Checked and Approved By

Client Ref

Foynes Port

Contract No



BS 1377: Part 8: 1990

Specimen Details

Borehole		M06
Sample No.		UT
Depth Depth	from(m)	4.50
Depth	to(m)	

Shearing Stage

DP Goos Checked and Approved By

02/08/17 Date

Client Ref

Foynes Port

Contract No

Consolidated Undrained Triaxial Compression Test BS 1377 : Part 8 : 1990

Specimen Details

Borehole		M06	
Sample No.		UT	
Depth	from(m)	4.50	
Depth	to(m)		

02/08/17 Date

Client Ref

Foynes Port

Contract No

BS 1377: Part 8: 1990

Specimen Details

Borehole		M08
Sample No.		
Depth	m	5
Date		28/07/2017
Disturbed / Undisturbed		Undisturbed

Description of Specimen

1	
	Brown clayey firm SILT
	• •

Initial Specimen Conditions

Height	mm	203.00		
Diameter	mm	103.00		
Area	mm^2	8332.29		
Volume	cm ³	1691.45		
Mass	g	2798.40		
Dry Mass	g	1887.00		
Density	Mg/m ³	1.65		
Dry Density	Mg/m ³	1.12		
Moisture Content	%	48		
Specific Gravity	kN/m ³	2.65		
(assumed/measured)		assumed		

Final Specimen Conditions

· ········ openiment communities				
Moisture Content	%	36		
Density	Mg/m ³	1.56		
Dry Density	Mg/m³	1.15		

EP Cons Checked and Approved By

02/08/17 Date

Client Ref

Foynes Port

Contract No

BS 1377: Part 8: 1990

Specimen Details

Borehole		M08
Sample No.		
Depth	m	5
Date		28/07/2017

Test Setup

Date started	29/06/2017
Date Finished	27/07/2017
Top Drain Used	у
Base Drain Used	у
Side Drains Used	у
Pressure System Number	P4
Cell Number	C4

Saturation

Cell Pressure Incr.	kPa	100.00
Back Pressure Incr.	kPa	95.00
Differential Pressure	kPa	5.00
Final Cell Pressure	kPa	300.00
Final Pore Pressure	kPa	300.00
Final B Value		0.95

Consolidation

Effective Pressure	kPa	50.00	75.00	100.00
Cell Pressure	kPa	300.00	300.00	300.00
Back Pressure	kPa	250.00	225.00	200.00
Excess Pore Pressure	kPa	50.00	50.00	48.00
Pore Pressure at End	kPa	250.00	225.00	200.00
Consolidated Volume	cm ³	1678.05	1661.45	1645.55
Consolidated Height	mm	202.46	195.65	188.26
Consolidated Area	mm^2	8288.28	8492.04	8741.03
Vol. Compressibility	m^2/MN	0.03169	0.04397	0.04785
Consolidation Coef.	m²/yr.	7.35447	0.47716	0.15250

DP Glors

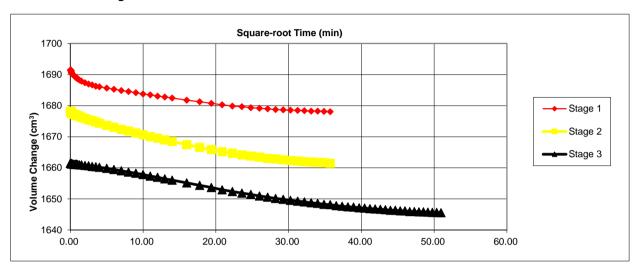
Checked and Approved By

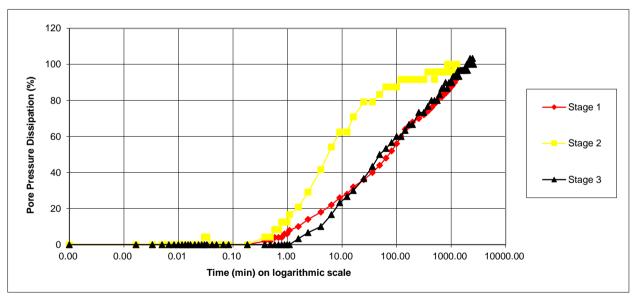
02/08/17 Date

Client Ref

Foynes Port

Contract No




BS 1377: Part 8: 1990

Specimen Details

Borehole		M08
Sample No.		
Depth	m	5
Date		28/07/2017

Consolidation Stage

02/08/17 Date

Client Ref

Foynes Port

Contract No

BS 1377: Part 8: 1990

Specimen Details

Borehole		M08
Sample No.		
Depth	m	5
Date		28/07/2017

Shearing

Initial Cell Pressure	kPa	300	300	300
Initial Pore Pressure	kPa	250	225	200
Rate of Strain	mm/min	0.1479	0.0093	0.0029
Max Deviator Stress				
Axial Strain		3.843	7.470	11.003
Axial Stress	kPa	52.787	83.07	101.79
Cor. Deviator stress	kPa	49.849	78.78	97.32
Effective Major Stress	kPa	86.849	134.78	169.32
Effective Minor Stress	kPa	38.000	56.00	72.00
Effective Stress Ratio		2.285	2.407	2.35
s'	kPa	62.424	95.39	120.66
t'	kPa	24.424	39.39	48.66
Max Effective Priciple	Stress R	Ratio		
Axial Strain		1.408	6.580	10.153
Axial Stress	kPa	45.202	80.132	99.821
Cor. Deviator stress	kPa	45.054	75.940	95.401
Effective Major Stress	kPa	78.054	129.940	165.401
Effective Minor Stress	kPa	33.000	54.000	70.000
Effective Stress Ratio		2.365	2.406	2.363
s'	kPa	55.527	91.970	117.700
t'	kPa	22.527	37.970	47.700
Shear Resistance Angle	degs			24.0
Cohesion c'	kPa			0

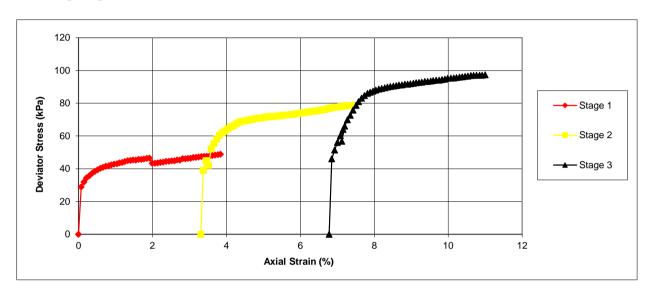
Shecked and Approved By

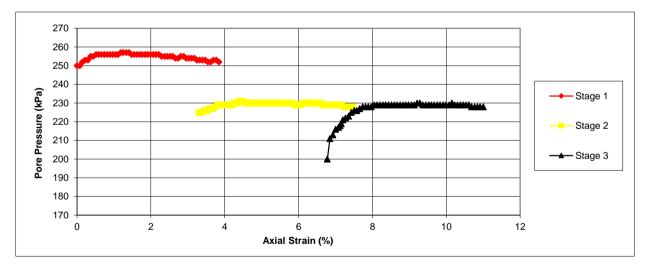
02/08/17 Date

Client Ref

Foynes Port

Contract No




BS 1377: Part 8: 1990

Specimen Details

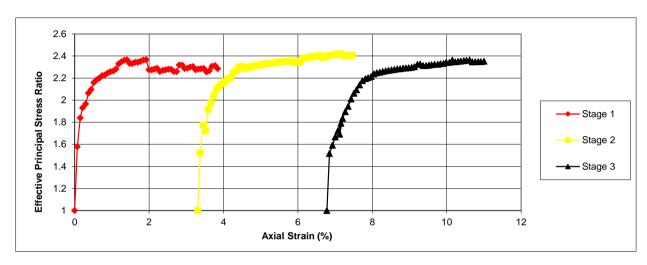
Borehole		M08
Sample No.		
Depth	m	5
Date		28/07/2017

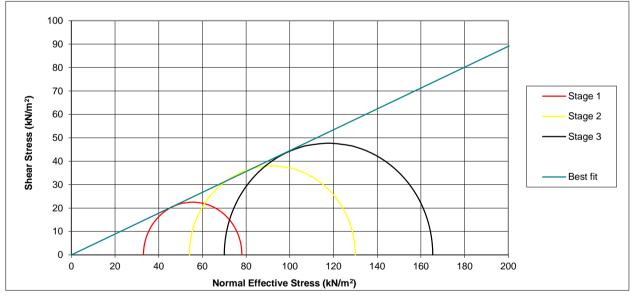
Shearing Stage

02/08/17 Date

Client Ref

Foynes Port


Contract No


BS 1377: Part 8: 1990


Specimen Details

Borehole		M08
Sample No.		
Depth	m	5
Date		28/07/2017

Shearing Stage

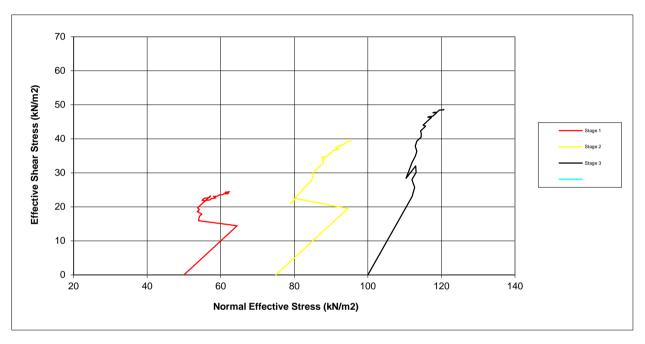
Checked and Approved By

02/08/17 Date

Client Ref

Foynes Port

Contract No



BS 1377: Part 8: 1990

Specimen Details

Borehole		M08
Sample No.		
Depth	m	5
Date		28/07/2017

Shearing Stage

DP Goos Checked and Approved By

02/08/17 Date

Client Ref

Foynes Port

Contract No

Consolidated Undrained Triaxial Compression Test BS 1377 : Part 8 : 1990

Specimen Details

Borehole		M08
Sample No.		
Depth	m	5
Date		28/07/2017

02/08/17 Date

Client Ref

Foynes Port

Contract No

BS 1377: Part 8: 1990

Specimen Details

Borehole		M11
Sample No.		UT
Depth	from(m)	3.00
Depth	to(m)	
Date		27/07/2017
Disturbed / Undisturbed		Undisturbed

Description of Specimen

Brown clayey firm SILT

Initial Specimen Conditions

zindar opecimen contactions				
Height	mm	195.00		
Diameter	mm	104.00		
Area	mm^2	8494.87		
Volume	cm ³	1656.50		
Mass	g	2833.10		
Dry Mass	g	1946.20		
Density	Mg/m ³	1.71		
Dry Density	Mg/m ³	1.17		
Moisture Content	%	46		
Specific Gravity kN/m ³		2.65		
(assumed/	assumed			

Final Specimen Conditions

Moisture Content	%	35
Density	Mg/m ³	1.77
Dry Density	Mg/m³	1.31

E P Roys Checked and Approved By

02/08/17 Date

Client Ref

Foynes Port

Contract No

BS 1377: Part 8: 1990

Specimen Details

Borehole		M11	
Sample No.		UT	
Depth	from(m)	3.00	
Depth	to(m)		

Test Setup

Date started	11/07/2017	
Date Finished	26/07/2017	
Top Drain Used	У	
Base Drain Used	У	
Side Drains Used	у	
Pressure System Number	P6	
Cell Number	C6	

Saturation

Cell Pressure Incr.	kPa	100.00
Back Pressure Incr.	kPa	95.00
Differential Pressure	kPa	5.00
Final Cell Pressure	kPa	200.00
Final Pore Pressure	kPa	199.00
Final B Value		1.01

Consolidation

Effective Pressure	kPa	30.00	55.00	80.00
Cell Pressure	kPa	200.00	200.00	200.00
Back Pressure	kPa	170.00	145.00	120.00
Excess Pore Pressure	kPa	28.00	33.00	61.00
Pore Pressure at End	kPa	120.00	145.00	120.00
Consolidated Volume	cm ³	1575.89	1522.79	1481.87
Consolidated Height	mm	191.84	185.51	175.30
Consolidated Area	mm^2	8219.28	8210.69	8454.81
Vol. Compressibility	m ² /MN	0.40552	0.23238	0.22393
Consolidation Coef.	m²/yr.	0.59488	0.61861	0.67482

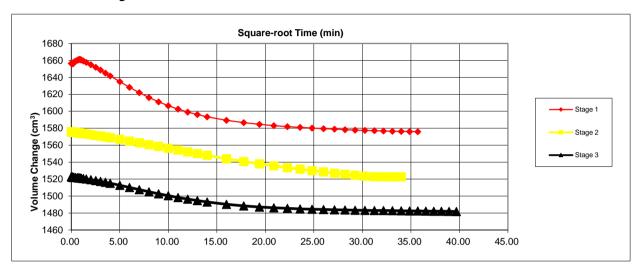
EP Grows Checked and Approved By

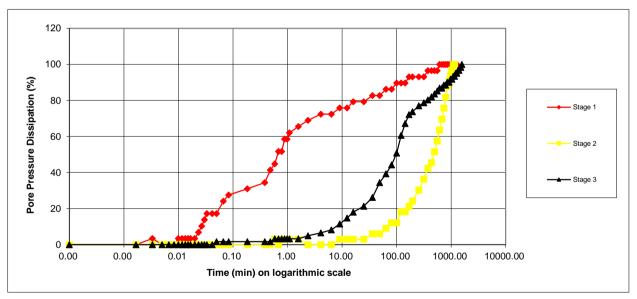
02/08/17 Date

Client Ref

Foynes Port

Contract No




BS 1377: Part 8: 1990

Specimen Details

Borehole		M11
Sample No.		UT
Depth	from(m)	3.00
Depth Depth	to(m)	

Consolidation Stage

02/08/17 Date

Client Ref

Foynes Port

Contract No

BS 1377: Part 8: 1990

Specimen Details

Borehole		M11	
Sample No.		UT	
Depth	from(m)	3.00	
Depth	to(m)		

Shearing

Initial Cell Pressure	kPa	200	200	200
Initial Pore Pressure	kPa	170	145	120
Rate of Strain	mm/min	0.0111	0.0112	0.0115
	,			
Max Deviator Stress				
Axial Strain		4.389	10.725	15.789
Axial Stress	kPa	55.603	121.79	167.00
Cor. Deviator stress	kPa	52.628	117.17	162.26
Effective Major Stress	kPa	66.628	163.17	228.26
Effective Minor Stress	kPa	15.000	46.00	66.00
Effective Stress Ratio		4.442	3.547	3.46
s'	kPa	40.814	104.59	147.13
t'	kPa	25.814	58.59	81.13
Max Effective Priciple	Stress R	latio		
Axial Strain		4.009	9.529	14.763
Axial Stress	kPa	53.839	115.663	161.978
Cor. Deviator stress	kPa	49.893	111.171	157.295
Effective Major Stress	kPa	62.893	155.171	219.295
Effective Minor Stress	kPa	13.000	44.000	62.000
Effective Stress Ratio		4.838	3.527	3.537
s'	kPa	37.946	99.585	140.648
t'	kPa	24.946	55.585	78.648
Shear Resistance Angle	degs			30.8
Cohesion c'	kPa			7

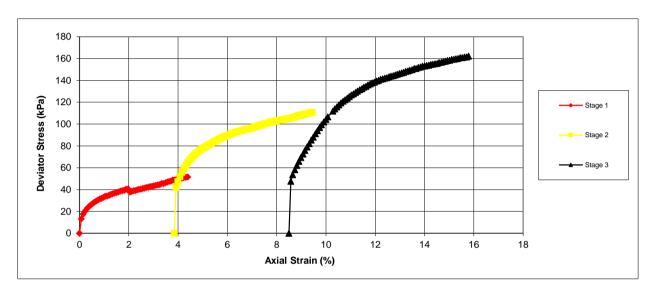
Shecked and Approved By

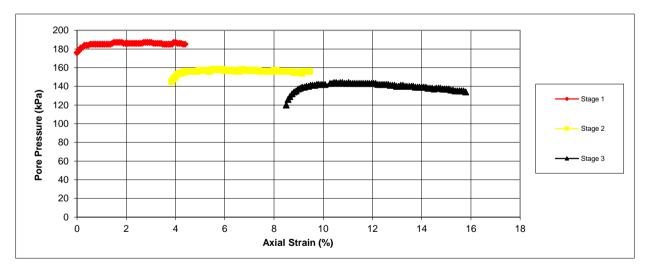
02/08/17 Date

Client Ref

Foynes Port

Contract No




BS 1377: Part 8: 1990

Specimen Details

Borehole		M11
Sample No.		UT
Depth	from(m)	3.00
Depth Depth	to(m)	

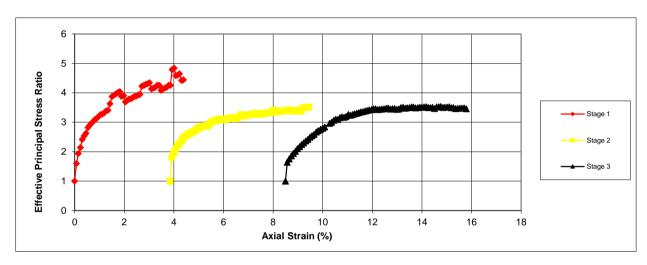
Shearing Stage

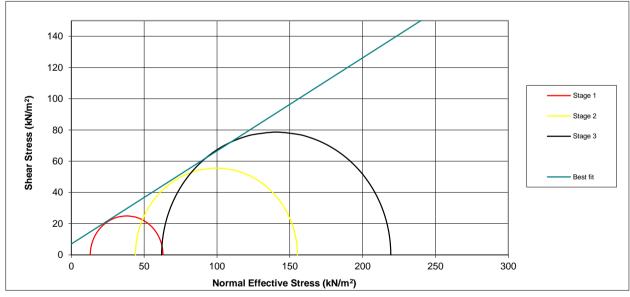
SP Grows Checked and Approved By

02/08/17 Date

Client Ref

Foynes Port


Contract No


BS 1377: Part 8: 1990

Specimen Details

Borehole		M11
Sample No.		UT
Depth	from(m)	3.00
Depth Depth	to(m)	

Shearing Stage

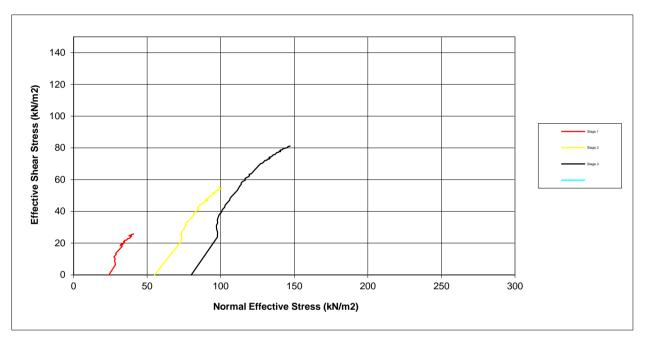
Checked and Approved By

02/08/17 Date

Client Ref

Foynes Port

Contract No



BS 1377: Part 8: 1990

Specimen Details

Borehole		M11
Sample No.		UT
Depth	from(m)	3.00
Depth Depth	to(m)	

Shearing Stage

Checked and Approved By

02/08/17 Date

Client Ref

Foynes Port

Contract No

Consolidated Undrained Triaxial Compression Test BS 1377 : Part 8 : 1990

Specimen Details

Borehole		M11	
Sample No.		UT	
Depth	from(m)	3.00	
Depth	to(m)		

02/08/17 Date

Client Ref

Foynes Port

Contract No

BS 1377: Part 8: 1990

Specimen Details

Borehole		M11
Sample No.		UT
Depth	from(m)	6.50
Depth	to(m)	
Date		14/07/2017
Disturbed / Undisturbed		Undisturbed

Description of Specimen

Grey silt firm CLAY

Initial Specimen Conditions

Height	mm	204.00	
Diameter	mm	104.00	
Area	mm ²	8494.87	
Volume	cm ³	1732.95	
Mass	g	2774.50	
Dry Mass	g	1978.10	
Density	Mg/m ³	1.60	
Dry Density	Mg/m ³	1.14	
Moisture Content	%	40	
Specific Gravity	kN/m ³	2.65	
(assumed/measured)		assumed	

Final Specimen Conditions

Moisture Content	%	32
Density	Mg/m³	1.68
Dry Density	Mg/m³	1.27

E P Gov S Checked and Approved By

02/08/17 Date

Client Ref

Foynes Port

Contract No

BS 1377: Part 8: 1990

Specimen Details

Borehole		M11	
Sample No.		UT	
Depth	from(m)	6.50	
Depth Depth	to(m)		

Test Setup

Date started	29/06/2017
Date Finished	13/07/2017
Top Drain Used	у
Base Drain Used	У
Side Drains Used	у
Pressure System Number	P3
Cell Number	C3

Saturation

Cell Pressure Incr.	kPa	100.00
Back Pressure Incr.	kPa	95.00
Differential Pressure	kPa	5.00
Final Cell Pressure	kPa	200.00
Final Pore Pressure	kPa	200.00
Final B Value		1.06

Consolidation

Effective Pressure	kPa	60.00	95.00	115.00
Cell Pressure	kPa	200.00	200.00	200.00
Back Pressure	kPa	140.00	105.00	85.00
Excess Pore Pressure	kPa	60.00	58.00	60.00
Pore Pressure at End	kPa	140.00	105.00	85.00
Consolidated Volume	cm ³	1612.95	1572.35	1555.35
Consolidated Height	mm	199.29	192.44	183.49
Consolidated Area	mm^2	8102.71	8171.72	8476.81
Vol. Compressibility	m^2/MN	0.49461	0.23973	0.12720
Consolidation Coef.	m²/yr.	3.86116	0.42244	71.39288

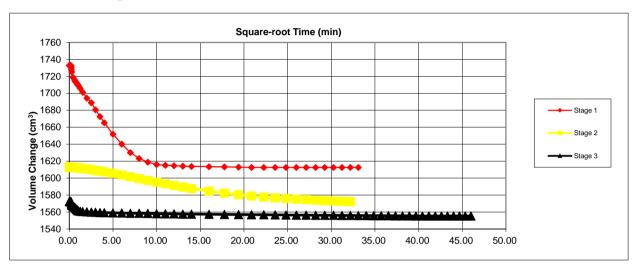
EP Grows Checked and Approved By

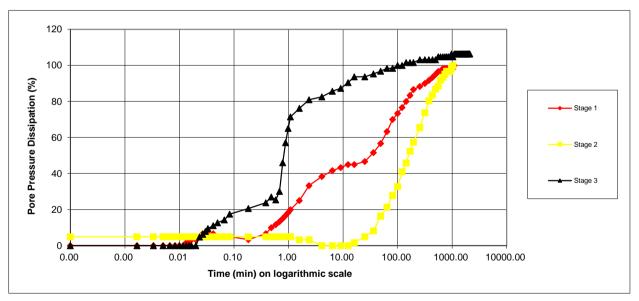
02/08/17 Date

Client Ref

Foynes Port

Contract No




BS 1377: Part 8: 1990

Specimen Details

Borehole		M11
Sample No.		UT
Depth	from(m)	6.50
Depth Depth	to(m)	

Consolidation Stage

02/08/17 Date

Client Ref

Foynes Port

Contract No

BS 1377: Part 8: 1990

Specimen Details

Borehole		M11
Sample No.		UT
Depth	from(m)	6.50
Depth Depth	to(m)	

Shearing

Initial Cell Pressure	kPa	200	200	200
Initial Pore Pressure	kPa	140	105	85
Rate of Strain	mm/min	0.0750	0.0079	1.2766
Max Deviator Stress				
Axial Strain		5.846	9.592	14.571
Axial Stress	kPa	69.023	118.80	142.58
Cor. Deviator stress	kPa	65.939	114.31	122.91
Effective Major Stress	kPa	81.939	152.31	171.91
Effective Minor Stress	kPa	17.000	38.00	49.00
Effective Stress Ratio		4.820	4.008	3.51
s'	kPa	49.470	95.15	110.45
ť'	kPa	32.470	57.15	61.45
Max Effective Priciple	Stress F	Ratio		
Axial Strain		5.625	9.514	13.274
Axial Stress	kPa	68.486	118.633	142.153
Cor. Deviator stress	kPa	64.419	114.142	137.558
Effective Major Stress	kPa	80.419	151.142	185.558
Effective Minor Stress	kPa	16.000	37.000	48.000
Effective Stress Ratio		5.026	4.085	3.866
s'	kPa	48.209	94.071	116.779
t'	kPa	32.209	57.071	68.779
Shear Resistance Angle	degs			32.7
Cohesion c'	kPa			7

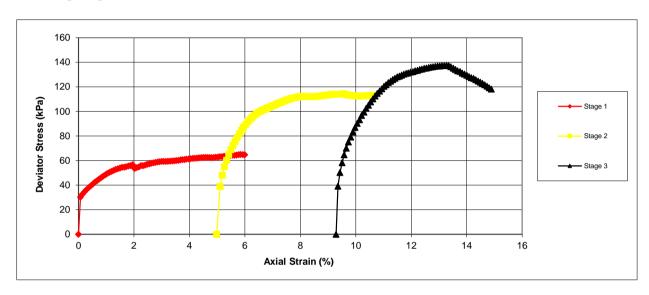
Shecked and Approved By

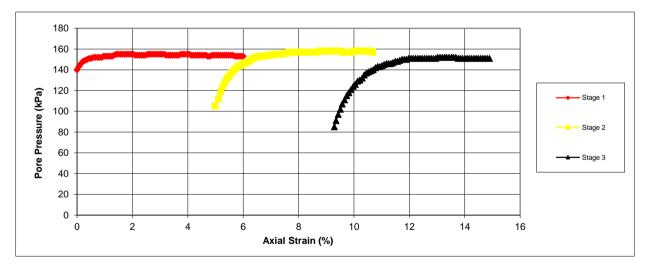
02/08/17 Date

Client Ref

Foynes Port

Contract No




BS 1377: Part 8: 1990

Specimen Details

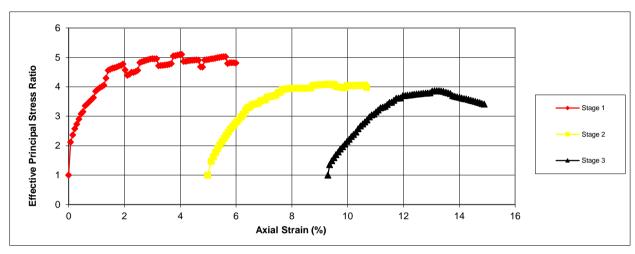
Borehole		M11
Sample No.		UT
Depth Depth	from(m)	6.50
Depth	to(m)	

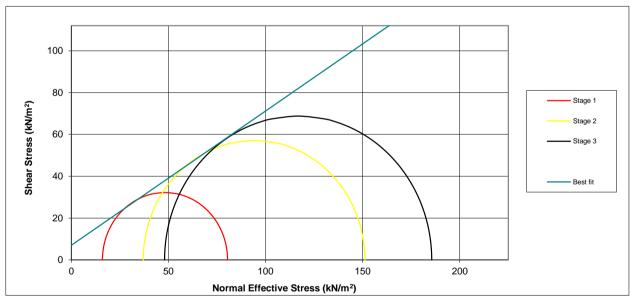
Shearing Stage

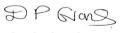
02/08/17 Date

Client Ref

Foynes Port


Contract No


BS 1377: Part 8: 1990


Specimen Details

Borehole		M11
Sample No.		UT
Depth	from(m)	6.50
Depth Depth	to(m)	

Shearing Stage

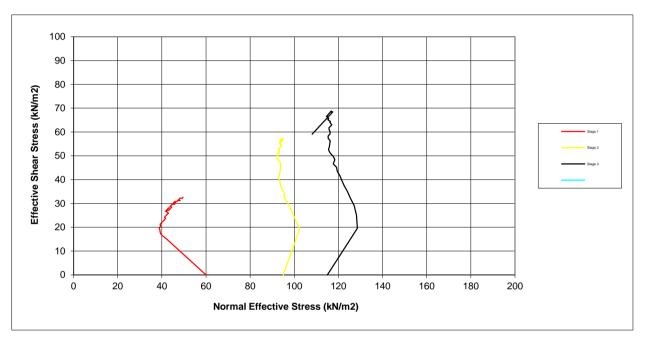
Checked and Approved By

02/08/17 Date

Client Ref

Foynes Port

Contract No



BS 1377: Part 8: 1990

Specimen Details

Borehole		M11
Sample No.		UT
Depth	from(m)	6.50
Depth Depth	to(m)	

Shearing Stage

DP Govs Checked and Approved By

02/08/17 Date

Client Ref

Foynes Port

Contract No

Consolidated Undrained Triaxial Compression Test BS 1377 : Part 8 : 1990

Specimen Details

Borehole		M11	
Sample No.		UT	
Depth	from(m)	6.50	
Depth	to(m)		

02/08/17 Date

Client Ref

Foynes Port

Contract No

BS 1377: Part 8: 1990

Specimen Details

Borehole		M11
Sample No.		
Depth	m	8
Date		27/07/2017
Disturbed / Undisturbed		Undisturbed

Description of Specimen

Grey clayey firm SILT	
dicy dayey iiiii SiE1	

Initial Specimen Conditions

Height	mm	203.00
Diameter	mm	103.00
Area	mm^2	8332.29
Volume	cm ³	1691.45
Mass	g	3022.60
Dry Mass	g	2117.00
Density	Mg/m ³	1.79
Dry Density	Mg/m ³	1.25
Moisture Content	%	43
Specific Gravity	kN/m ³	2.65
(assumed/measured)		assumed

Final Specimen Conditions

opco		
Moisture Content	%	32
Density	Mg/m ³	1.75
Dry Density	Mg/m³	1.33

EP Cons Checked and Approved By

02/08/17 Date

Client Ref

Foynes Port

Contract No

BS 1377: Part 8: 1990

Specimen Details

Borehole		M11
Sample No.		
Depth	m	8
Date		27/07/2017

Test Setup

Date started	11/07/2017
Date Finished	26/07/2017
Top Drain Used	у
Base Drain Used	у
Side Drains Used	у
Pressure System Number	P2
Cell Number	C2

Saturation

Cell Pressure Incr.	kPa	100.00
Back Pressure Incr.	kPa	95.00
Differential Pressure	kPa	5.00
Final Cell Pressure	kPa	300.00
Final Pore Pressure	kPa	292.00
Final B Value		0.97

Consolidation

Effective Pressure	kPa	80.00	105.00	130.00
Cell Pressure	kPa	300.00	300.00	300.00
Back Pressure	kPa	220.00	195.00	170.00
Excess Pore Pressure	kPa	73.00	25.00	25.00
Pore Pressure at End	kPa	220.00	195.00	170.00
Consolidated Volume	cm ³	1662.95	1634.75	1596.25
Consolidated Height	mm	201.86	193.52	185.69
Consolidated Area	mm^2	8238.69	8448.03	8597.40
Vol. Compressibility	m ² /MN	0.07659	0.08696	0.13853
Consolidation Coef.	m²/yr.	0.37232	0.13676	0.16275

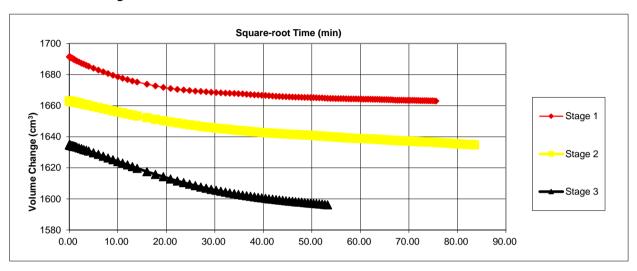
EP Grows Checked and Approved By

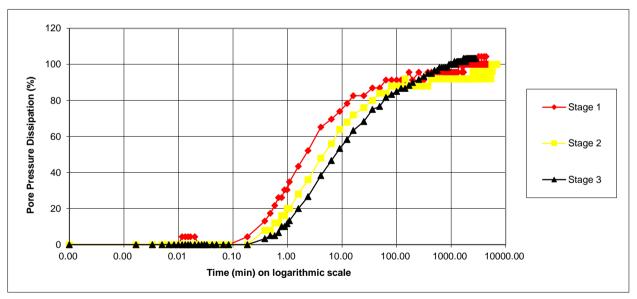
02/08/17 Date

Client Ref

Foynes Port

Contract No




BS 1377: Part 8: 1990

Specimen Details

Borehole		M11
Sample No.		
Depth	m	8
Date		27/07/2017

Consolidation Stage

02/08/17 Date

Client Ref

Foynes Port

Contract No

BS 1377: Part 8: 1990

Specimen Details

Borehole		M11
Sample No.		
Depth	m	8
Date		27/07/2017

Shearing

Initial Cell Pressure	kPa	300	300	300
Initial Pore Pressure	kPa	220	195	170
Rate of Strain	mm/min	0.0075	0.0026	0.0030
Max Deviator Stress				
Axial Strain		4.731	7.588	13.663
Axial Stress	kPa	54.118	94.60	126.52
Cor. Deviator stress	kPa	51.112	90.30	121.90
Effective Major Stress	kPa	122.112	179.30	222.90
Effective Minor Stress	kPa	72.000	89.00	101.00
Effective Stress Ratio		1.696	2.015	2.21
s'	kPa	97.056	134.15	161.95
t'	kPa	25.056	45.15	60.95
Max Effective Priciple	Stress R	Ratio		
Axial Strain		1.927	7.138	12.726
Axial Stress	kPa	44.164	93.097	125.035
Cor. Deviator stress	kPa	43.870	88.846	120.462
Effective Major Stress	kPa	112.870	176.846	219.462
Effective Minor Stress	kPa	69.000	88.000	99.000
Effective Stress Ratio		1.636	2.010	2.217
s'	kPa	90.935	132.423	159.231
t'	kPa	21.935	44.423	60.231
Shear Resistance Angle	degs			34.0
Cohesion c'	kPa			0

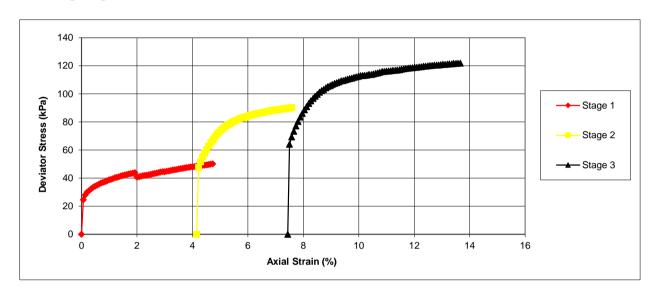
Shecked and Approved By

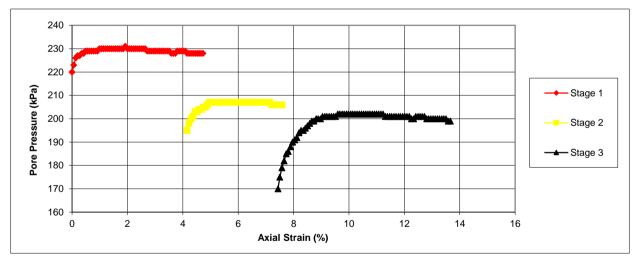
02/08/17 Date

Client Ref

Foynes Port

Contract No




BS 1377: Part 8: 1990

Specimen Details

Borehole		M11
Sample No.		
Depth	m	8
Date		27/07/2017

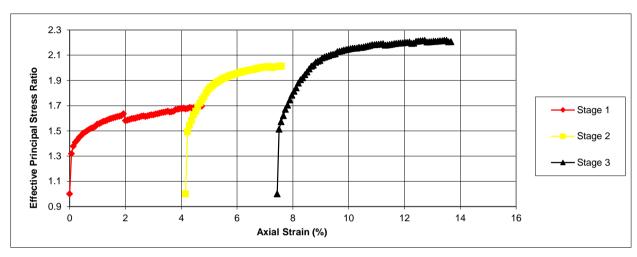
Shearing Stage

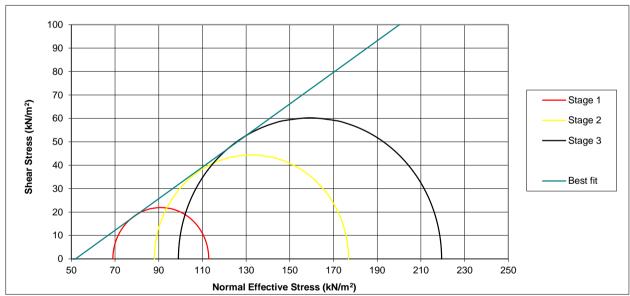
⊕ P Cors Checked and Approved By

02/08/17 Date

Client Ref

Foynes Port


Contract No


BS 1377: Part 8: 1990

Specimen Details

Borehole		M11
Sample No.		
Depth	m	8
Date		27/07/2017

Shearing Stage

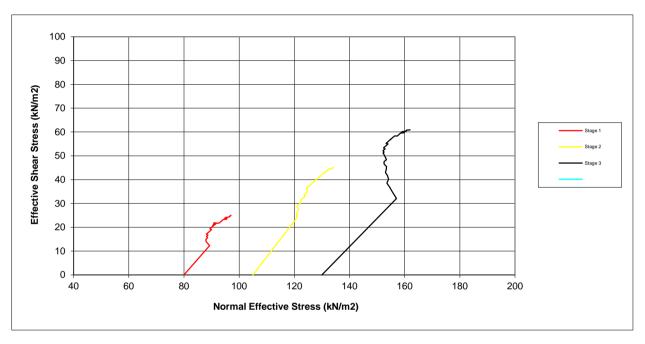
Checked and Approved By

02/08/17 Date

Client Ref

Foynes Port

Contract No



BS 1377: Part 8: 1990

Specimen Details

Borehole		M11
Sample No.		
Depth	m	8
Date		27/07/2017

Shearing Stage

DP Govs Checked and Approved By

02/08/17 Date

Client Ref

Foynes Port

Contract No

Consolidated Undrained Triaxial Compression Test BS 1377 : Part 8 : 1990

Specimen Details

Borehole		M11
Sample No.		
Depth	m	8
Date		27/07/2017

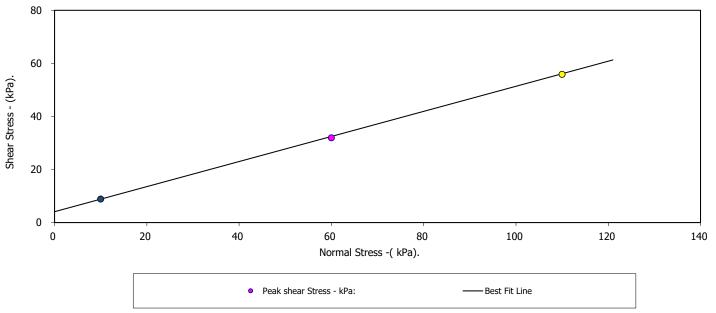
02/08/17 Date

Client Ref

Foynes Port

Contract No

Test Report: CONSOLIDATED DRAINED SHEARBOX TEST.


BS1377:Part 7:4.5 :1990.

Borehole Number: L04 Depth from (m): 1.00
Sample Number: Depth to (m):

Sample Type:	UT			
Particle Density - Mg/m3:	2.6	5 (Assumed)		
Specimen Tested:	Submerged, Undisturbed, Material above 2mm removed.			
Sample Description:	•			
Grey brown soft sandy silty CLAY				
STAGE		1	2	3
Initial Conditions				
Height - mm:		24.27	24.27	24.27
Length - mm:		59.97	59.97	59.97
Moisture Content - %:		55	55	55
Bulk Density - Mg/m3:		1.65	1.65	1.64
Dry Density - Mg/m3:		1.06	1.06	1.06
Voids Ratio:		1.4944	1.5019	1.5047
Normal Pressure- kPa		10	60	110
Consolidation				
Consolidated Height - mm:		23.71	22.20	20.69
Shear				
Rate of Strain (mm/min)		0.010	0.010	0.010
Strain at peak shear stress (mm)		5.99	4.45	4.30
Peak shear Stress - kPa:		9	32	56

PEAK	
Angle of Shearing Resistance:(θ)	25.3
Effective Cohesion - kPa:	4

FAILURE CONDITIONS

DP Rions

25/07/17

DP GONS

25/07/17

Checked Pages 1-4 by:

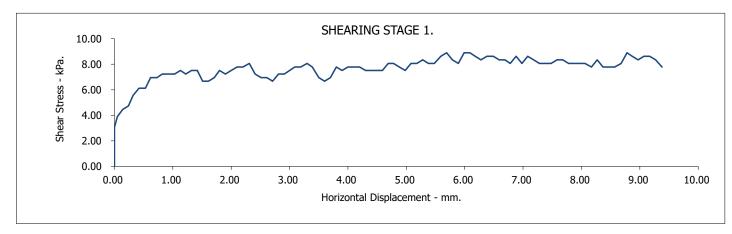
Date:

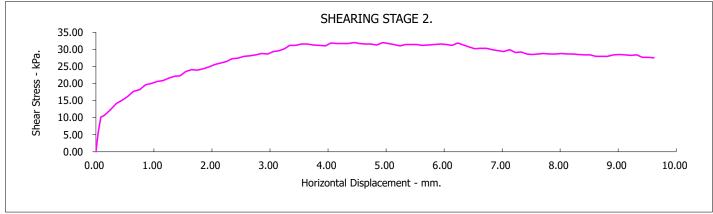
Approved Pages 1-4 by: Date

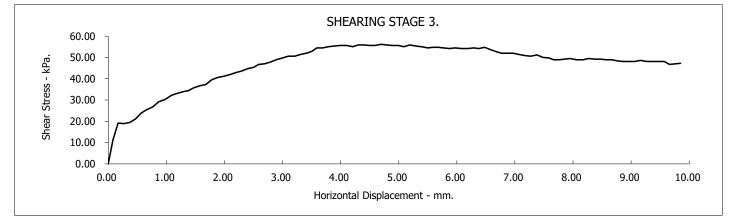
Contract No.: **35579**

Foynes Port

Client Ref Number:

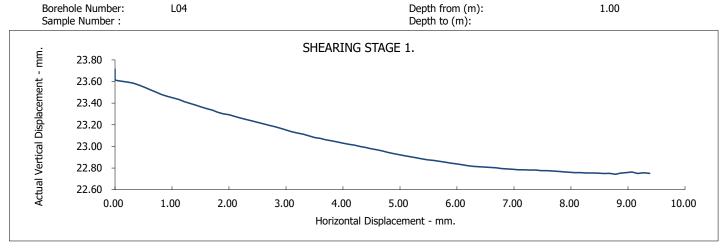


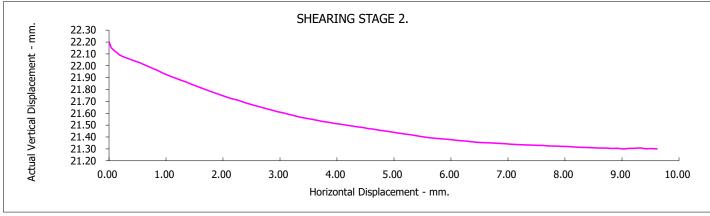

Test Report: CONSOLIDATED DRAINED SHEARBOX TEST.

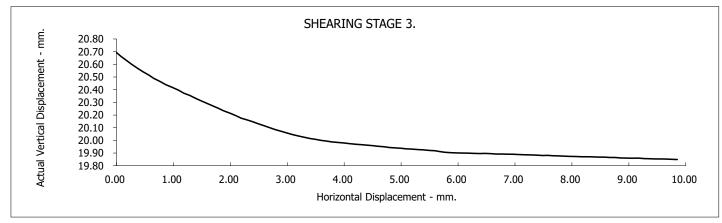

BS1377:Part 7:4.5 :1990.

Borehole Number: Sample Number: L04

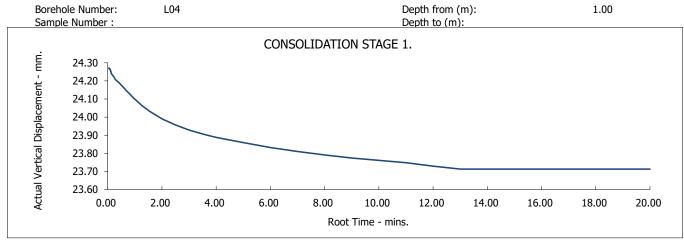
Depth from (m): Depth to (m): 1.00

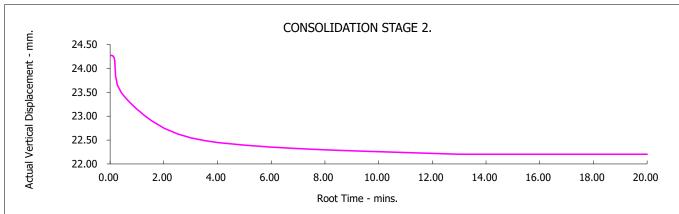

Foynes Port

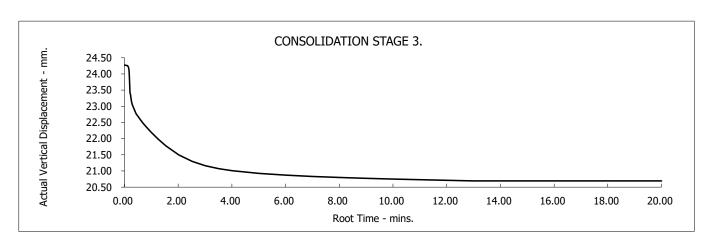

Contract No.: **35579**


Client Ref Number: **0.00** Figure.

BS1377:Part 7:4.5 :1990.


Contract No.: **35579**


Foynes Port


Client Ref Number:

BS1377:Part 7:4.5 :1990.

Contract No.: **35579**

Foynes Port

Client Ref Number:

BS1377:Part 7:4.5 :1990.

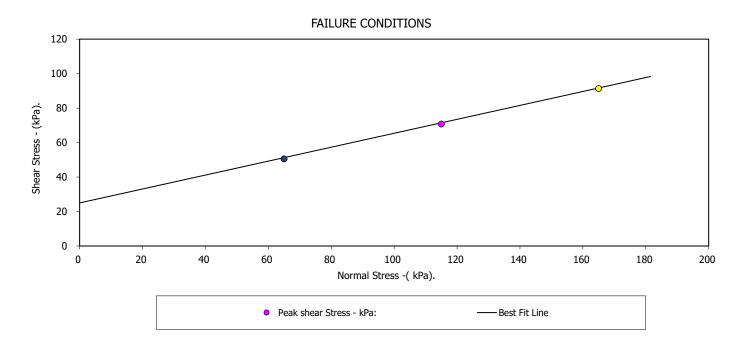
Borehole Number: L04 Sample Number:		Depth from (m): Depth to (m):	6.50	
Sample Type:	UT	,		
Particle Density - Mg/m3:	2.65	(Assumed)		
Specimen Tested:	Submerged, Undisturbe	ed, Material above 2mm re	emoved.	
Sample Description:	<u> </u>			
Brownish grey soft slightly sandy sil	ty CLAY			
STAGE	-	1	2	3
Initial Conditions				
Height - mm:		24.27	24.27	24.27
Length - mm:		59.97	59.97	59.97
Moisture Content - %:		51	51	51
Bulk Density - Mg/m3:		1.66	1.66	1.66
Dry Density - Mg/m3:		1.10	1.10	1.10
Voids Ratio:		1.4084	1.4101	1.4051
Normal Pressure- kPa		65	115	165
Consolidation				
Consolidated Height - mm:		21.74	21.06	20.13
Shear				

PEAK		
Angle of Shearing Resistance:(0)	22	2.0
Effective Cohesion - kPa:		25

0.010

5.44

51


0.010

5.38

0.010

5.14

91

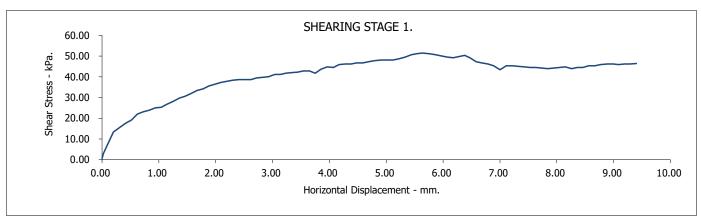
 EP Gas
 O8/08/17
 EP Gas
 O8/08/17

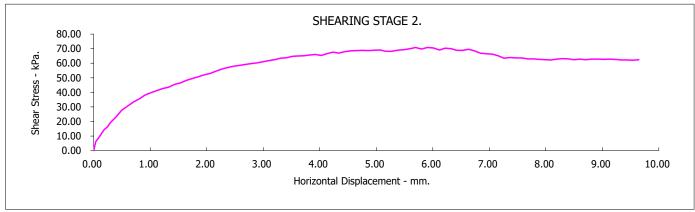
 Checked Pages 1-4 by:
 Date:
 Approved Pages 1-4 by:
 Date

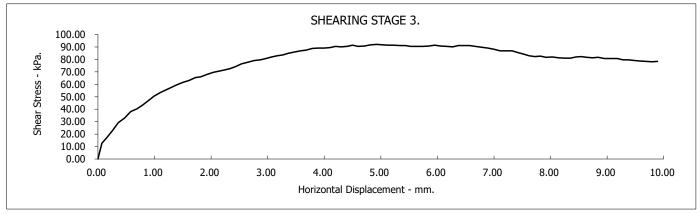
Contract No.: **35579**

Foynes Port

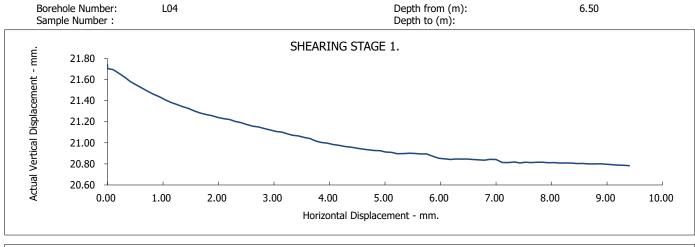
Client Ref Number:

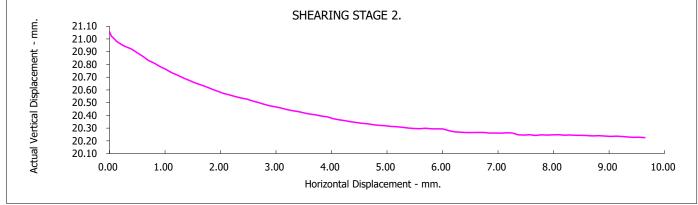


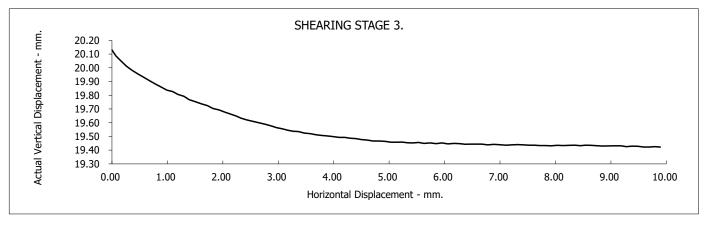

Rate of Strain (mm/min)
Strain at peak shear stress (mm)


Peak shear Stress - kPa:

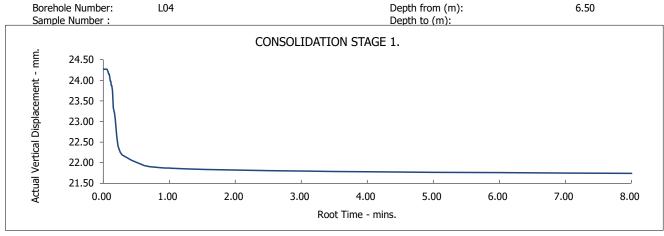
BS1377:Part 7:4.5 :1990.

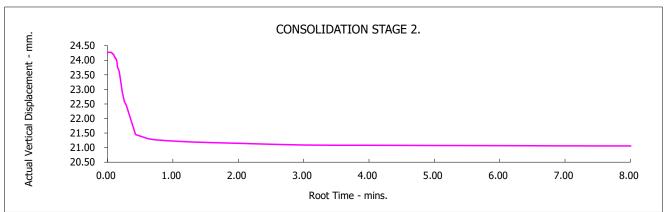


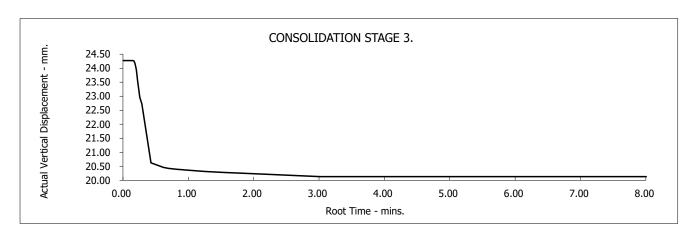

Foynes Port


Contract No.: **35579**

BS1377:Part 7:4.5 :1990.


Contract No.: **35579**


Foynes Port

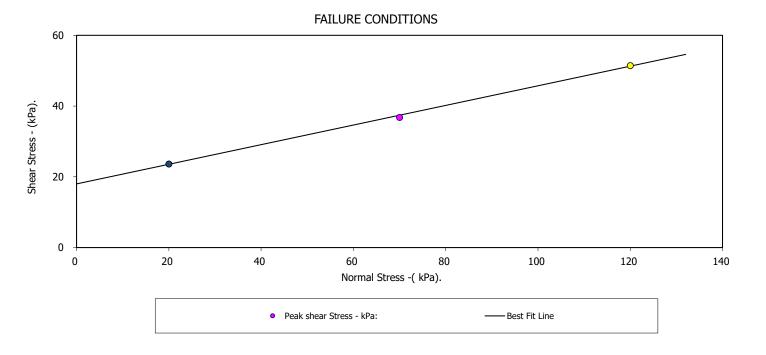

Client Ref Number:

BS1377:Part 7:4.5 :1990.

Contract No.: **35579**

Foynes Port

Client Ref Number: **0.00**



BS1377:Part 7:4.5 :1990.

Borehole Number: L05 Depth from (m): 2.00
Sample Number: Depth to (m):

Sample Type:	UT			
Particle Density - Mg/m3:	2.65	(Assumed)		
Specimen Tested:	Submerged, Undisturb	ed, Material above 2mm remo	oved.	
Sample Description:				
Brown grey sandy soft silty organic	CLAY			
STAGE		1	2	3
Initial Conditions				
Height - mm:		24.27	24.27	24.27
Length - mm:		59.97	59.97	59.97
Moisture Content - %:		53	53	53
Bulk Density - Mg/m3:		1.65	1.65	1.65
Dry Density - Mg/m3:		1.08	1.08	1.08
Voids Ratio:		1.4564	1.4537	1.4543
Normal Pressure- kPa		20	70	120
Consolidation				
Consolidated Height - mm:		23.78	22.75	21.72
Shear				
Rate of Strain (mm/min)		0.010	0.010	0.010
Strain at peak shear stress (mm)		7.59	4.50	4.03
Peak shear Stress - kPa:	·	24	37	51

PEAK	
Angle of Shearing Resistance:(0)	15.5
Effective Cohesion - kPa:	18

DP Grans

25/07/17

DP GONS

25/07/17

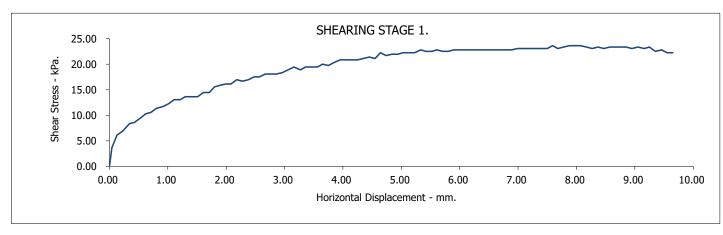
Checked Pages 1-4 by:

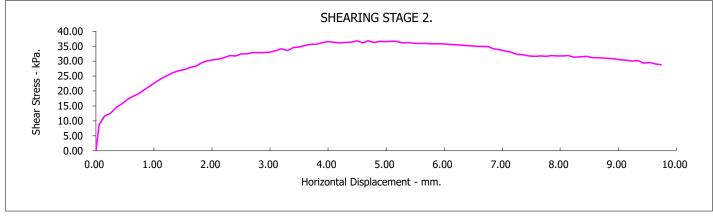
Date:

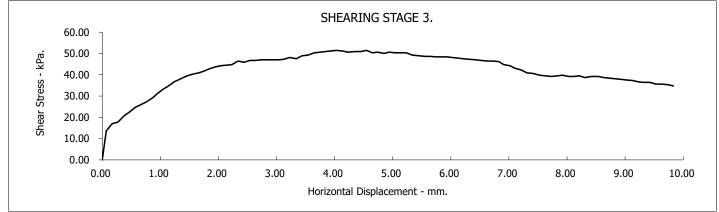
Approved Pages 1-4 by: Date

Contract No.: **35579**

Foynes Port

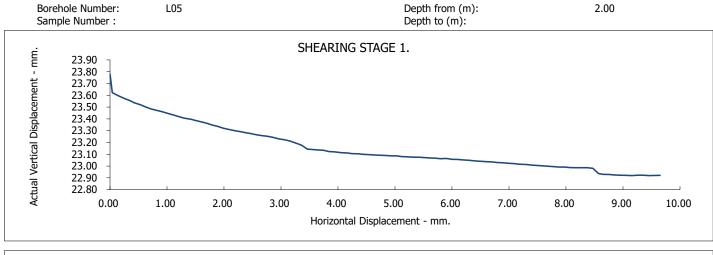

Client Ref Number:

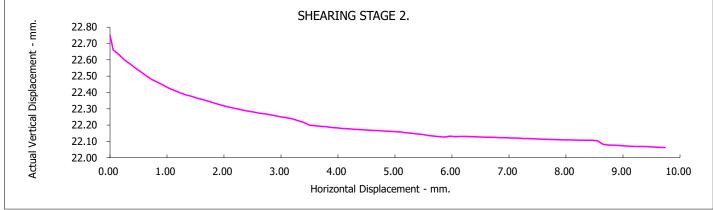


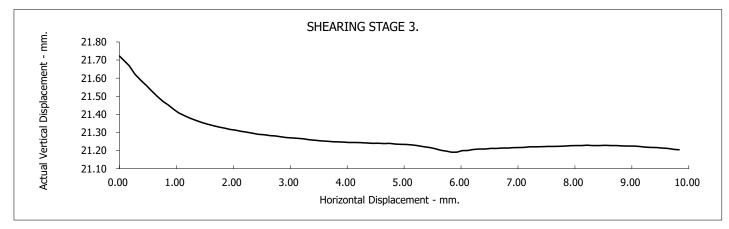


BS1377:Part 7:4.5 :1990.

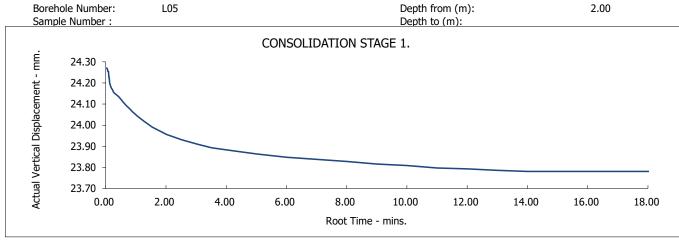
Borehole Number: L05 Depth from (m): 2.00 Sample Number: Depth to (m):

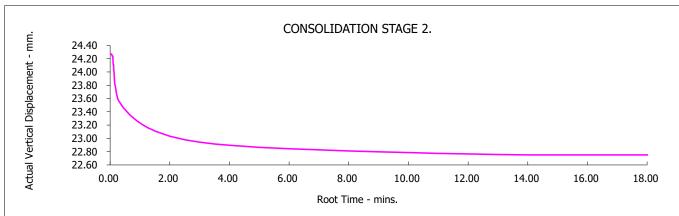


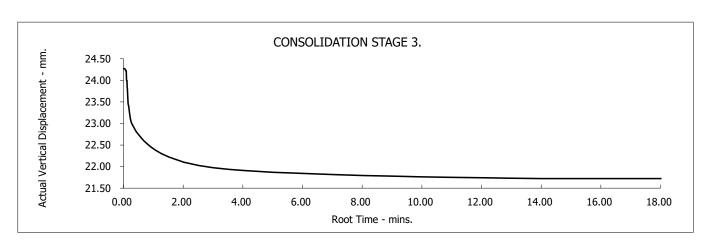

Foynes Port


Contract No.: **35579**

BS1377:Part 7:4.5 :1990.


Contract No.: **35579**


Foynes Port

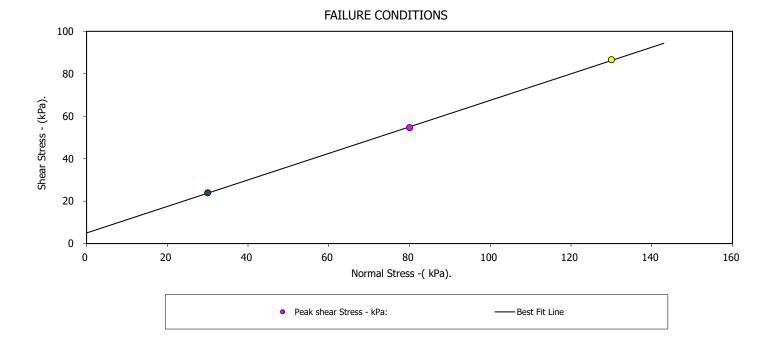

Client Ref Number: **0.00**

BS1377:Part 7:4.5 :1990.

Contract No.: **35579**

Foynes Port

Client Ref Number:



BS1377:Part 7:4.5 :1990.

Borehole Number: L05 Depth from (m): 3.00
Sample Number: Depth to (m):

Sample Type:	UT			
Particle Density - Mg/m3:	2.6	55 (Assumed)		
Specimen Tested:	Submerged, Undistu	rbed, Material above 2mm rem	noved.	
Sample Description:				
Brown grey slightly sandy soft silty (CLAY			
STAGE		1	2	3
Initial Conditions				
Height - mm:		24.27	24.27	24.27
Length - mm:		59.97	59.97	59.97
Moisture Content - %:		49	49	49
Bulk Density - Mg/m3:		1.67	1.67	1.68
Dry Density - Mg/m3:		1.12	1.12	1.13
Voids Ratio:		1.3660	1.3596	1.3515
Normal Pressure- kPa		30	80	130
Consolidation				
Consolidated Height - mm:		23.07	21.81	20.56
Shear				
Rate of Strain (mm/min)		0.010	0.010	0.010
Strain at peak shear stress (mm)		5.88	7.43	8.22
Peak shear Stress - kPa:		24	55	87

PEAK	
Angle of Shearing Resistance:(0)	32.0
Effective Cohesion - kPa:	5

DP Glors

25/07/17

DP GONS

25/07/17

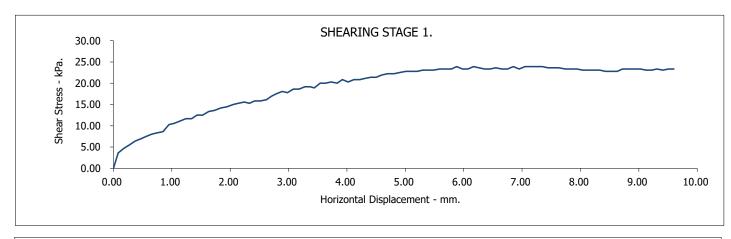
Checked Pages 1-4 by:

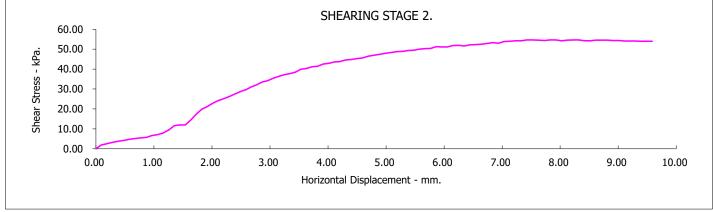
Date:

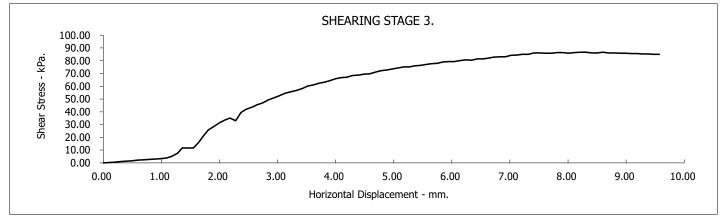
Approved Pages 1-4 by: Date

Contract No.: **35579**

Foynes Port

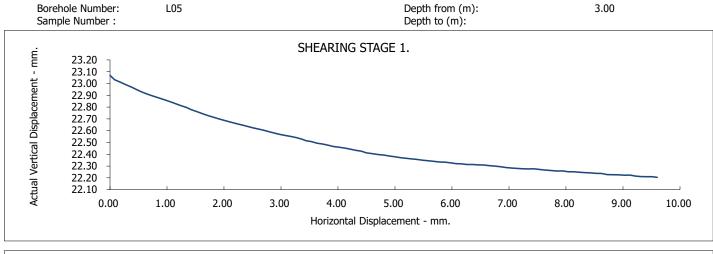

Client Ref Number:

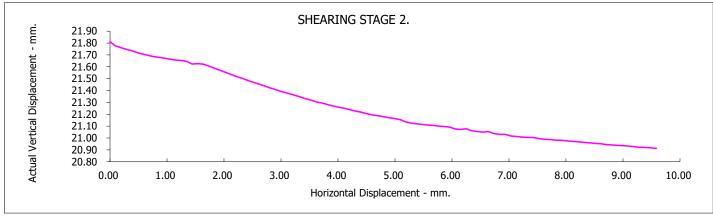


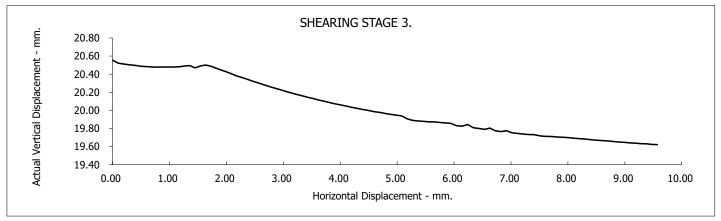

BS1377:Part 7:4.5 :1990.

Borehole Number: Sample Number: L05

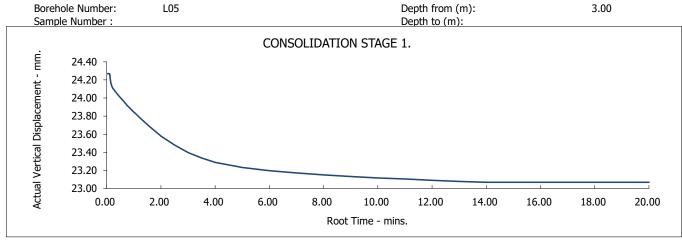
Depth from (m): Depth to (m): 3.00

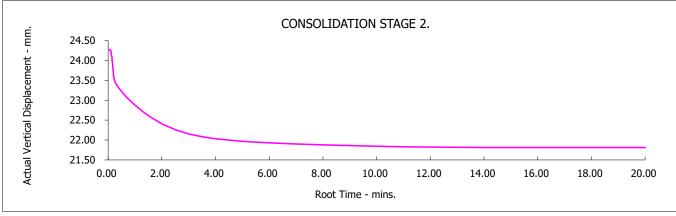


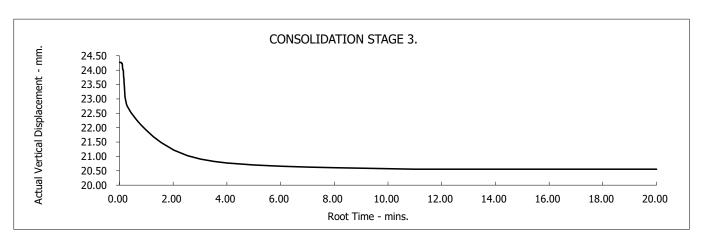

Foynes Port


Contract No.: 35579

BS1377:Part 7:4.5 :1990.


Contract No.: **35579**


Foynes Port


Client Ref Number:

BS1377:Part 7:4.5 :1990.

Contract No.: 35579

Foynes Port

Client Ref Number:

BS1377:Part 7:4.5 :1990.

Borehole Number: L05 Depth from (m): 8.00 Sample Number: Depth to (m):

Sample Type:	UT			
Particle Density - Mg/m3:	2.65	(Assumed)		
Specimen Tested:	Submerged, Undisturbed	d, Material above 2mm r	emoved.	
Sample Description:				
Dark grey soft sandy silty CLAY				
STAGE		1	2	3
Initial Conditions				
Height - mm:		24.27	24.27	24.27
Length - mm:		59.97	59.97	59.97
Moisture Content - %:		39	39	39
Bulk Density - Mg/m3:		1.71	1.71	1.71
Dry Density - Mg/m3:		1.23	1.23	1.23
Voids Ratio:		1.1503	1.1539	1.1575
Normal Pressure- kPa		80	130	180
Consolidation				
Consolidated Height - mm:		22.77	21.34	19.92
Shear				
Rate of Strain (mm/min)		0.010	0.010	0.010
Strain at peak shear stress (mm)		7.07	6.80	7.59
Peak shear Stress - kPa:	·	60	91	122

PEAK	
Angle of Shearing Resistance:(θ)	31.8
Effective Cohesion - kPa:	10

140 120 100 Shear Stress - (kPa). 80 60 40 20 0 20 40 60 80 100 120 140 160 180 200 220 Normal Stress -(kPa).

FAILURE CONDITIONS

DP Glons

25/07/17

DP GOOD

25/07/17

Checked Pages 1-4 by:

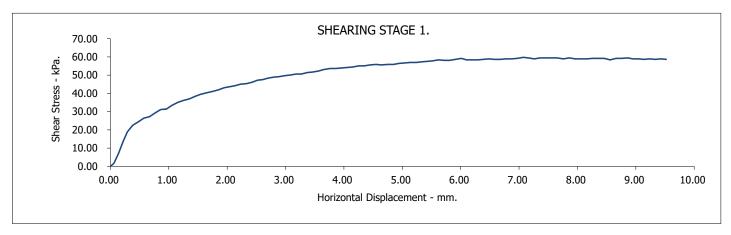
Date:

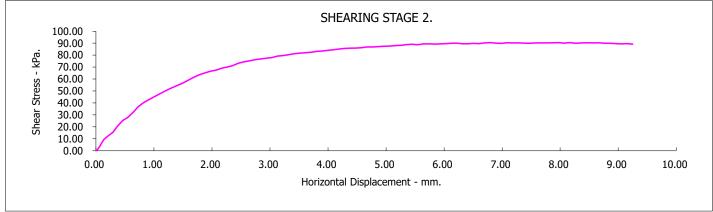
• Peak shear Stress - kPa:

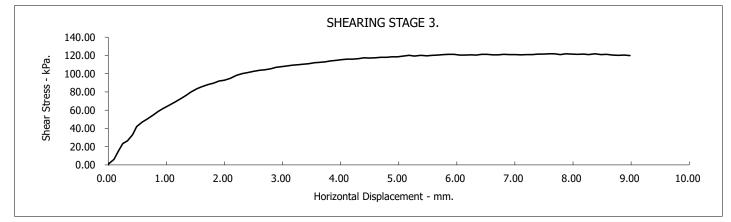
Approved Pages 1-4 by: Date

----- Best Fit Line

Contract No.: **35579**

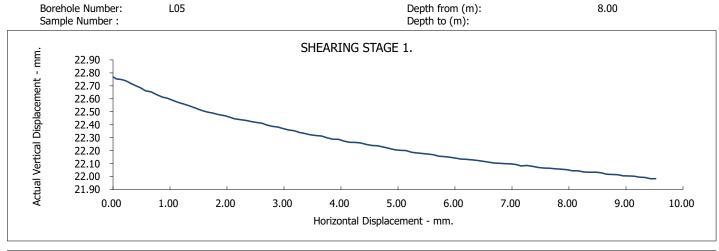

Client Ref Number:

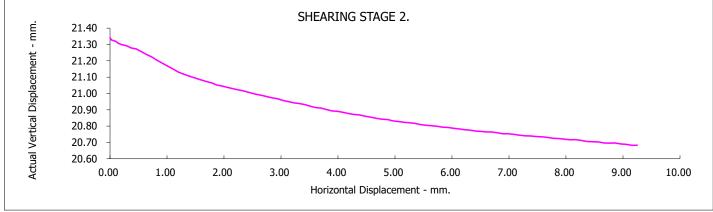


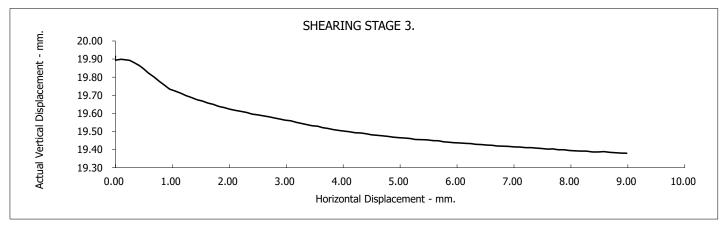

BS1377:Part 7:4.5 :1990.

Borehole Number: Sample Number: L05

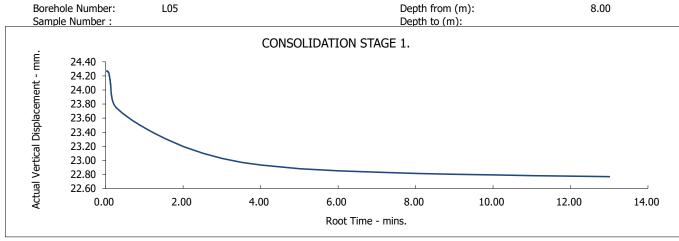
Depth from (m): Depth to (m): 8.00

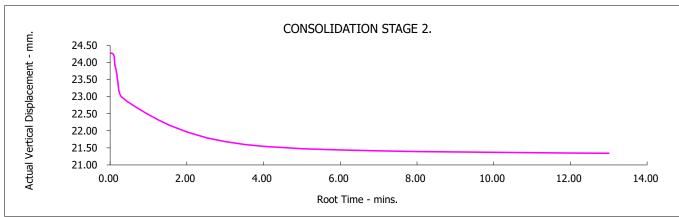


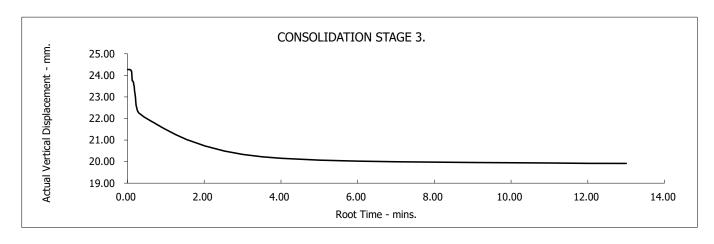

Foynes Port


Contract No.: **35579**

BS1377:Part 7:4.5 :1990.


Contract No.: **35579**


Foynes Port

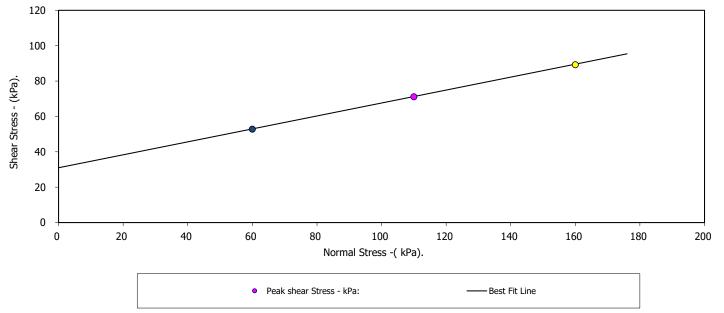

Client Ref Number: **0.00**

BS1377:Part 7:4.5 :1990.

Contract No.: **35579**

Foynes Port

Client Ref Number:


BS1377:Part 7:4.5 :1990.

Borehole Number: M01 Depth from (m): 6.00
Sample Number: Depth to (m):

Sample Number :	D.	cpui to (iii).		
Sample Type:	UT			
Particle Density - Mg/m3:	2.65	(Assumed)		
Specimen Tested:	Submerged, Undisturbed,	Material above 2mm remo	oved.	
Sample Description:				
Grey fine sandy SILT				
STAGE		1	2	3
Initial Conditions				
Height - mm:		24.27	24.27	24.27
Length - mm:		59.97	59.97	59.97
Moisture Content - %:		30	30	30
Bulk Density - Mg/m3:		1.94	1.94	1.94
Dry Density - Mg/m3:		1.49	1.50	1.50
Voids Ratio:		0.7732	0.7724	0.7717
Normal Pressure- kPa		60	110	160
Consolidation				
Consolidated Height - mm:		23.63	23.29	22.95
Shear				
Rate of Strain (mm/min)		0.010	0.010	0.010
Strain at peak shear stress (mm)		3.81	4.27	4.32
Peak shear Stress - kPa:		53	71	89

PEAK	
Angle of Shearing Resistance:(0)	20.1
Effective Cohesion - kPa:	31

FAILURE CONDITIONS

DP Rions

25/07/17

DP GOOD

25/07/17

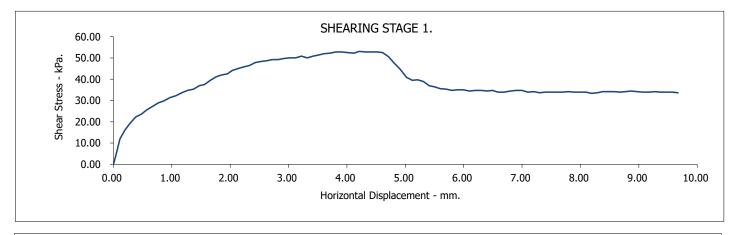
Checked Pages 1-4 by:

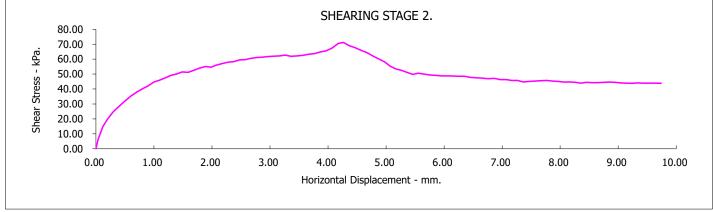
Date:

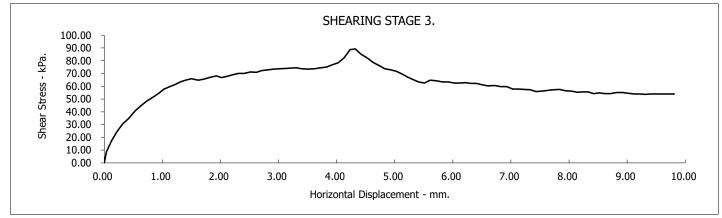
Approved Pages 1-4 by: Date

Contract No.: **35579**

Client Ref Number:

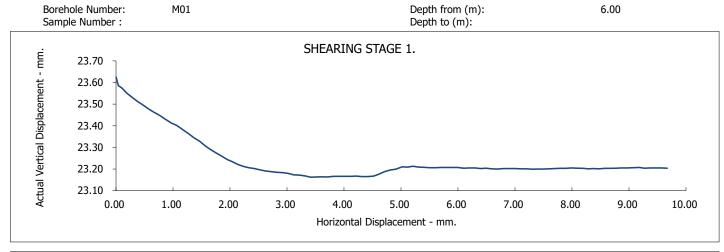

0.00

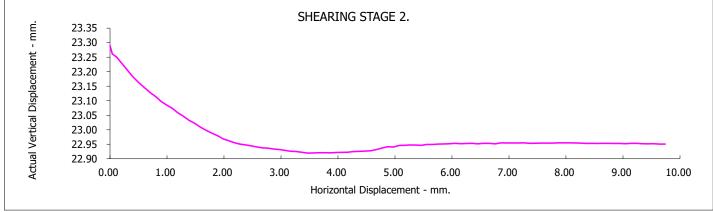


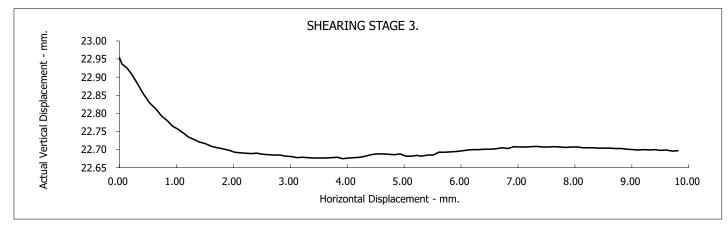

BS1377:Part 7:4.5 :1990.

Borehole Number: M01 Depth from (m): Sample Number: Depth to (m):

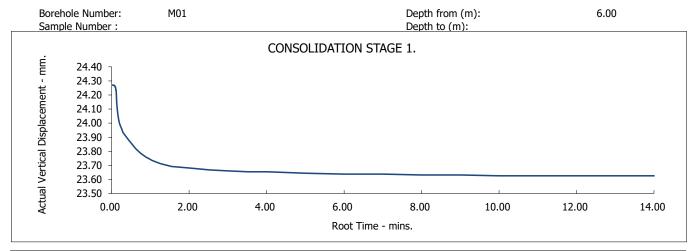
6.00

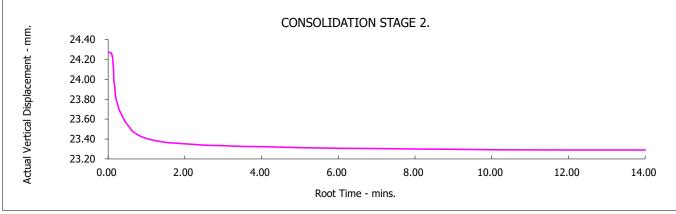


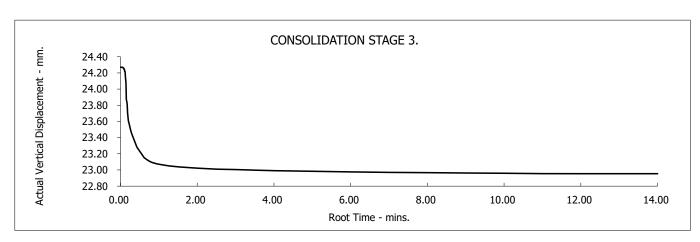

0.00


Contract No.: **35579**

BS1377:Part 7:4.5 :1990.



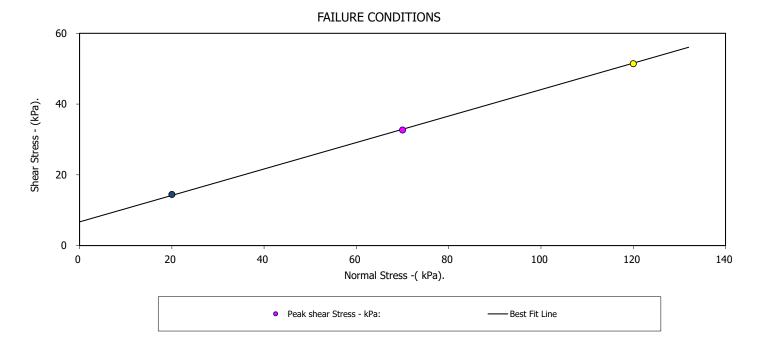

Contract No.: **35579**


Client Ref Number: **0.00**

BS1377:Part 7:4.5 :1990.

Contract No.: **35579**

Client Ref Number: **0.00**



BS1377:Part 7:4.5 :1990.

Borehole Number: M02 Depth from (m): 2.00
Sample Number: Depth to (m):

UT			
2.65	(Assumed)		
Submerged, Undisturbed,	Material above 2mm remove	ved.	
	1	2	3
	24.27	24.27	24.27
	59.97	59.97	59.97
	41	41	41
	1.74	1.74	1.74
	1.23	1.23	1.23
	1.1478	1.1486	1.1529
	20	70	120
	23.84	22.75	21.65
	0.010	0.010	0.010
	4.09	3.41	3.41
	14	33	51
	UT 2.65	2.65 (Assumed) Submerged, Undisturbed, Material above 2mm remove 1 24.27 59.97 41 1.74 1.23 1.1478 20 23.84 0.010 4.09	UT

PEAK	
Angle of Shearing Resistance:(θ)	20.5
Effective Cohesion - kPa:	7

DP Grons

25/07/17

DP GOOD

25/07/17

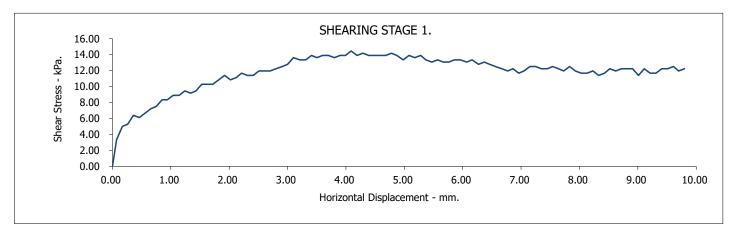
Checked Pages 1-4 by:

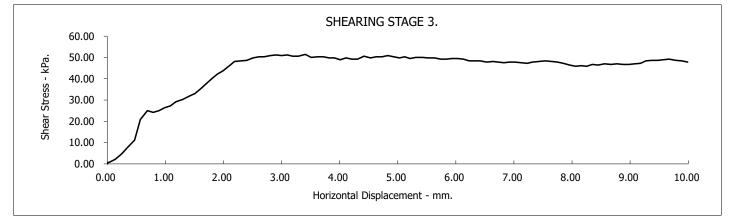
Date:

Approved Pages 1-4 by: Date

Contract No.: **35579**

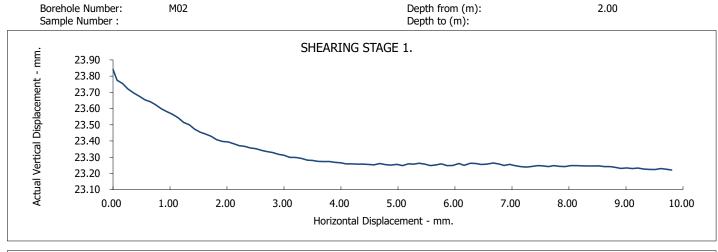
Foynes Port


Client Ref Number:

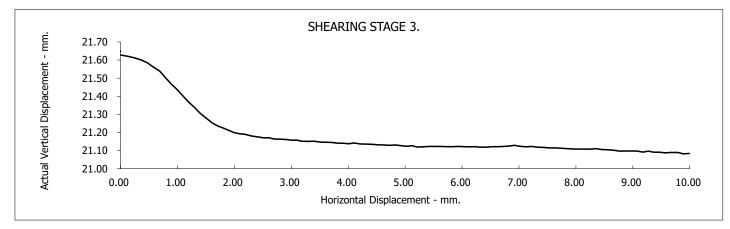

BS1377:Part 7:4.5 :1990.

Borehole Number: Sample Number: M02

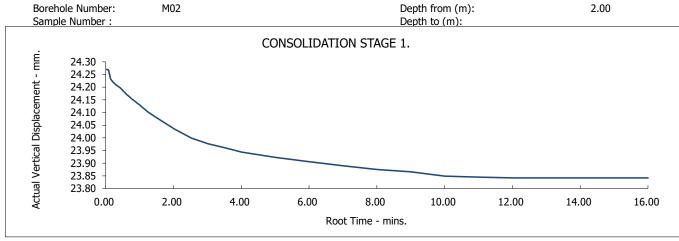
Depth from (m): Depth to (m): 2.00

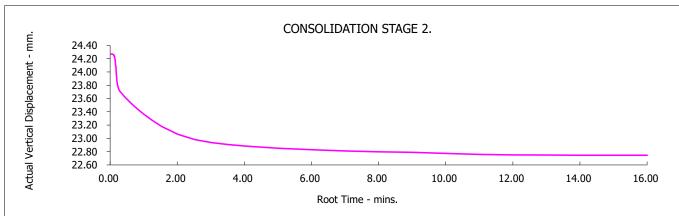


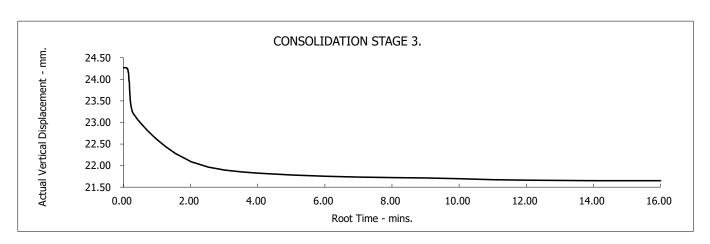
Foynes Port


Contract No.: **35579**

BS1377:Part 7:4.5 :1990.


Contract No.: **35579**


Foynes Port

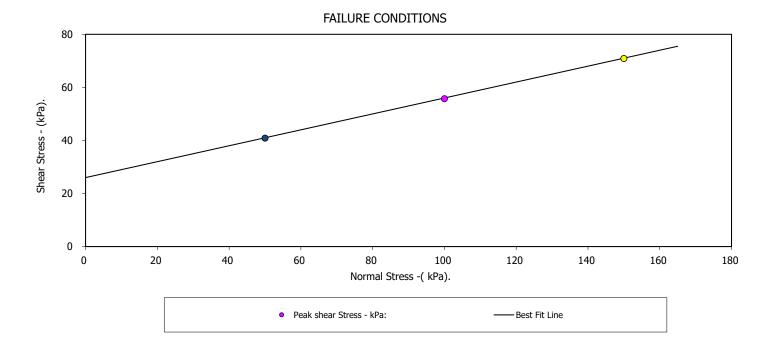

Client Ref Number: **0.00**

BS1377:Part 7:4.5 :1990.

Contract No.: **35579**

Foynes Port

Client Ref Number:



BS1377:Part 7:4.5 :1990.

Borehole Number: M02 Depth from (m): 5.00
Sample Number: Depth to (m):

Sample Type:	UT			
Particle Density - Mg/m3:	2.6	5 (Assumed)		
Specimen Tested:	Submerged, Undisturbed, Material above 2mm removed.			
Sample Description:				
Brownish grey sandy clayey SILT				
STAGE		1	2	3
Initial Conditions				
Height - mm:		24.27	24.27	24.27
Length - mm:		59.97	59.97	59.97
Moisture Content - %:		33	33	33
Bulk Density - Mg/m3:		1.86	1.78	1.84
Dry Density - Mg/m3:		1.40	1.33	1.38
Voids Ratio:		0.8995	0.9868	0.9208
Normal Pressure- kPa		50	100	150
Consolidation				
Consolidated Height - mm:		23.60	22.78	21.95
Shear				
Rate of Strain (mm/min)		0.010	0.010	0.010
Strain at peak shear stress (mm)		5.43	5.95	5.13
Peak shear Stress - kPa:	•	41	56	71

PEAK	
Angle of Shearing Resistance:(θ)	16.7
Effective Cohesion - kPa:	26

DP Glons

25/07/17

DP GONS

25/07/17

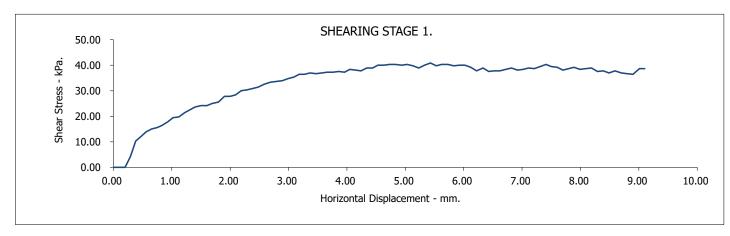
Checked Pages 1-4 by:

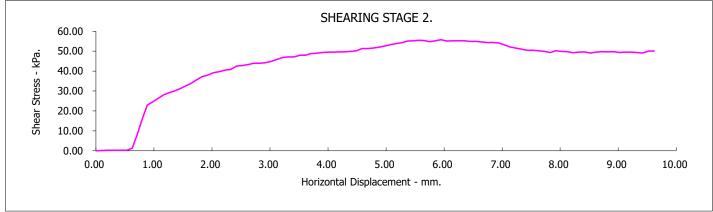
Date:

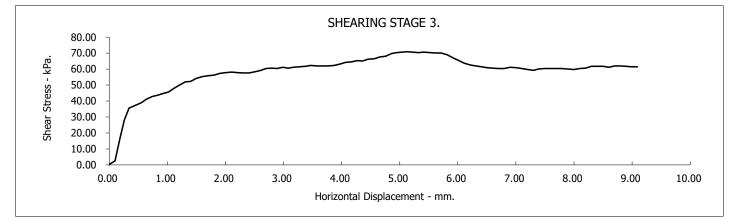
Approved Pages 1-4 by: Date

Contract No.: **35579**

Foynes Port

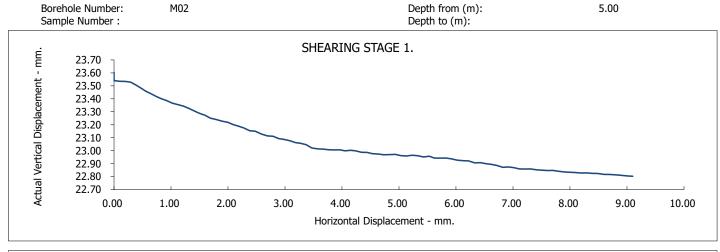

Client Ref Number:

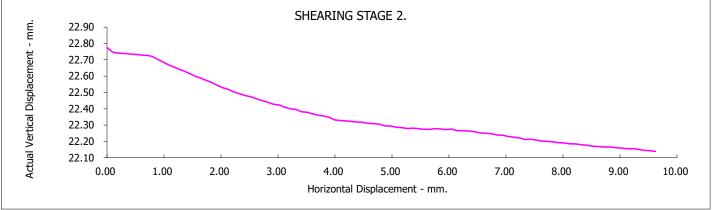


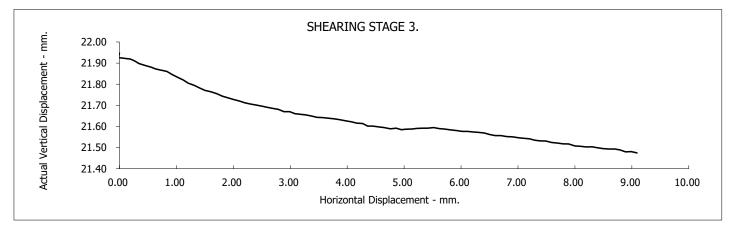

BS1377:Part 7:4.5 :1990.

Borehole Number: Sample Number: M02

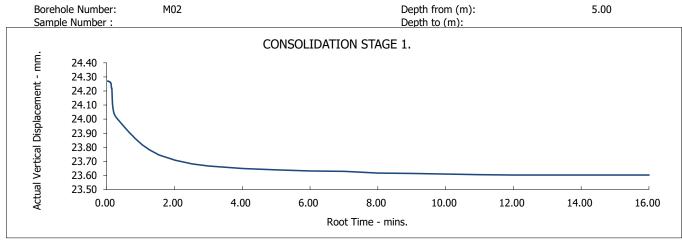
Depth from (m): Depth to (m): 5.00

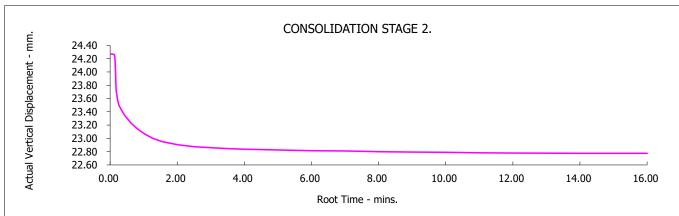


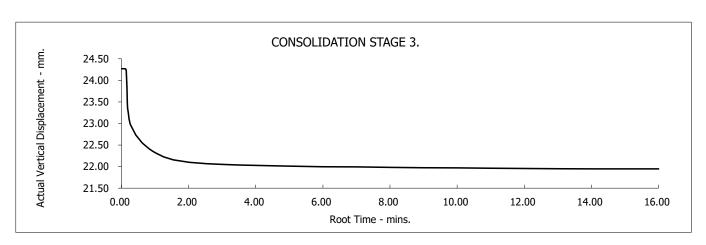

Foynes Port


Contract No.: **35579**

BS1377:Part 7:4.5 :1990.


Contract No.: **35579**

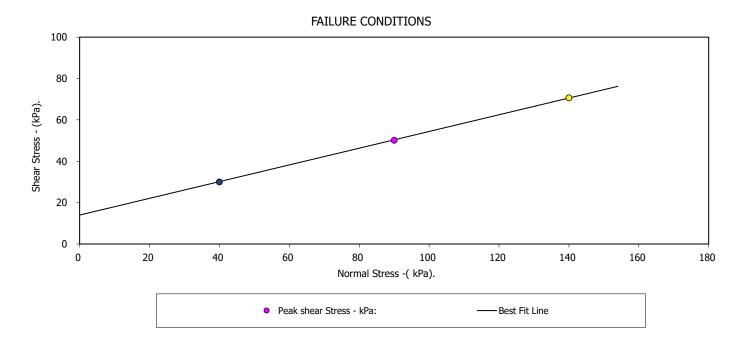

Foynes Port


Client Ref Number: **0.00**

BS1377:Part 7:4.5 :1990.

Contract No.: **35579**

Foynes Port


Client Ref Number:

BS1377:Part 7:4.5 :1990.

Borehole Number: M03		Depth from (m):	4.00	
Sample Number :	T	Depth to (m):		
Sample Type:	UT			
Particle Density - Mg/m3:	2.65	(Assumed)		
Specimen Tested:	Submerged, Undisturbed, Material above 2mm removed.			
Sample Description:				
Brownish grey soft sandy silty CLAY				
STAGE		1	2	3
Initial Conditions				
Height - mm:		24.27	24.27	24.27
Length - mm:		59.97	59.97	59.97
Moisture Content - %:		51	51	51
Bulk Density - Mg/m3:		1.70	1.70	1.70
Dry Density - Mg/m3:		1.13	1.13	1.13
Voids Ratio:		1.3487	1.3479	1.3491
Normal Pressure- kPa		40	90	140
Consolidation				
Consolidated Height - mm:		22.63	21.84	20.87
Shear				
Rate of Strain (mm/min)		0.010	0.010	0.010
Strain at peak shear stress (mm)		5.78	4.57	4.28
Peak shear Stress - kPa:		30	50	71

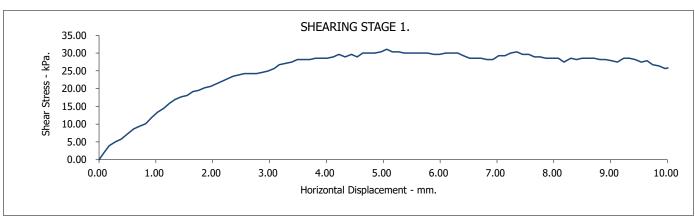
PEAK	
Angle of Shearing Resistance:(0)	22.0
Effective Cohesion - kPa:	14

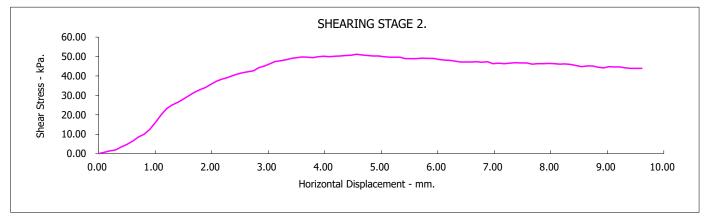
 EP Gas
 O8/08/17
 EP Gas
 O8/08/17

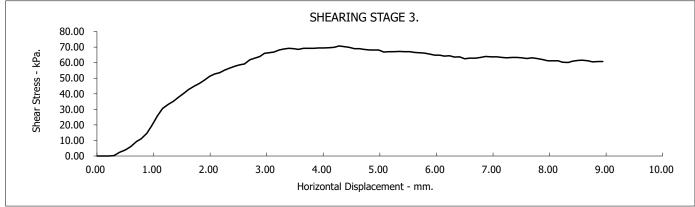
 Checked Pages 1-4 by:
 Date:
 Approved Pages 1-4 by:
 Date

Contract No.: **35579**

Foynes Port

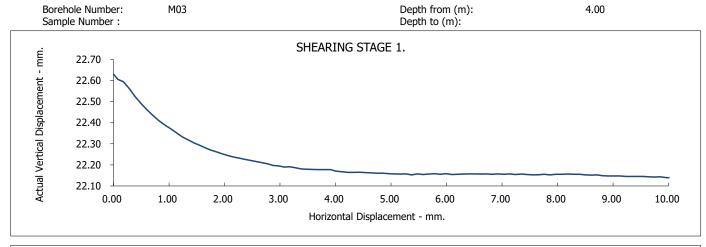

Client Ref Number:

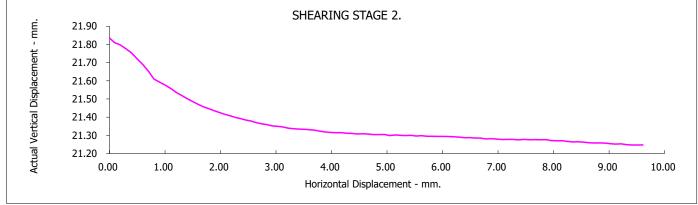


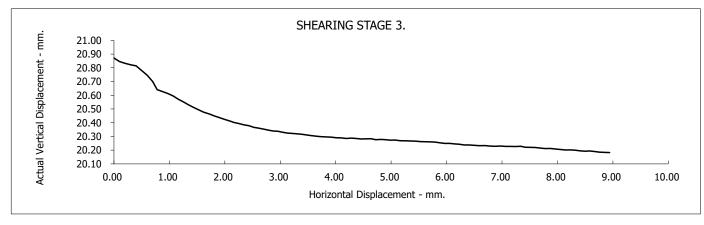


BS1377:Part 7:4.5 :1990.

Borehole Number: M03 Depth from (m): 4.00 Sample Number: Depth to (m):

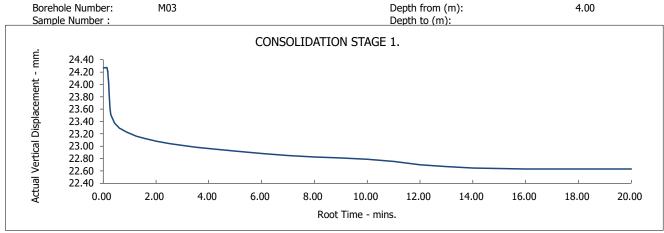


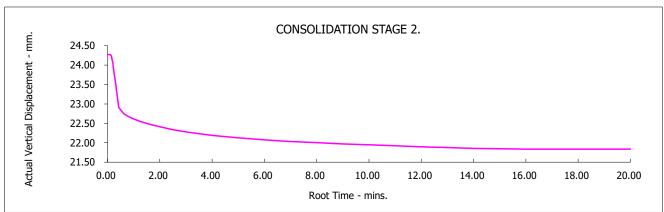

Foynes Port

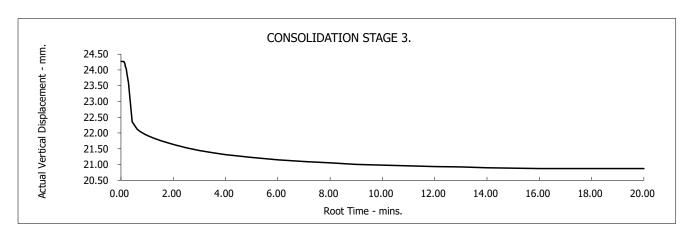

Contract No.: **35579**

BS1377:Part 7:4.5 :1990.

Contract No.: **35579**


Foynes Port


Client Ref Number: **0.00**



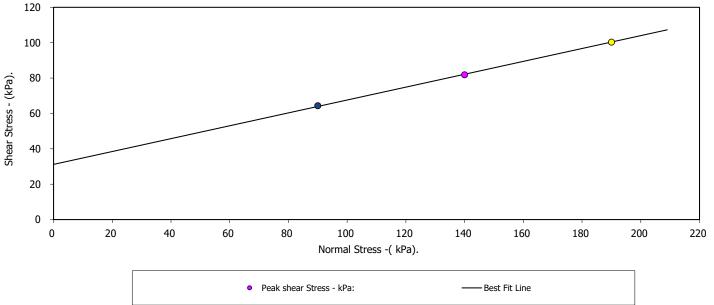
BS1377:Part 7:4.5 :1990.

Contract No.: **35579**

Foynes Port

Client Ref Number:

BS1377:Part 7:4.5 :1990.


 Borehole Number:
 M03
 Depth from (m):
 9.00

 Sample Number:
 1
 Depth to (m):
 9.50

Sample Type:	UT			
Particle Density - Mg/m3:	2.6	5 (Assumed)		
Specimen Tested:	Submerged, Undistur	Submerged, Undisturbed, Material above 2mm removed.		
Sample Description:				
Brownish grey soft sandy silty CLAY				
STAGE		1	2	3
Initial Conditions				
Height - mm:		24.27	24.27	24.27
Length - mm:		59.97	59.97	59.97
Moisture Content - %:		30	30	30
Bulk Density - Mg/m3:		1.92	1.92	1.92
Dry Density - Mg/m3:		1.47	1.47	1.47
Voids Ratio:		0.7996	0.7974	0.7985
Normal Pressure- kPa		90	140	190
Consolidation				
Consolidated Height - mm:		23.13	22.75	22.37
Shear				
Rate of Strain (mm/min)		0.010	0.010	0.010
Strain at peak shear stress (mm)		4.26	4.84	4.77
Peak shear Stress - kPa:		64	82	100

PEAK	
Angle of Shearing Resistance:(0)	20.0
Effective Cohesion - kPa:	31

FAILURE CONDITIONS

DP GONS

25/07/17

DP GONS

25/07/17

Checked Pages 1-4 by:

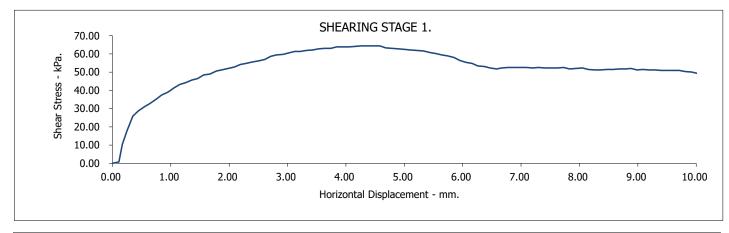
Date:

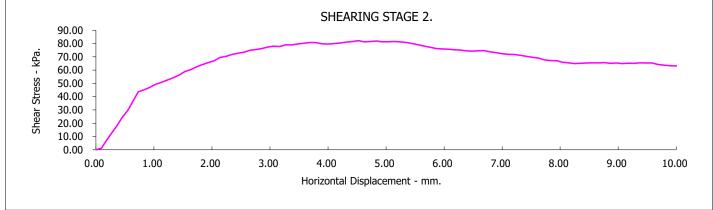
Approved Pages 1-4 by: Date

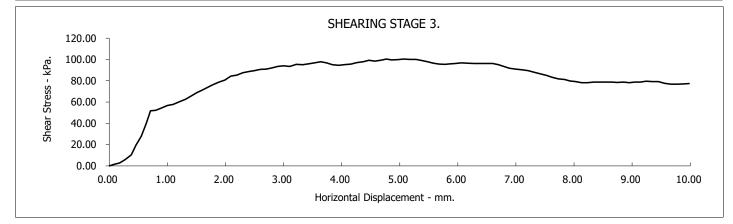
Contract No.: **35579**

Foynes Port

Client Ref Number:

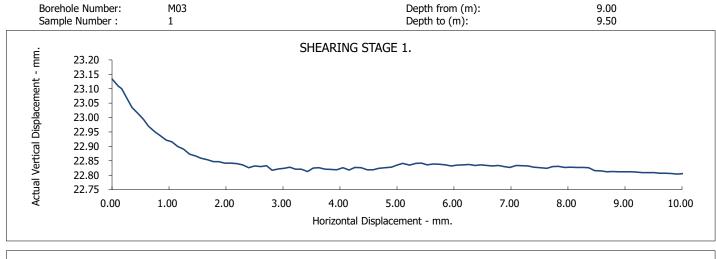


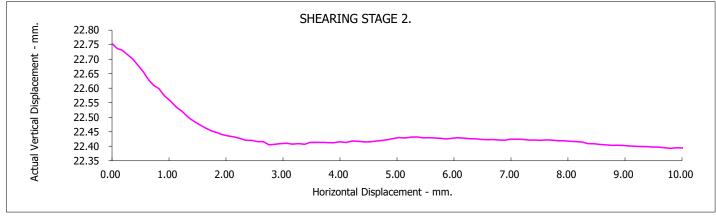


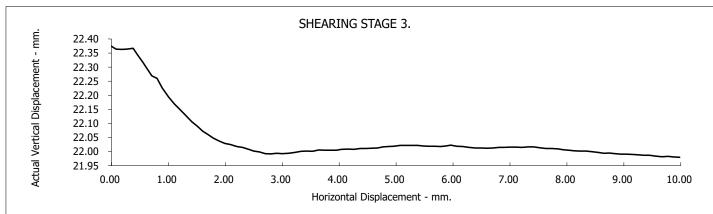

BS1377:Part 7:4.5 :1990.

Borehole Number: Sample Number: M03

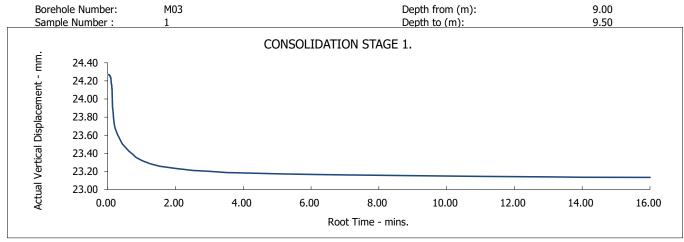
Depth from (m): Depth to (m): 9.00 9.50

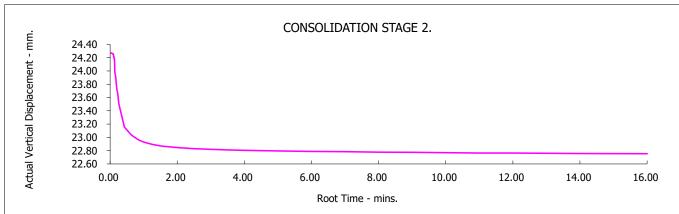


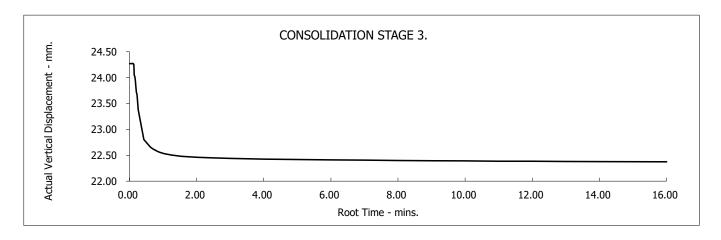

Foynes Port


Contract No.: **35579**

BS1377:Part 7:4.5 :1990.


Contract No.: **35579**


Foynes Port


Client Ref Number:

BS1377:Part 7:4.5 :1990.

Contract No.: **35579**

Foynes Port

Client Ref Number:

BS1377:Part 7:4.5 :1990.

Borehole Number: M03 Depth from (m): 12.00
Sample Number: Depth to (m):

- Campie Hamser I	20	pen eo ().		
Sample Type:	UT			
Particle Density - Mg/m3:	2.65	(Assumed)		
Specimen Tested:	Submerged, Undisturbed,	Material above 2mm remo	ved.	
Sample Description:				
Brownish grey soft silty CLAY				
STAGE		1	2	3
Initial Conditions				
Height - mm:		24.27	24.27	24.27
Length - mm:		59.97	59.97	59.97
Moisture Content - %:		36	36	36
Bulk Density - Mg/m3:		1.83	1.83	1.83
Dry Density - Mg/m3:		1.35	1.35	1.35
Voids Ratio:		0.9692	0.9686	0.9674
Normal Pressure- kPa		120	170	220
Consolidation				
Consolidated Height - mm:		21.29	20.75	20.21
Shear				
Rate of Strain (mm/min)		0.010	0.010	0.010
Strain at peak shear stress (mm)		5.20	5.21	6.39
Peak shear Stress - kPa:		82	91	100

PEAK	
Angle of Shearing Resistance:(0)	10.0
Effective Cohesion - kPa:	61

FAILURE CONDITIONS 120 100 Shear Stress - (kPa). 80 60 40 20 0 0 20 40 60 80 100 120 140 160 180 200 220 240 260 Normal Stress -(kPa). • Peak shear Stress - kPa: ----- Best Fit Line

DP Rons

25/07/17

DP GOOD

25/07/17

Checked Pages 1-4 by:

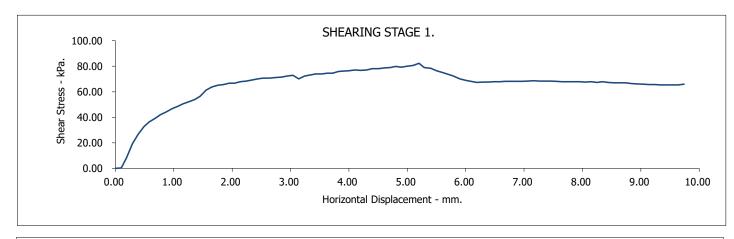
Date:

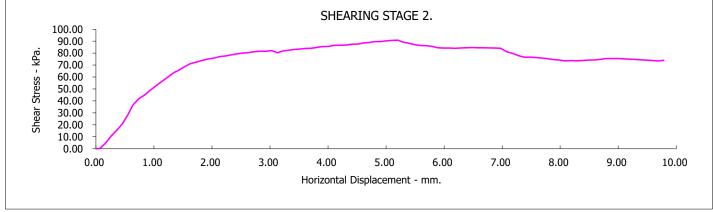
Approved Pages 1-4 by: Date

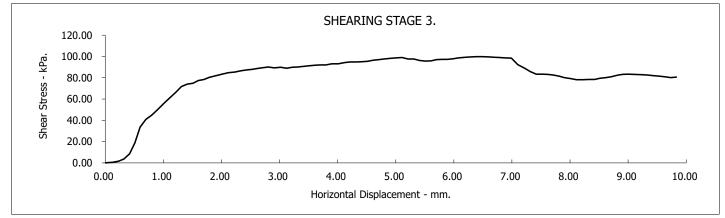
Contract No.: **35579**

Foynes Port

Client Ref Number:

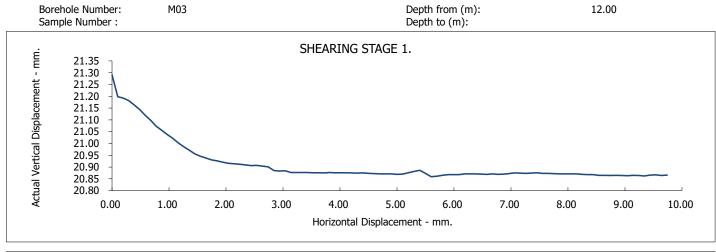


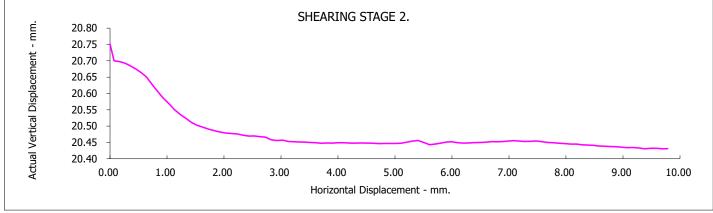


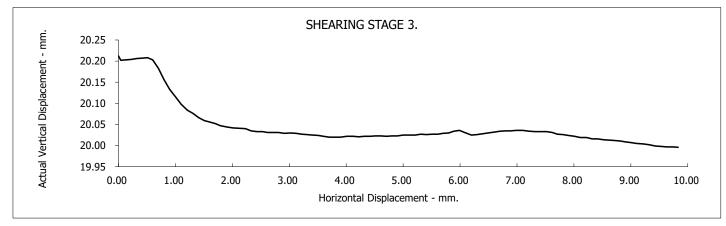

BS1377:Part 7:4.5 :1990.

Borehole Number: Sample Number: M03

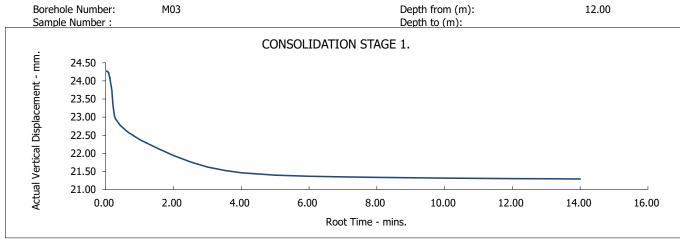
Depth from (m): Depth to (m): 12.00

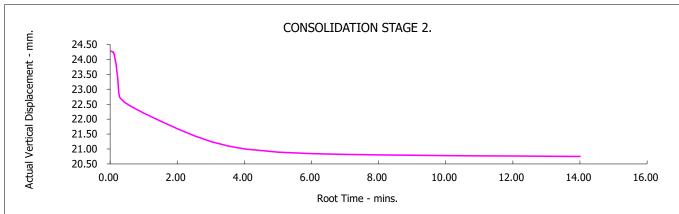


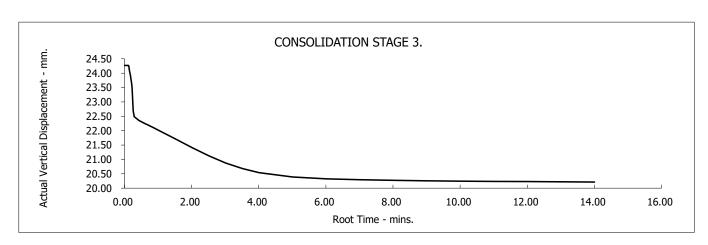

Foynes Port


Contract No.: **35579**

BS1377:Part 7:4.5 :1990.


Contract No.: **35579**


Foynes Port


Client Ref Number:

BS1377:Part 7:4.5 :1990.

Contract No.: **35579**

Foynes Port

Client Ref Number:

BS1377:Part 7:4.5 :1990.

Borehole Number: M03 Depth from (m): 15.00 Sample Number: Depth to (m):

Sample Number .	Di	epui to (iii).		
Sample Type:	UT			
Particle Density - Mg/m3:	2.65	(Assumed)		
Specimen Tested:	Submerged, Undisturbed,	Material above 2mm remo	ved.	
Sample Description:				
Brown soft silty CLAY				
STAGE		1	2	3
Initial Conditions				
Height - mm:		24.27	24.27	24.27
Length - mm:		59.97	59.97	59.97
Moisture Content - %:		54	54	54
Bulk Density - Mg/m3:		1.63	1.64	1.64
Dry Density - Mg/m3:		1.06	1.06	1.07
Voids Ratio:		1.5072	1.4914	1.4862
Normal Pressure- kPa		150	200	250
Consolidation				
Consolidated Height - mm:		21.00	20.38	19.86
Shear				
Rate of Strain (mm/min)		0.010	0.010	0.010
Strain at peak shear stress (mm)		4.15	5.59	5.49
Peak shear Stress - kPa:		95	114	133

PEAK	
Angle of Shearing Resistance:(θ)	21.2
Effective Cohesion - kPa:	37

160 140 120 Shear Stress - (kPa). 100 80 60 40 20 0 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 Normal Stress -(kPa).

FAILURE CONDITIONS

DP Rons

08/08/17

DP Gons

08/08/17

Checked Pages 1-4 by:

Date:

• Peak shear Stress - kPa:

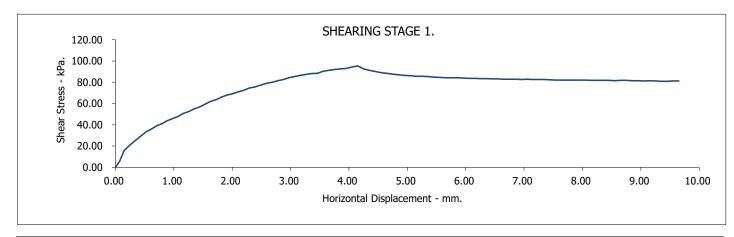
Approved Pages 1-4 by: Date

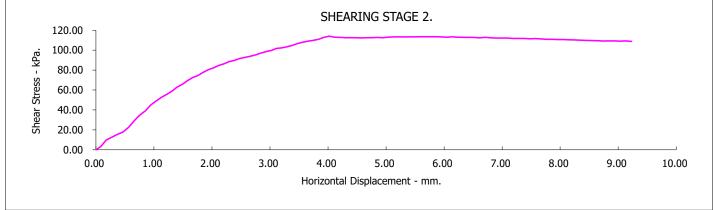
----- Best Fit Line

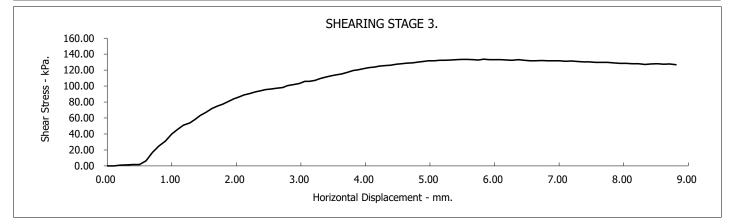
Contract No.: **35579**

Foynes Port

Client Ref Number:

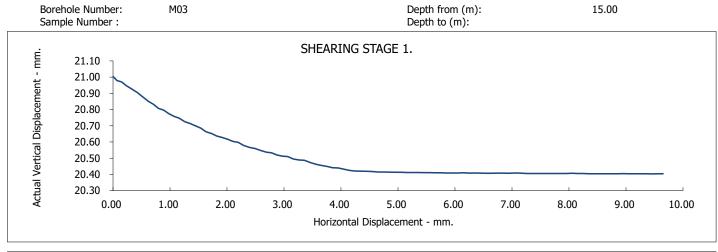


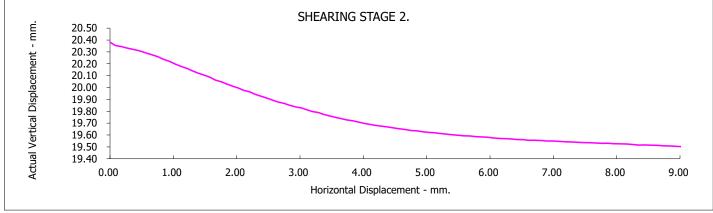


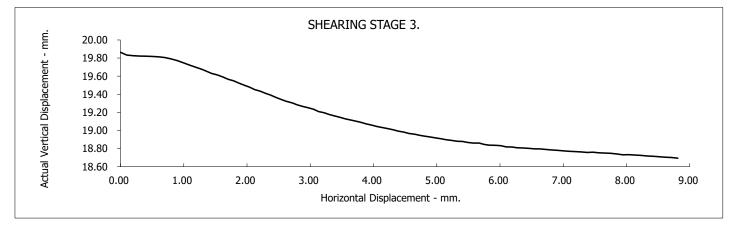

BS1377:Part 7:4.5 :1990.

Borehole Number: Sample Number: M03

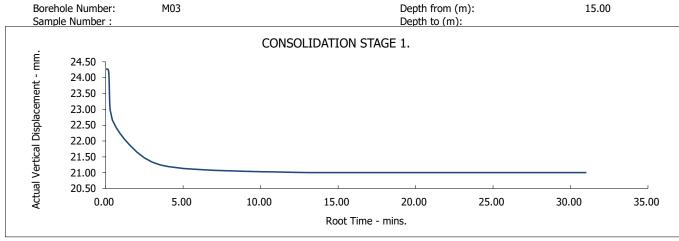
Depth from (m): Depth to (m): 15.00

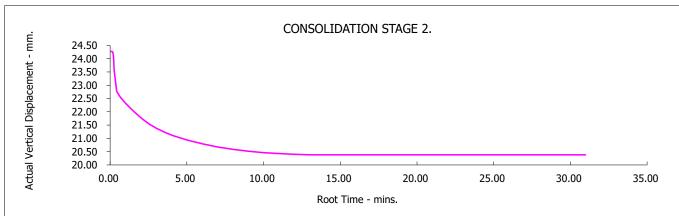


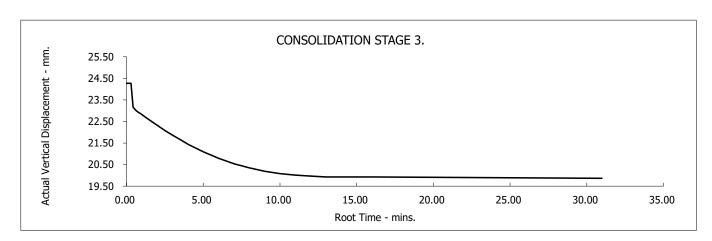

Foynes Port


Contract No.: **35579**

BS1377:Part 7:4.5 :1990.


Contract No.: **35579**

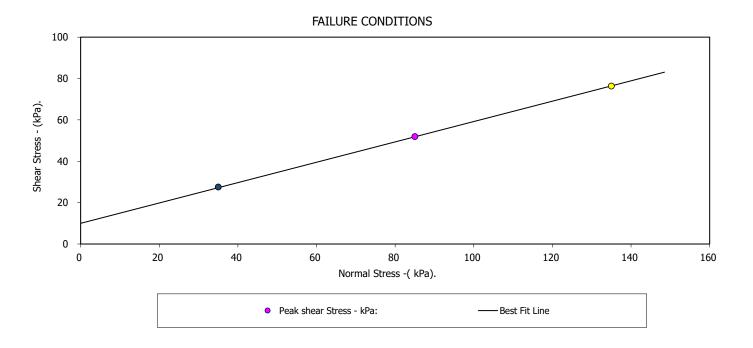

Foynes Port


Client Ref Number:

BS1377:Part 7:4.5 :1990.

Contract No.: **35579**

Foynes Port


Client Ref Number:

BS1377:Part 7:4.5 :1990.

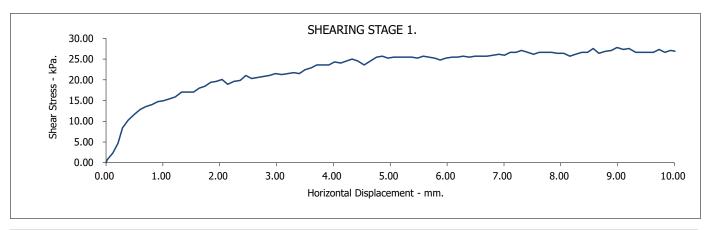
Borehole Number:	M04	Dep	th from (m):	3.50	
Sample Number:		Dep	th to (m):		
Sample Type:	UT				
Particle Density - Mg/m3:		2.65	(Assumed)		
Specimen Tested:	Submerged,	, Undisturbed, M	aterial above 2mm i	removed.	
Sample Description:	<u> </u>				
Brownish grey soft sandy silty CLAY					
STAGE			1	2	3
Initial Conditions					
Height - mm:			24.27	24.27	24.27
Length - mm:			59.97	59.97	59.97
Moisture Content - %:			57	57	57
Bulk Density - Mg/m3:			1.72	1.72	1.72
Dry Density - Mg/m3:			1.10	1.10	1.10
Voids Ratio:			1.4158	1.4142	1.4150
Normal Pressure- kPa			35	85	135
Consolidation					
Consolidated Height - mm:			22.83	21.74	20.41
Shear					
Rate of Strain (mm/min)			0.010	0.010	0.010
Strain at peak shear stress (mm)	•		9.20	7.20	6.38
Peak shear Stress - kPa:			28	52	76

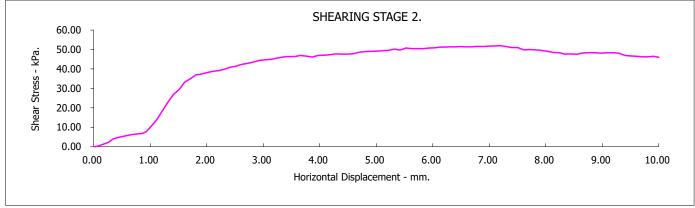
PEAK	
Angle of Shearing Resistance:(0)	26.2
Effective Cohesion - kPa:	10

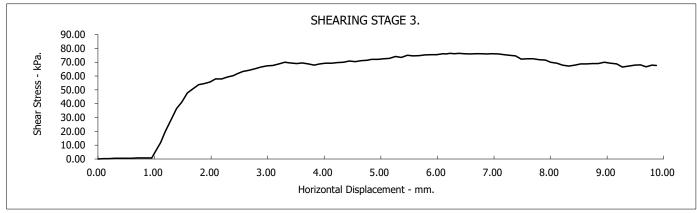
 EP Grans
 Date:
 Approved Pages 1-4 by:
 Date

Contract No.: **35579**

Foynes Port

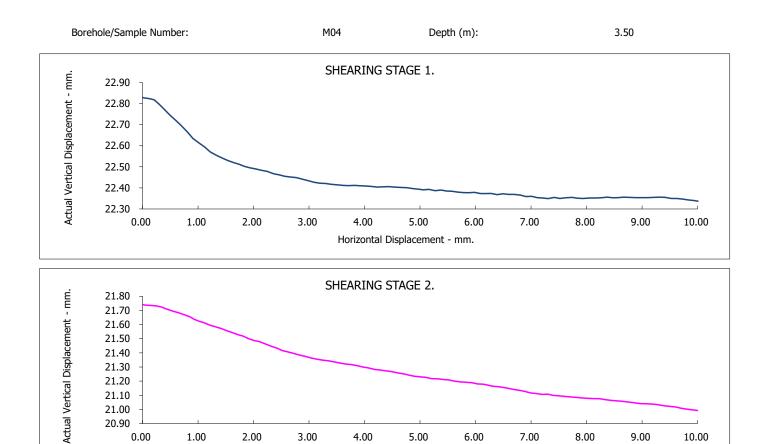

Client Ref Number:

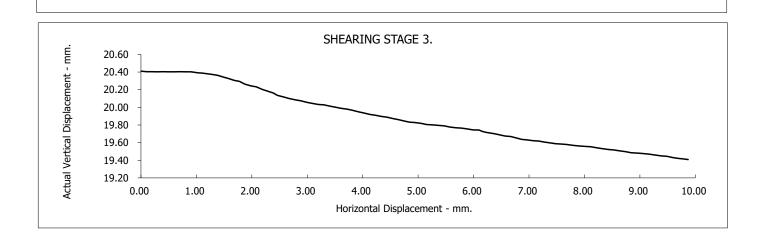




BS1377:Part 7:4.5:1990.

Borehole/Sample Number: M04 Depth (m): 3.50




Foynes Port

Contract No.: **35579**

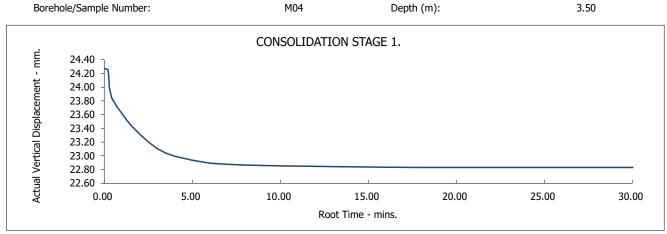
BS1377:Part 7:4.5 :1990.

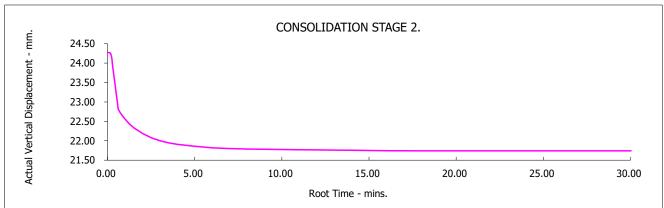
4.00

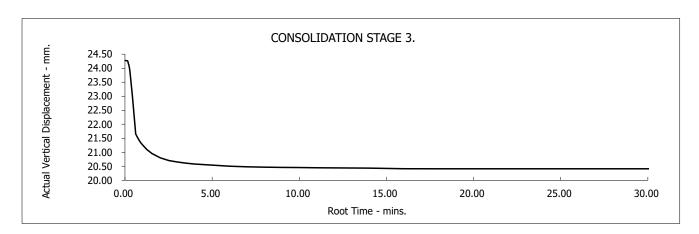
5.00

Horizontal Displacement - mm.

6.00


Contract No.: 35579


Foynes Port


Client Ref Number: 0.00

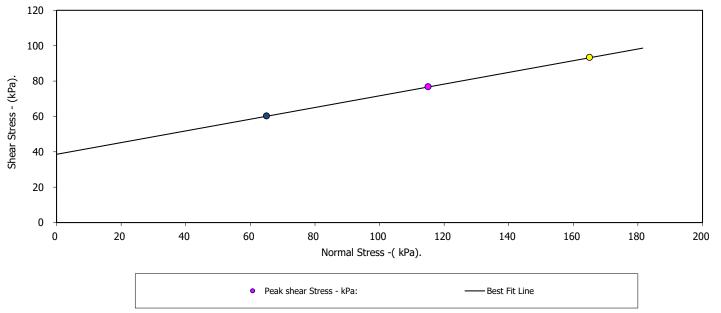
BS1377:Part 7:4.5 :1990.

Contract No.: **35579**

Client Ref Number:

0.00

Foynes Port


BS1377:Part 7:4.5 :1990.

Borehole Number: M04 Depth from (m): 6.50
Sample Number: Depth to (m):

Sample Type:	UT			
Particle Density - Mg/m3:	2.65	(Assumed)		
Specimen Tested:	Submerged, Undisturbe	d, Material above 2mm rem	oved.	
Sample Description:				
Grey soft slightly clayey sandy SILT				
STAGE		1	2	3
Initial Conditions				
Height - mm:		24.27	24.27	24.27
Length - mm:		59.97	59.97	59.97
Moisture Content - %:		29	29	29
Bulk Density - Mg/m3:		1.94	1.95	1.95
Dry Density - Mg/m3:		1.51	1.51	1.51
Voids Ratio:		0.7577	0.7536	0.7557
Normal Pressure- kPa		65	115	165
Consolidation				
Consolidated Height - mm:		23.38	23.05	22.72
Shear				
Rate of Strain (mm/min)		0.010	0.010	0.010
Strain at peak shear stress (mm)		3.97	3.96	3.95
Peak shear Stress - kPa:		60	77	93

PEAK	
Angle of Shearing Resistance:(θ)	18.3
Effective Cohesion - kPa:	39

FAILURE CONDITIONS

DP Rions

08/08/17

DP GONS

08/08/17

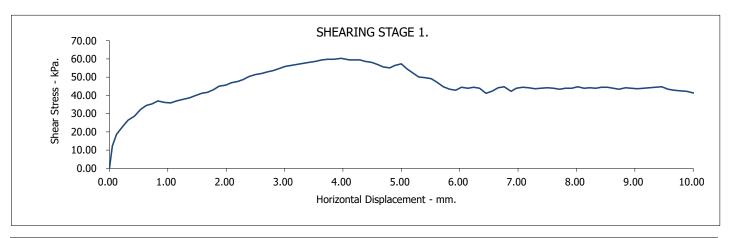
Checked Pages 1-4 by:

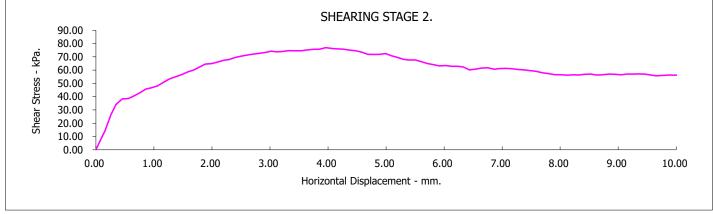
Date:

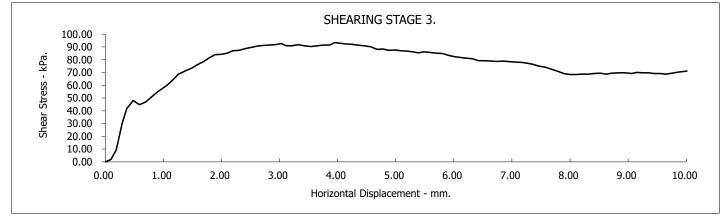
Approved Pages 1-4 by: Date

Contract No.: **35579**

Foynes Port

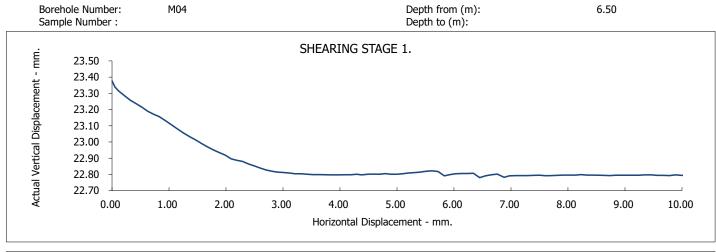

Client Ref Number:

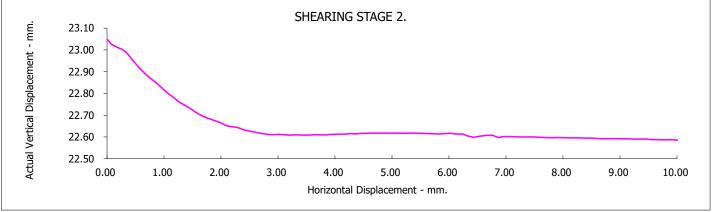


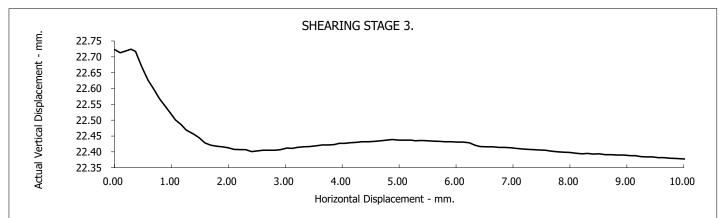


BS1377:Part 7:4.5 :1990.

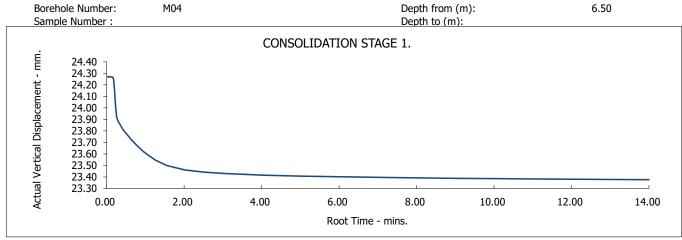
Borehole Number: M04 Depth from (m): 6.50 Sample Number: Depth to (m):

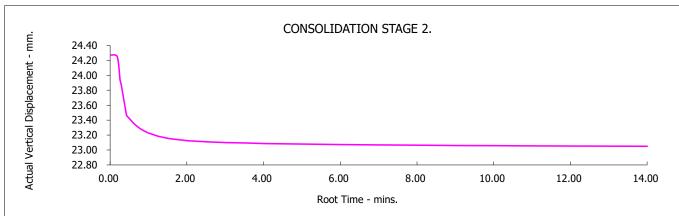


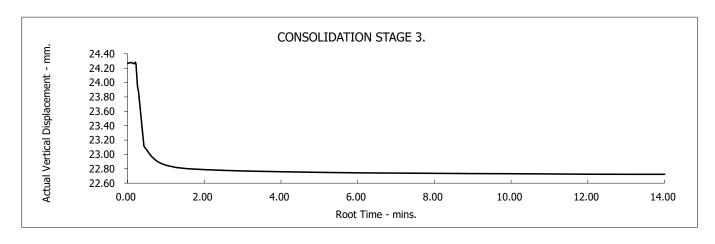

Foynes Port


Contract No.: **35579**

BS1377:Part 7:4.5 :1990.


Contract No.: **35579**


Foynes Port


Client Ref Number: **0.00**

BS1377:Part 7:4.5 :1990.

Contract No.: **35579**

Foynes Port

Client Ref Number:

BS1377:Part 7:4.5 :1990.

Borehole Number: M05 Depth from (m): 1.00 Sample Number: Depth to (m): 1.50

Sample Type:	JUT			
Particle Density - Mg/m3:	2.65	(Assumed)		
Specimen Tested:	Submerged, Undisturbe	d, Material above 2mm remo	ved.	
Sample Description:				
Brown grey very soft clayey SILT				
STAGE		1	2	3
Initial Conditions				
Height - mm:		24.27	24.27	24.27
Length - mm:		59.97	59.97	59.97
Moisture Content - %:		69	69	69
Bulk Density - Mg/m3:		1.66	1.67	1.68
Dry Density - Mg/m3:		0.99	0.99	0.99
Voids Ratio:		1.6874	1.6723	1.6635
Normal Pressure- kPa		10	60	110
Consolidation				
Consolidated Height - mm:		23.61	22.51	21.41
Shear				
Rate of Strain (mm/min)		0.010	0.010	0.010
Strain at peak shear stress (mm)		5.44	4.15	2.85
Peak shear Stress - kPa:		14	30	47

PEAK	
Angle of Shearing Resistance:(0)	18.6
Effective Cohesion - kPa:	10

FAILURE CONDITIONS 60 Shear Stress - (kPa). 40 20 0 0 20 40 60 100 120 140 Normal Stress -(kPa). • Peak shear Stress - kPa: ----- Best Fit Line

DP Rons

25/07/17

DP Gons

25/07/17

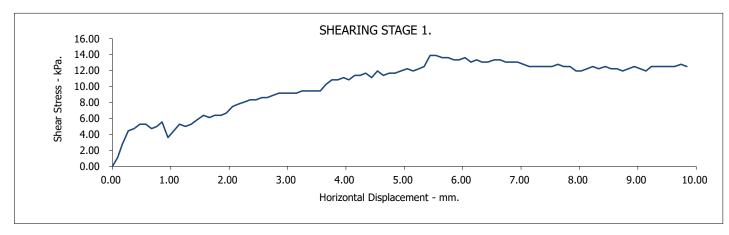
Checked Pages 1-4 by:

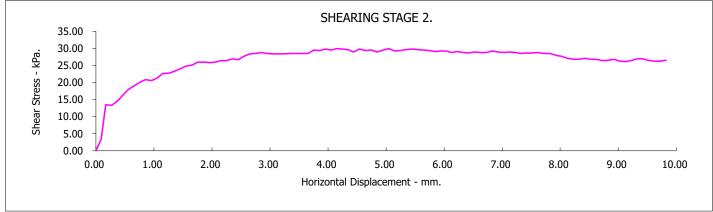
Date:

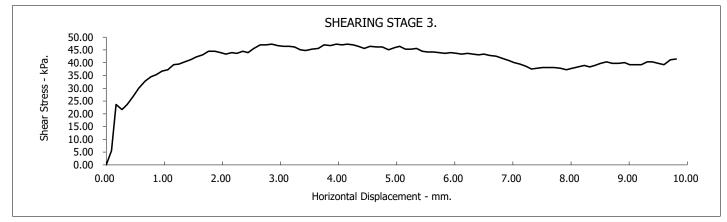
Approved Pages 1-4 by: Date

Contract No.: **35579**

Foynes Port

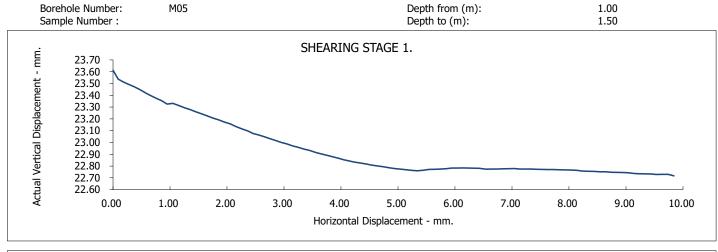

Client Ref Number:

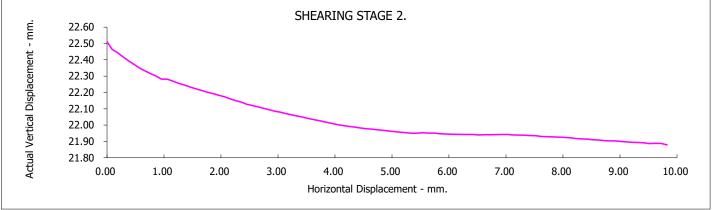


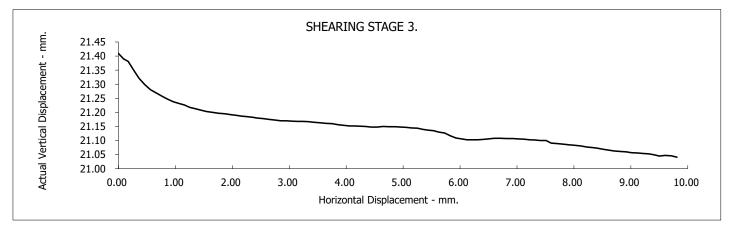

BS1377:Part 7:4.5 :1990.

Borehole Number: Sample Number: M05

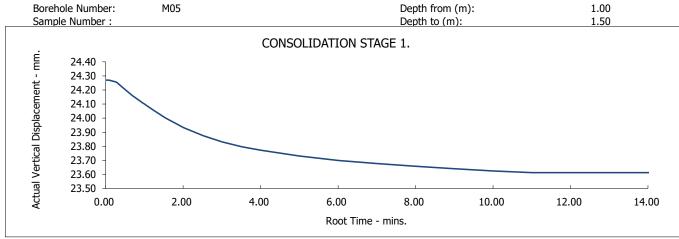
Depth from (m): Depth to (m): 1.00 1.50

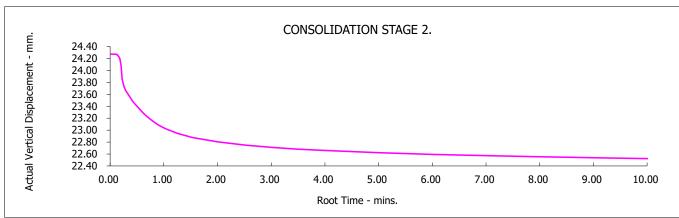


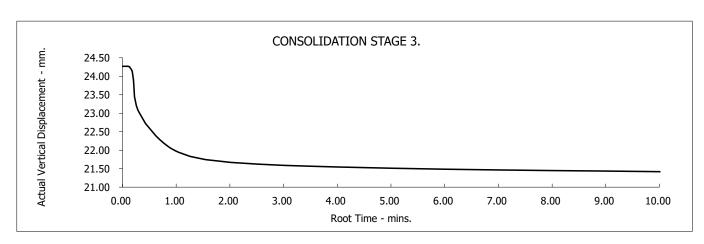

Foynes Port


Contract No.: **35579**

BS1377:Part 7:4.5 :1990.


Contract No.: **35579**


Foynes Port

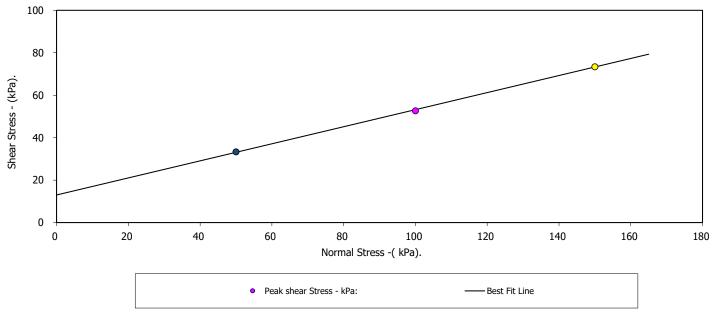

Client Ref Number: **0.00**

BS1377:Part 7:4.5 :1990.

Contract No.: **35579**

Foynes Port

Client Ref Number:


BS1377:Part 7:4.5 :1990.

Borehole Number: M05 Depth from (m): 5.00
Sample Number: Depth to (m):

Sample Type:	UT			
Particle Density - Mg/m3:	2.6	65 (Assumed)		
Specimen Tested:	Submerged, Undistu	rbed, Material above 2mm remo	oved.	
Sample Description:				
Brown grey very soft slightly sandy	silty organic CLAY			
STAGE		1	2	3
Initial Conditions				
Height - mm:		24.27	24.27	24.27
Length - mm:		59.97	59.97	59.97
Moisture Content - %:		53	53	53
Bulk Density - Mg/m3:		1.63	1.63	1.63
Dry Density - Mg/m3:		1.06	1.07	1.07
Voids Ratio:		1.4903	1.4871	1.4833
Normal Pressure- kPa		50	100	150
Consolidation				
Consolidated Height - mm:		22.45	21.61	20.77
Shear				
Rate of Strain (mm/min)		0.010	0.010	0.010
Strain at peak shear stress (mm)		4.50	4.56	5.29
Peak shear Stress - kPa:	·	33	53	73

PEAK	
Angle of Shearing Resistance:(0)	21.9
Effective Cohesion - kPa:	13

FAILURE CONDITIONS

DP Rions

25/07/17

DP GOOD

25/07/17

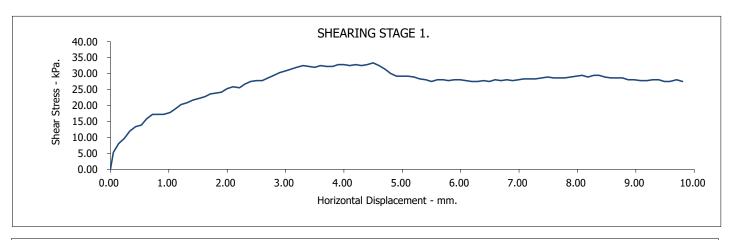
Checked Pages 1-4 by:

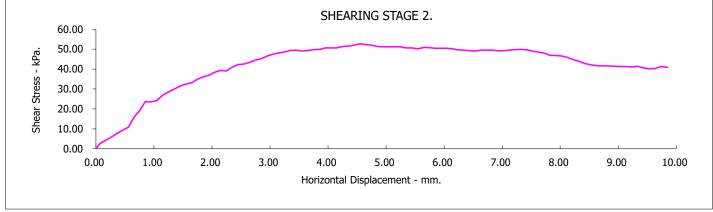
Date:

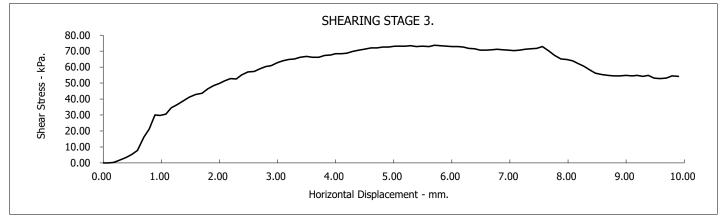
Approved Pages 1-4 by: Date

Contract No.: **35579**

Foynes Port

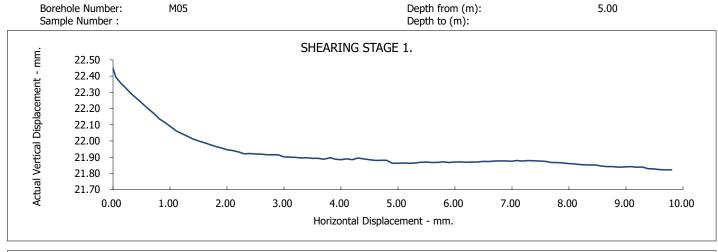

Client Ref Number:

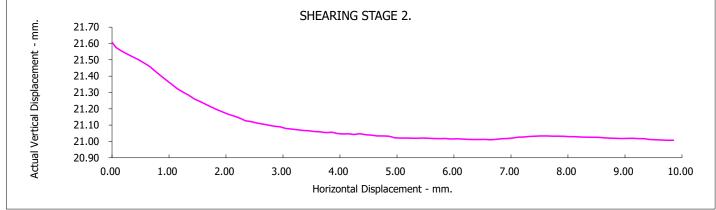


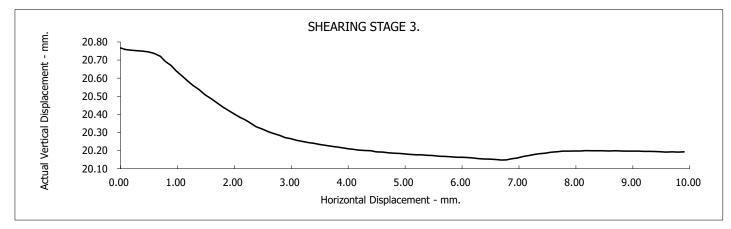


BS1377:Part 7:4.5 :1990.

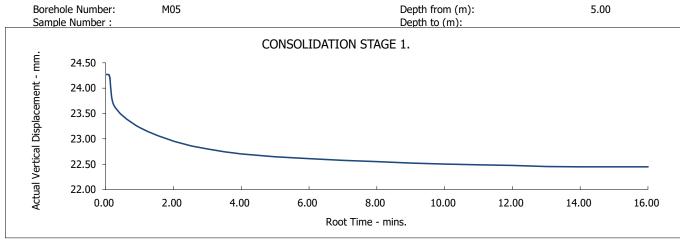
Borehole Number: M05 Depth from (m):
Sample Number: Depth to (m):

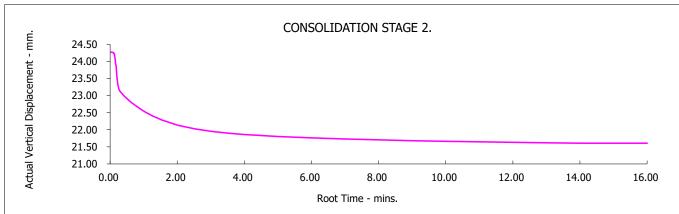

Foynes Port

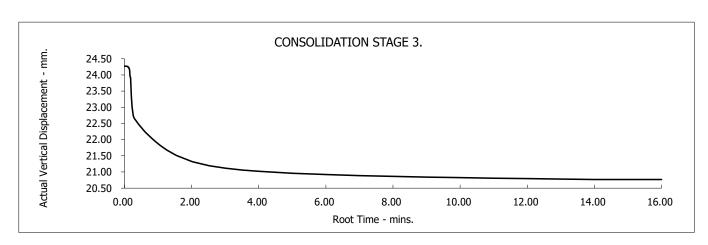

Contract No.: **35579**Client Ref Number:


O.00 Figure.

BS1377:Part 7:4.5 :1990.

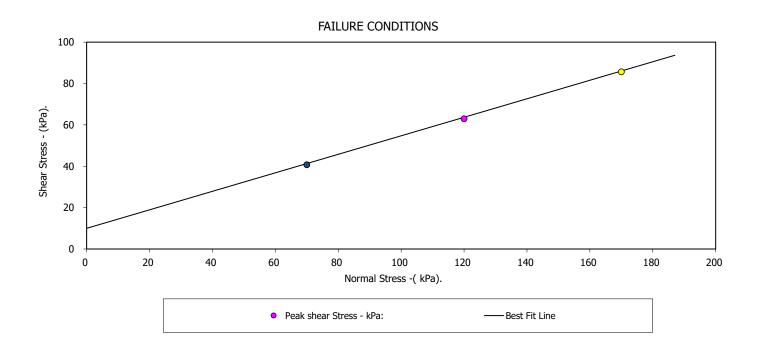

Contract No.: **35579**


Foynes Port


Client Ref Number:

BS1377:Part 7:4.5 :1990.

Contract No.: **35579**


Foynes Port

Client Ref Number:

BS1377:Part 7:4.5 :1990.

Borehole Number:	M05			7.00	
Sample Number:		Depth to (m):			
Sample Type:	UT				
Particle Density - Mg/m3:		2.65	(Assumed)		
Specimen Tested:	Submerged,	Submerged, Undisturbed, Material above 2mm removed.			
Sample Description:					
Dark grey soft sandy silty organic CLAY					
STAGE			1	2	3
Initial Conditions					
Height - mm:			24.27	24.27	24.27
Length - mm:			59.97	59.97	59.97
Moisture Content - %:			44	44	44
Bulk Density - Mg/m3:			1.86	1.86	1.86
Dry Density - Mg/m3:			1.29	1.29	1.29
Voids Ratio:			1.0467	1.0505	1.0479
Normal Pressure- kPa			70	120	170
Consolidation					
Consolidated Height - mm:			23.68	22.21	20.73
Shear					
Rate of Strain (mm/min)			0.010	0.010	0.010
Strain at peak shear stress (mm)			7.73	5.78	5.22
Peak shear Stress - kPa:			41	63	86

DP Glans

08/08/17

DP Gons

08/08/17

Checked Pages 1-4 by:

Date:

Approved Pages 1-4 by: Date

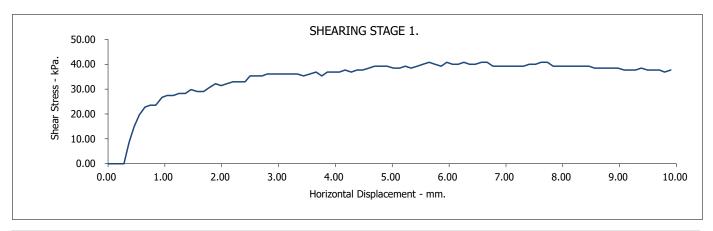
Contract No.: **35579**

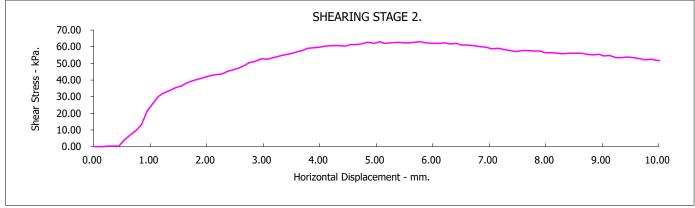
Foynes Port

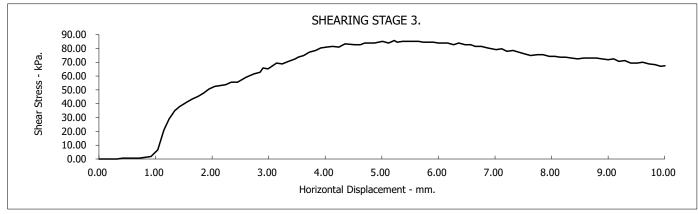
1 of 4

Client Ref Number:

24.1 10

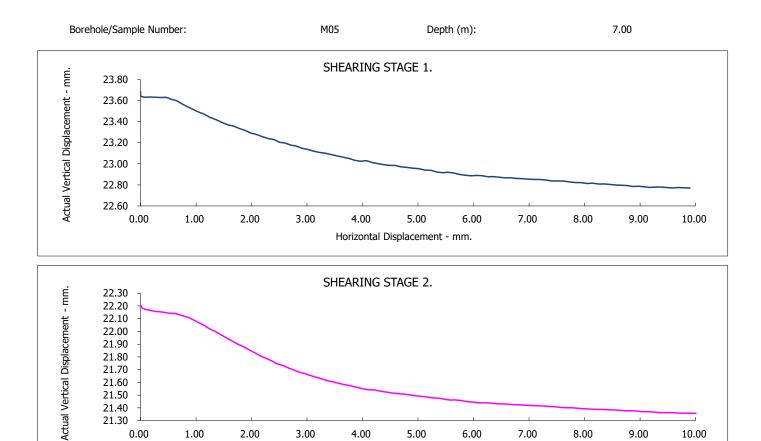


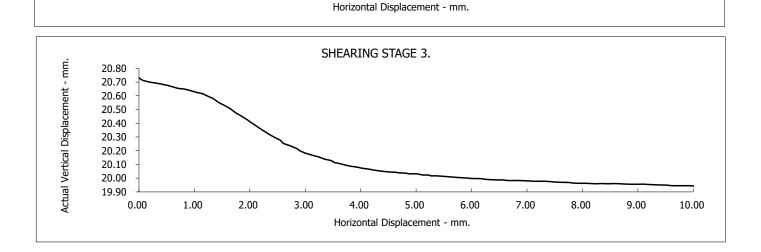

PEAK


Angle of Shearing Resistance:(0)
Effective Cohesion - kPa:

BS1377:Part 7:4.5 :1990.

Borehole/Sample Number: M05 Depth (m): 7.00




Foynes Port

Contract No.: **35579**

BS1377:Part 7:4.5 :1990.

4.00

5.00

6.00

7.00

8.00

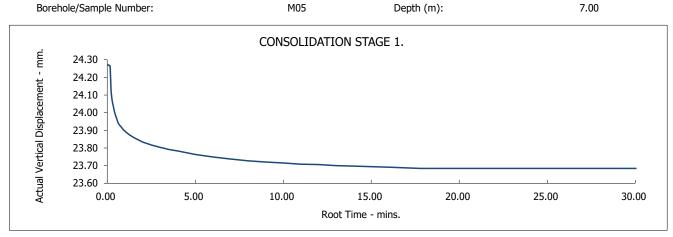
9.00

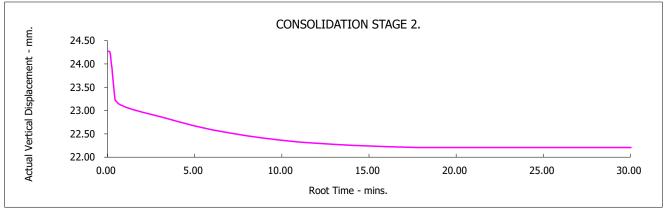
10.00

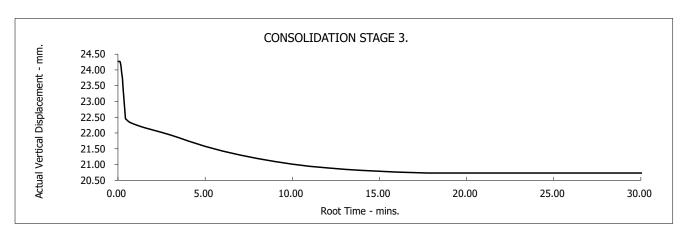
Contract No.: 35579

Foynes Port

Client Ref Number: 0.00




21.70 21.60 21.50 21.40 21.30 0.00


1.00

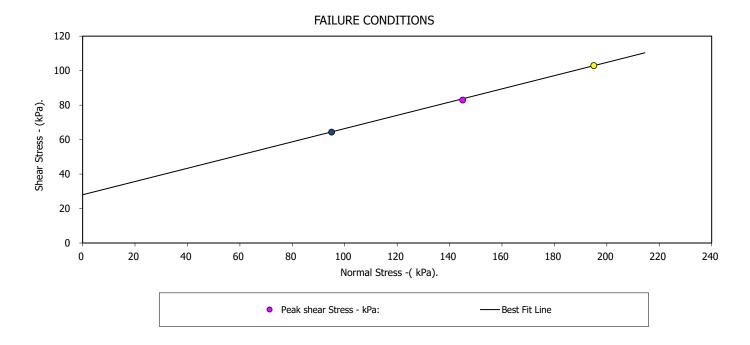
2.00

BS1377:Part 7:4.5 :1990.

Contract No.: **35579**

Client Ref Number:

0.00


Foynes Port

BS1377:Part 7:4.5 :1990.

Borehole Number:	M05	Depth from (m):		9.50	9.50	
Sample Number:		Depth to (m):				
Sample Type:	UT					
Particle Density - Mg/m3:		2.65	(Assumed)			
Specimen Tested:	Submerged,	Submerged, Undisturbed, Material above 2mm removed.				
Sample Description:						
Dark grey soft sandy silty organic CLAY						
STAGE			1	2	3	
Initial Conditions						
Height - mm:			24.27	24.27	24.27	
Length - mm:			59.97	59.97	59.97	
Moisture Content - %:			51	51	51	
Bulk Density - Mg/m3:			1.89	1.90	1.89	
Dry Density - Mg/m3:			1.25	1.26	1.25	
Voids Ratio:			1.1127	1.1100	1.1124	
Normal Pressure- kPa			95	145	195	
Consolidation						
Consolidated Height - mm:			22.73	22.21	21.87	
Shear						
Rate of Strain (mm/min)			0.010	0.010	0.010	
Strain at peak shear stress (mm)			5.28	5.21	5.04	
Peak shear Stress - kPa:			64	83	103	

PEAK	
Angle of Shearing Resistance:(0)	21.0
Effective Cohesion - kPa:	28

DP Glans

08/08/17

DP Gons

08/08/17

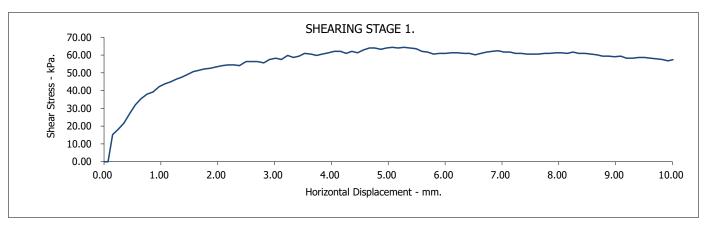
Checked Pages 1-4 by:

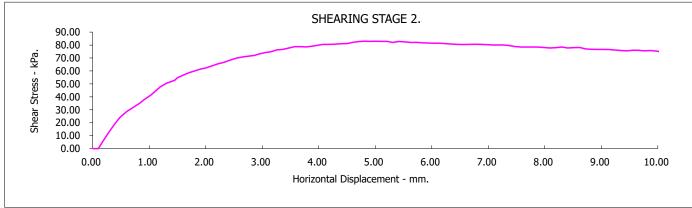
Date:

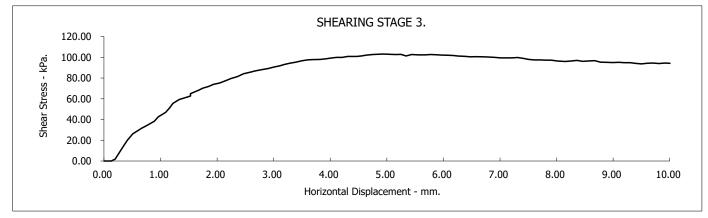
Approved Pages 1-4 by: Date

Contract No.: **35579**

Foynes Port

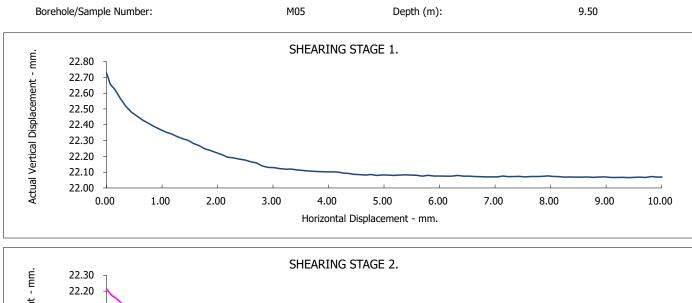

Client Ref Number:

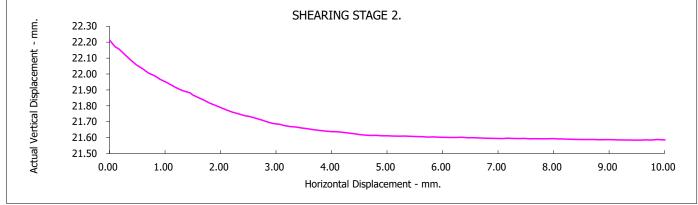


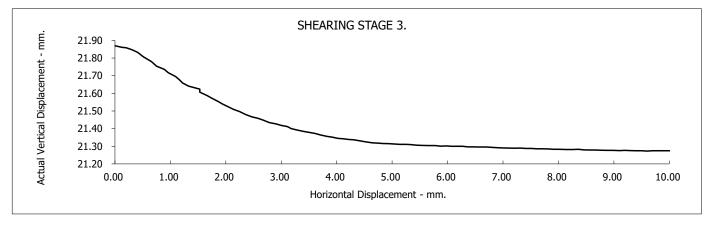


BS1377:Part 7:4.5:1990.

Borehole/Sample Number: M05 Depth (m): 9.50

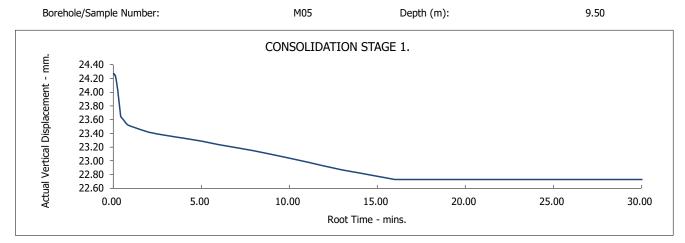


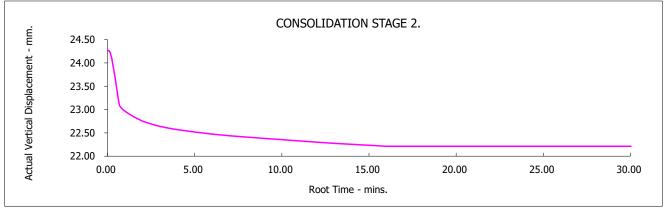

Foynes Port

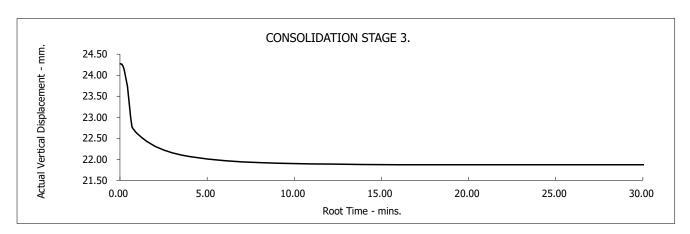

Contract No.: **35579**

BS1377:Part 7:4.5 :1990.

Contract No.: **35579**


Client Ref Number:


0.00

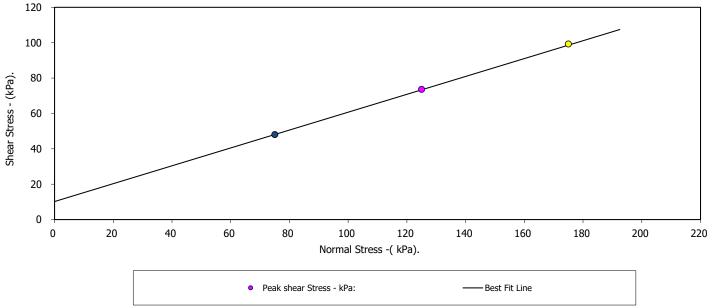

Foynes Port

BS1377:Part 7:4.5 :1990.

Contract No.: **35579**

Foynes Port

Client Ref Number:


BS1377:Part 7:4.5 :1990.

Borehole Number:M06Depth from (m):7.50Sample Number:Depth to (m):8.00

Sample Type:	UT			
Particle Density - Mg/m3:	2.65	(Assumed)		
Specimen Tested:	Submerged, Undisturbed, Material above 2mm removed.			
Sample Description:				
Dark grey soft sandy silty CLAY				
STAGE		1	2	3
Initial Conditions				
Height - mm:		24.27	24.27	24.27
Length - mm:		59.97	59.97	59.97
Moisture Content - %:		39	39	39
Bulk Density - Mg/m3:		1.80	1.81	1.82
Dry Density - Mg/m3:		1.29	1.30	1.30
Voids Ratio:		1.0464	1.0389	1.0348
Normal Pressure- kPa		75	125	175
Consolidation				
Consolidated Height - mm:		22.40	22.17	21.95
Shear				
Rate of Strain (mm/min)		0.010	0.010	0.010
Strain at peak shear stress (mm)		5.09	4.89	5.08
Peak shear Stress - kPa:		48	74	99

PEAK	
Angle of Shearing Resistance:(0)	26.8
Effective Cohesion - kPa:	10

FAILURE CONDITIONS

DP GONS

25/07/17

DP GONS

25/07/17

Checked Pages 1-4 by:

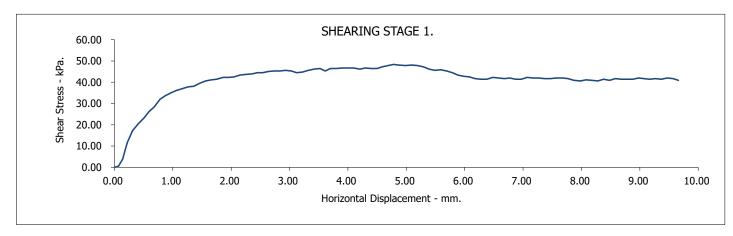
Date:

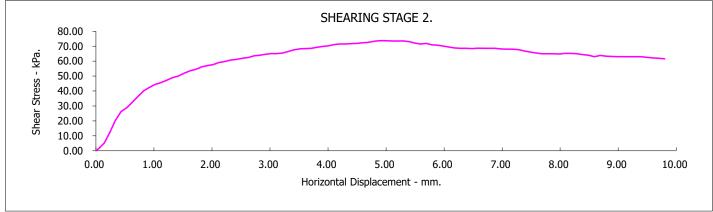
Approved Pages 1-4 by: Date

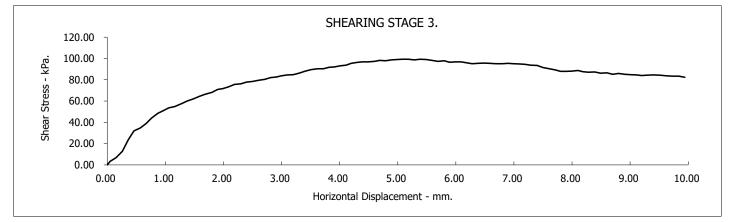
Contract No.: **35579**

Foynes Port

Client Ref Number:

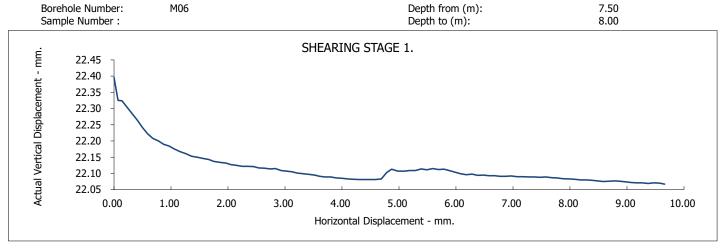


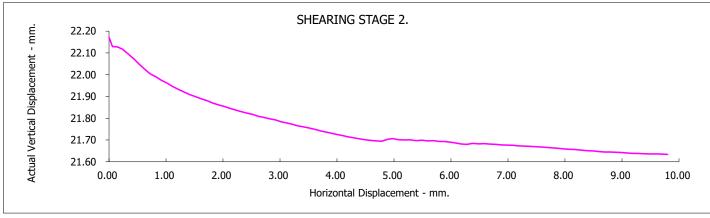


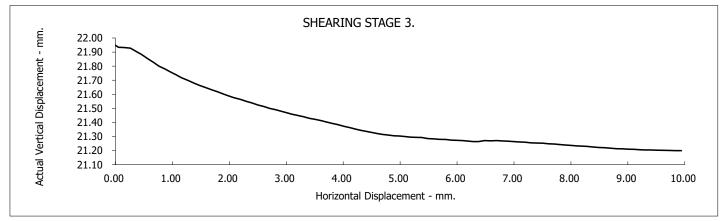

BS1377:Part 7:4.5 :1990.

Borehole Number: Sample Number: M06

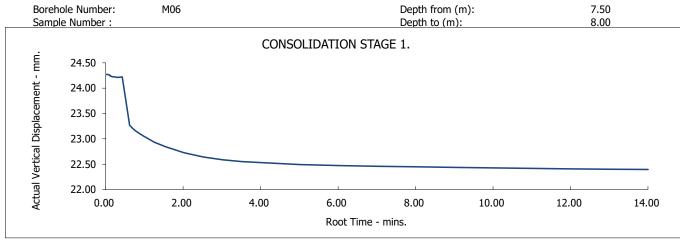
Depth from (m): Depth to (m): 7.50 8.00

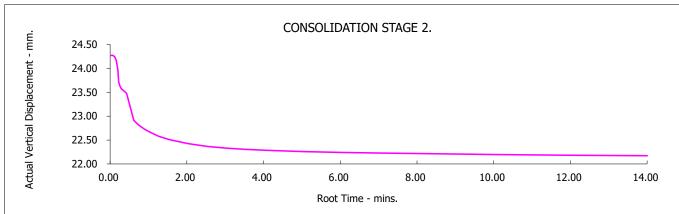


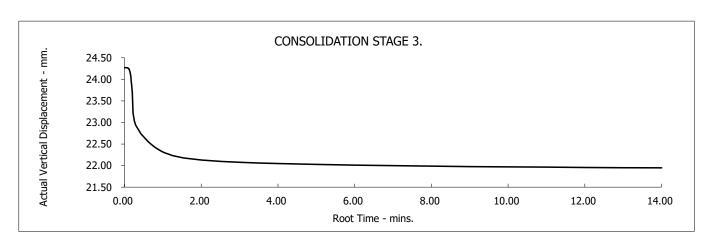

Foynes Port


Contract No.: **35579**

BS1377:Part 7:4.5 :1990.




Contract No.: **35579**


Foynes Port

BS1377:Part 7:4.5 :1990.

Contract No.: **35579**

Foynes Port

Client Ref Number:

BS1377:Part 7:4.5 :1990.

Borehole Number: M06 Depth from (m): 8.50
Sample Number: Depth to (m):

	open to (m).		
UT			
2.65	(Assumed)		
Submerged, Undisturbed,	Material above 2mm remo	oved.	
	1	2	3
	24.27	24.27	24.27
	59.97	59.97	59.97
	37	37	37
	1.81	1.82	1.83
	1.33	1.33	1.34
	0.9982	0.9925	0.9831
	85	135	185
	22.50	22.00	21.51
	0.010	0.010	0.010
	4.03	5.07	5.33
	55	70	87
	UT 2.65	UT	UT

PEAK	
Angle of Shearing Resistance:(θ)	17.5
Effective Cohesion - kPa:	28

FAILURE CONDITIONS 100 80 Shear Stress - (kPa). 60 40 20 0 0 20 40 60 80 100 120 140 160 180 200 220 Normal Stress -(kPa). • Peak shear Stress - kPa: ----- Best Fit Line

DP Glons

25/07/17

DP GOOD

25/07/17

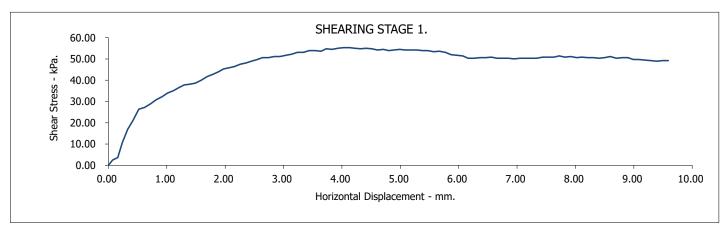
Checked Pages 1-4 by:

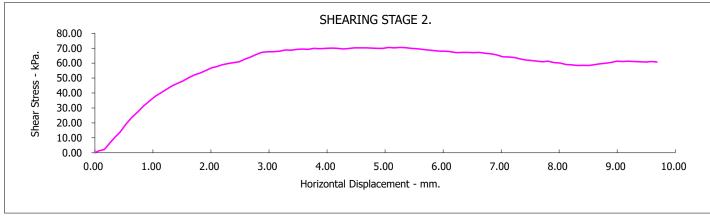
Date:

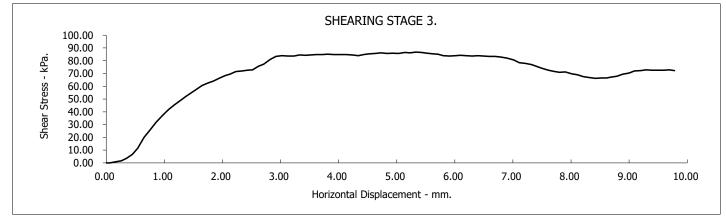
Approved Pages 1-4 by: Date

Contract No.: **35579**

Foynes Port

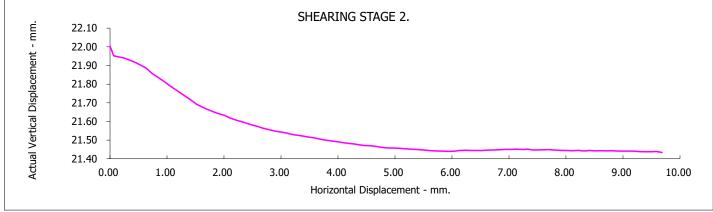


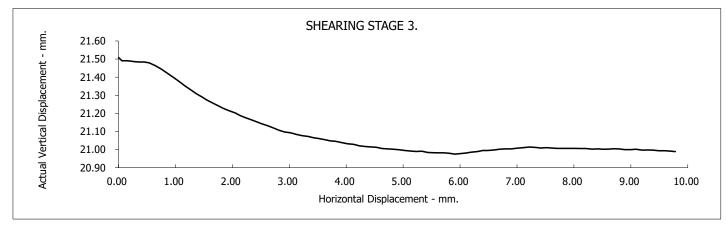



BS1377:Part 7:4.5 :1990.

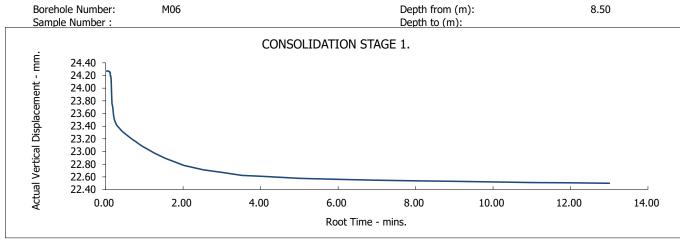
Borehole Number: M06 Depth from (m): Sample Number: Depth to (m):

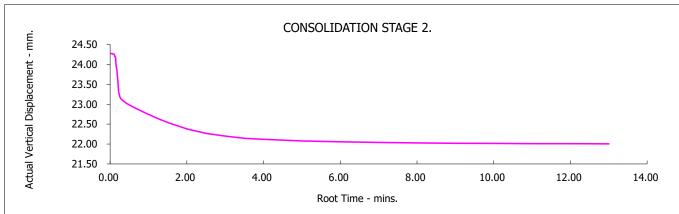
8.50

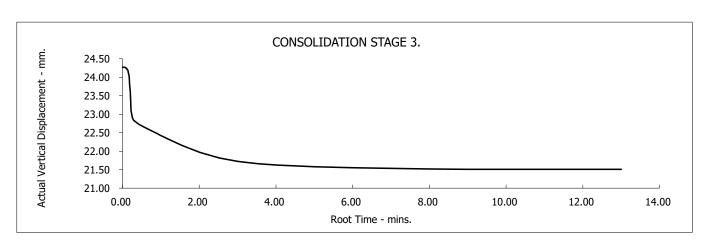

Foynes Port


Contract No.: **35579**

BS1377:Part 7:4.5 :1990.


Contract No.: **35579**


Foynes Port


Client Ref Number:

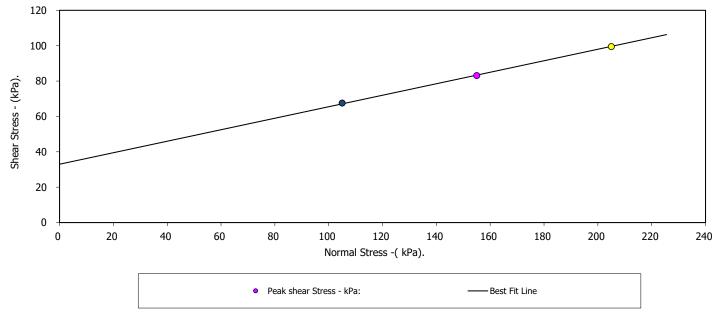
BS1377:Part 7:4.5 :1990.

Contract No.: **35579**

Foynes Port

Client Ref Number:

BS1377:Part 7:4.5 :1990.


 Borehole Number:
 M06
 Depth from (m):
 10.50

 Sample Number :
 Depth to (m):
 11.00

	op a to ().		
UT			
2.65	(Assumed)		
Submerged, Undisturbed,	Material above 2mm remo	oved.	
	1	2	3
	24.27	24.27	24.27
	59.97	59.97	59.97
	43	43	43
	1.76	1.76	1.76
	1.24	1.24	1.23
	1.1455	1.1433	1.1525
	105	155	205
	21.88	21.77	21.14
	0.010	0.010	0.010
	5.05	5.68	5.72
	68	83	100
	UT 2.65	2.65 (Assumed) Submerged, Undisturbed, Material above 2mm remo	UT

PEAK	
Angle of Shearing Resistance:(0)	18.0
Effective Cohesion - kPa:	33

FAILURE CONDITIONS

DP Rions

25/07/17

DP GOOD

25/07/17

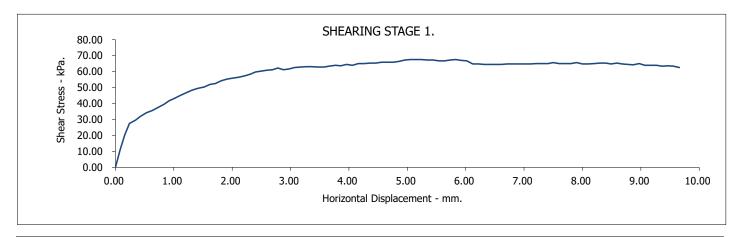
Checked Pages 1-4 by:

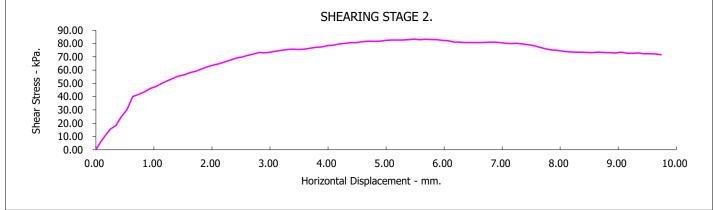
Date:

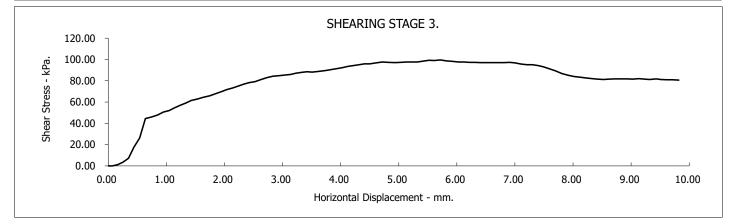
Approved Pages 1-4 by: Date

Contract No.: **35579**

Foynes Port

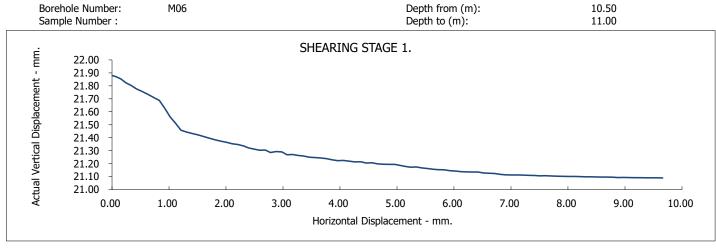


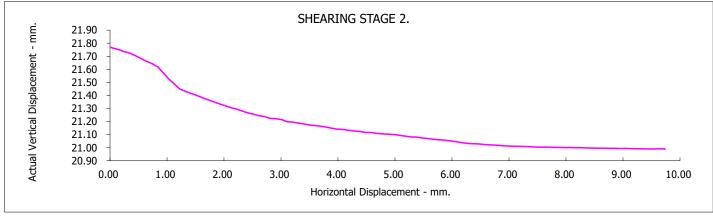


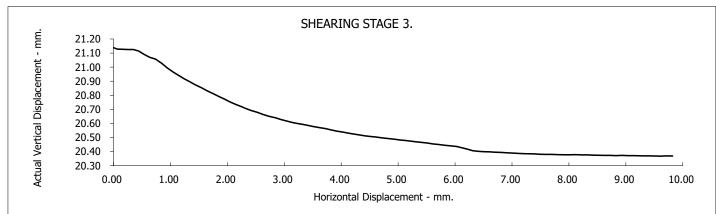

BS1377:Part 7:4.5 :1990.

Borehole Number: Sample Number: M06

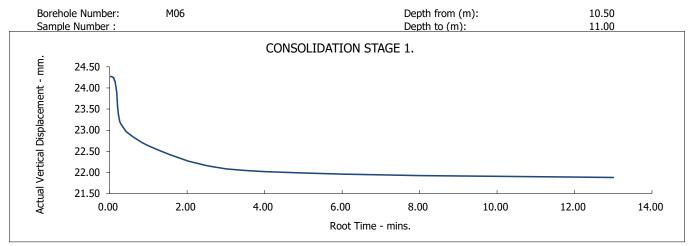
Depth from (m): Depth to (m): 10.50 11.00

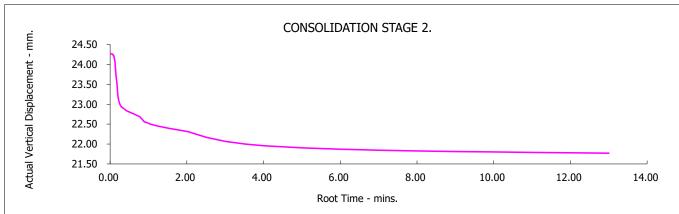


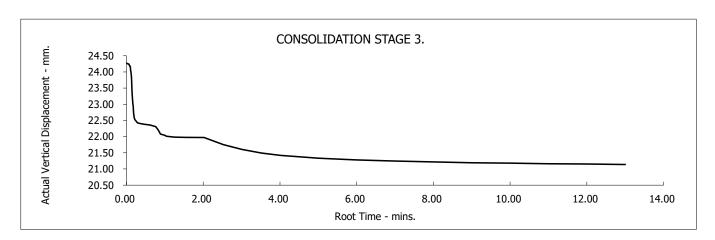

Foynes Port


Contract No.: 35579

BS1377:Part 7:4.5 :1990.


Contract No.: 35579


Foynes Port


Client Ref Number:

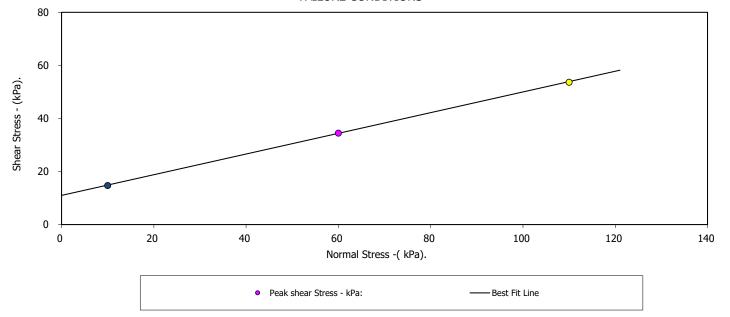
BS1377:Part 7:4.5 :1990.

Contract No.: 35579

Foynes Port

Client Ref Number:

BS1377:Part 7:4.5 :1990.


 Borehole Number:
 M08
 Depth from (m):
 1.00

 Sample Number:
 Depth to (m):
 1.50

Sample Type:	UT			
Particle Density - Mg/m3:	2.65	(Assumed)		
Specimen Tested:	Submerged, Undisturbed, Material above 2mm removed.			
Sample Description:				
Greyish brown very soft silty CLAY				
STAGE		1	2	3
Initial Conditions				
Height - mm:		24.27	24.27	24.27
Length - mm:		59.97	59.97	59.97
Moisture Content - %:		66	66	66
Bulk Density - Mg/m3:		1.78	1.78	1.77
Dry Density - Mg/m3:		1.07	1.07	1.07
Voids Ratio:		1.4751	1.4775	1.4855
Normal Pressure- kPa		10	60	110
Consolidation				
Consolidated Height - mm:		22.56	20.60	18.64
Shear				
Rate of Strain (mm/min)		0.010	0.010	0.010
Strain at peak shear stress (mm)		4.86	5.81	5.82
Peak shear Stress - kPa:		15	34	54

PEAK	
Angle of Shearing Resistance:(θ)	21
Effective Cohesion - kPa:	1

FAILURE CONDITIONS

DP GONS

25/07/17

DP GONS

25/07/17

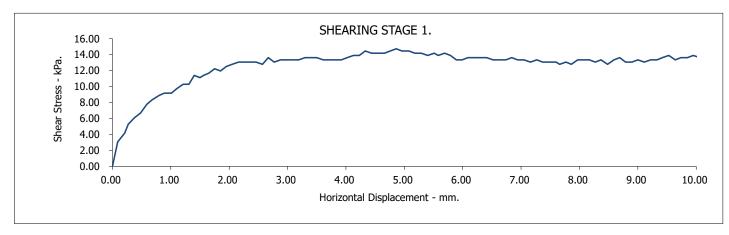
Checked Pages 1-4 by:

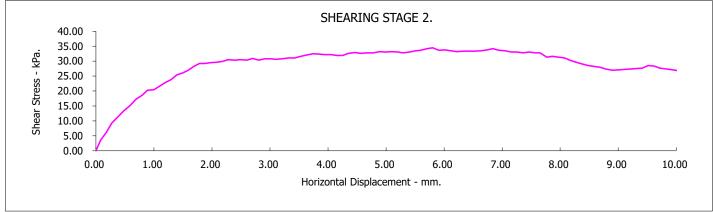
Date:

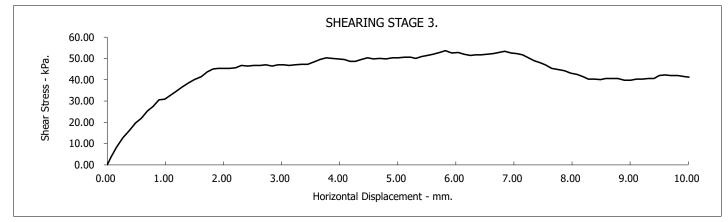
Approved Pages 1-4 by: Date

Contract No.: **35579**

Foynes Port

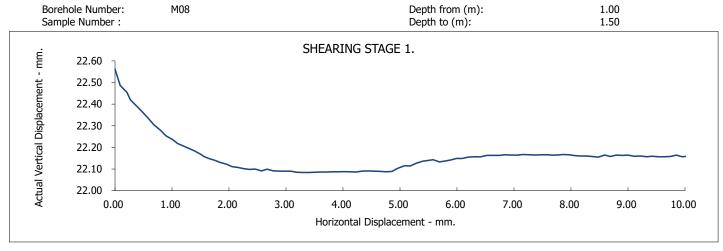


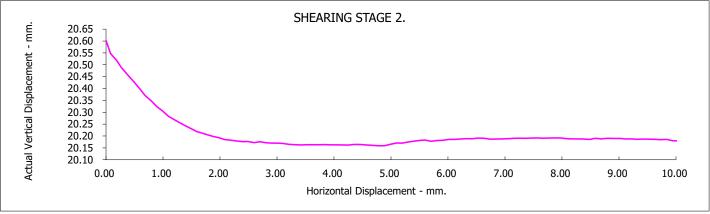


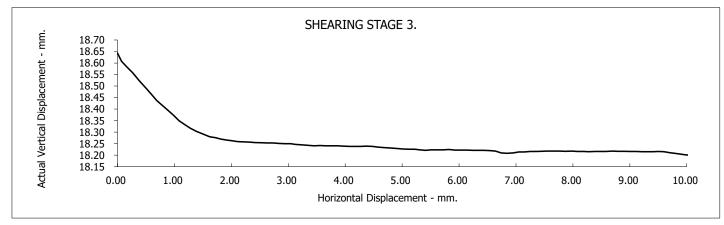

BS1377:Part 7:4.5 :1990.

Borehole Number: Sample Number: M08

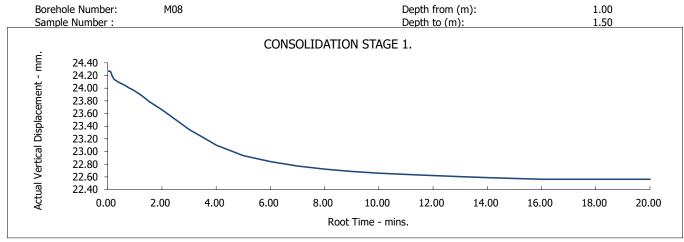
Depth from (m): Depth to (m): 1.00 1.50

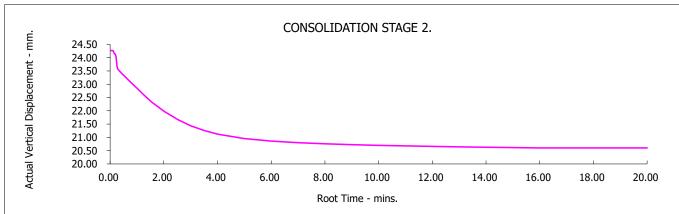


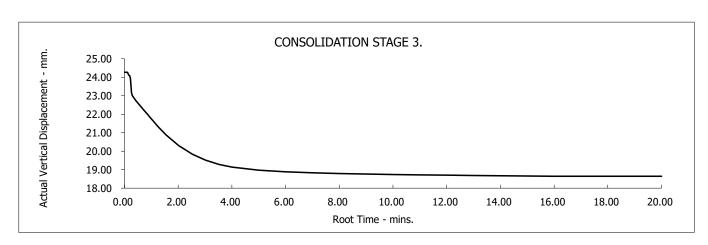

Foynes Port


Contract No.: **35579**

BS1377:Part 7:4.5 :1990.


Contract No.: **35579**

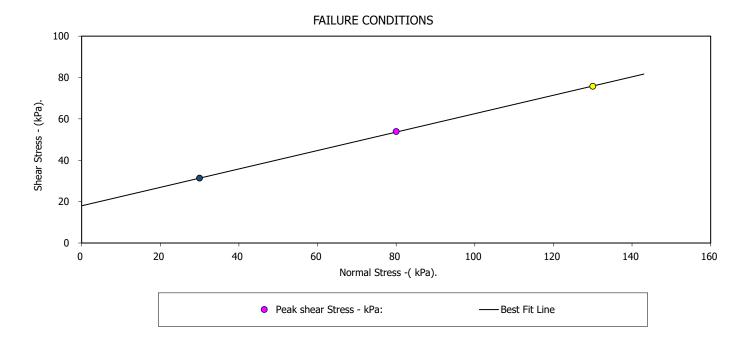

Foynes Port


Client Ref Number:

BS1377:Part 7:4.5 :1990.

Contract No.: **35579**

Foynes Port


Client Ref Number:

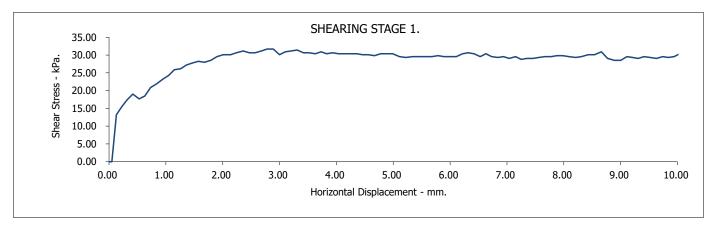
BS1377:Part 7:4.5 :1990.

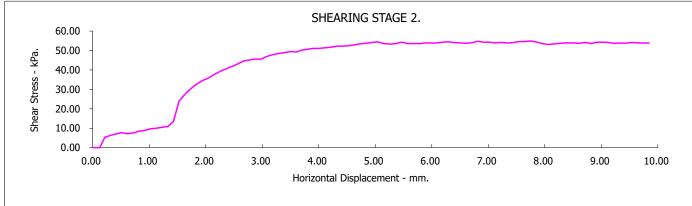
Borehole Number:	M08	Depth from (m):	3.00	
Sample Number:		Depth to (m):		
Sample Type:	UT			
Particle Density - Mg/m3:		2.65 (Assumed)		
Specimen Tested:	Submerged, I	Undisturbed, Material above 2mm re	moved.	
Sample Description:	ļ			
Brownish grey soft very silty CLAY				
STAGE		1	2	3
Initial Conditions				
Height - mm:		24.27	24.27	24.27
Length - mm:		59.97	59.97	59.97
Moisture Content - %:		51	51	51
Bulk Density - Mg/m3:		1.60	1.60	1.60
Dry Density - Mg/m3:		1.06	1.06	1.06
Voids Ratio:		1.5057	1.5072	1.5055
Normal Pressure- kPa		30	80	130
Consolidation				
Consolidated Height - mm:		23.17	21.85	20.67
Shear				
Rate of Strain (mm/min)		0.010	0.010	0.010
Strain at peak shear stress (mm)		3.31	7.44	8.12
Peak shear Stress - kPa:		31	54	76

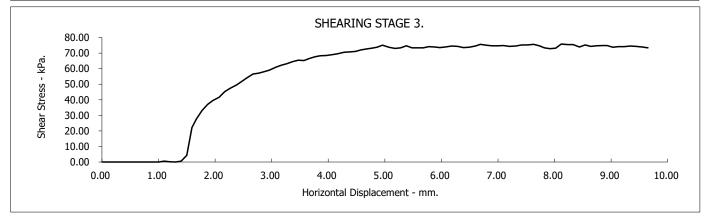
PEAK	
Angle of Shearing Resistance:(0)	24.0
Effective Cohesion - kPa:	18

 DPGmS
 O8/08/17
 Date:
 Approved Pages 1-4 by:
 Date

Contract No.: **35579**

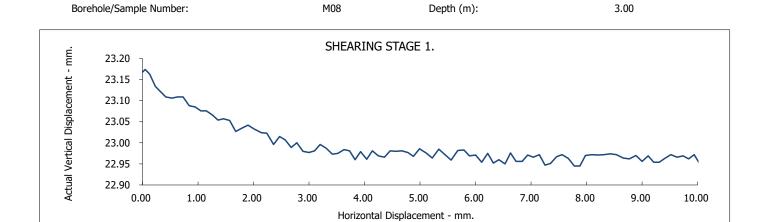

Foynes Port

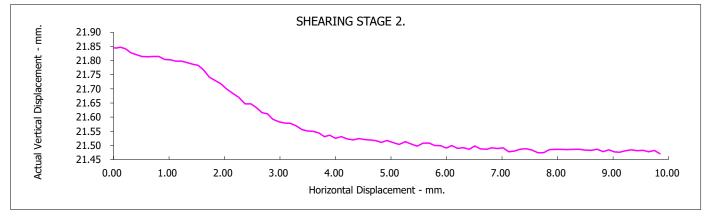


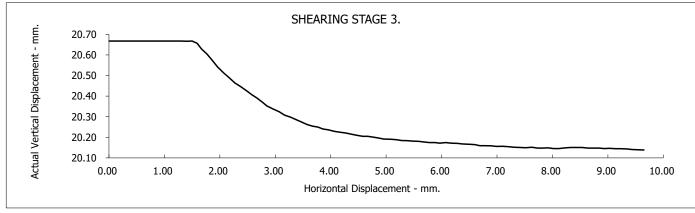


BS1377:Part 7:4.5 :1990.

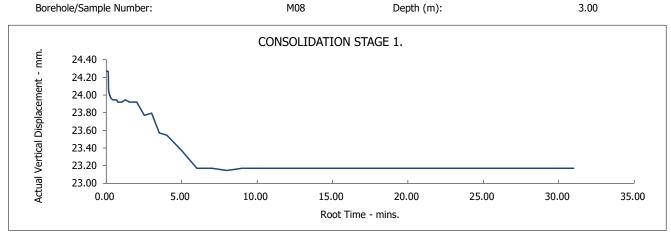
Borehole/Sample Number: M08 Depth (m): 3.00

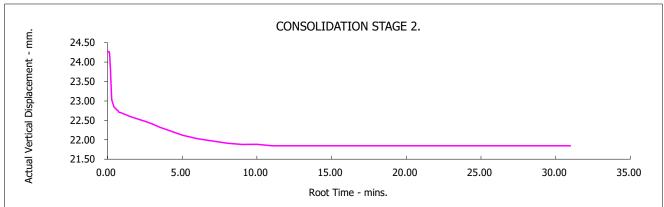


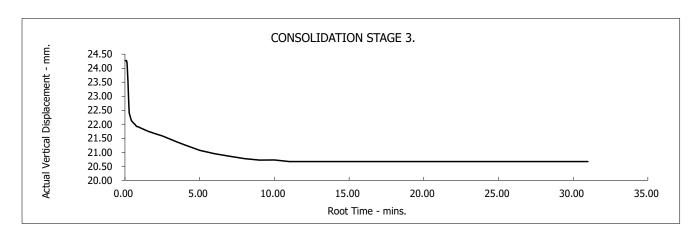

Foynes Port


Contract No.: **35579**

BS1377:Part 7:4.5 :1990.


Contract No.: 35579


Foynes Port

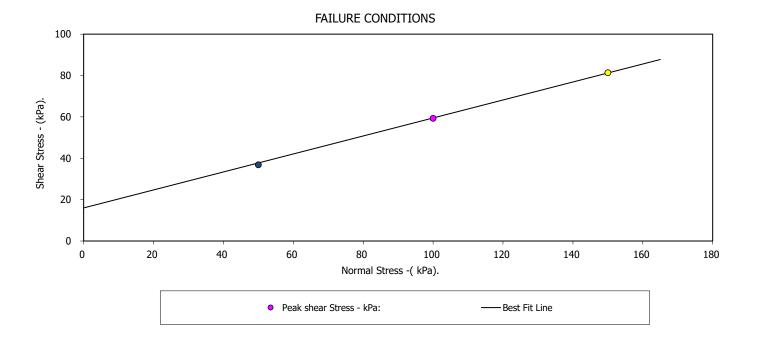

Client Ref Number: **0.00**

BS1377:Part 7:4.5 :1990.

Contract No.: 35579

Client Ref Number:

0.00


Foynes Port

BS1377:Part 7:4.5 :1990.

Borehole Number: M11 Depth from (m): 5.00 Sample Number: Depth to (m):

Sample Number .	L. C. C. C. C. C. C. C. C. C. C. C. C. C.	Deput to (III).		
Sample Type:	UT			
Particle Density - Mg/m3:	2.65	(Assumed)		
Specimen Tested:	Submerged, Remoulded	(Light Tamping) Material a	above 2mm removed.	
Sample Description:				
Brownish grey soft gravelly (fine-coars	se/angular) silty CLAY			
STAGE		1	2	3
Initial Conditions				
Height - mm:		24.27	24.27	24.27
Length - mm:		59.97	59.97	59.97
Moisture Content - %:		33	33	33
Bulk Density - Mg/m3:		1.95	1.95	1.95
Dry Density - Mg/m3:		1.46	1.46	1.46
Voids Ratio:		0.8127	0.8155	0.8143
Normal Pressure- kPa		50	100	150
Consolidation				
Consolidated Height - mm:		22.66	22.15	21.11
Shear				
Rate of Strain (mm/min)		0.010	0.010	0.010
Strain at peak shear stress (mm)		3.83	4.02	4.01
Peak shear Stress - kPa:	·	37	59	81

PEAK	
Angle of Shearing Resistance:(0)	23.5
Effective Cohesion - kPa:	16

DP Gans

08/08/17

1 of 4

DP Glons

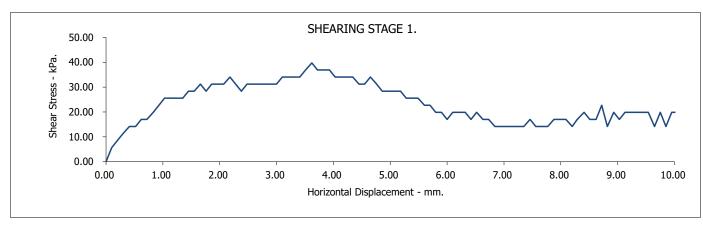
08/08/17

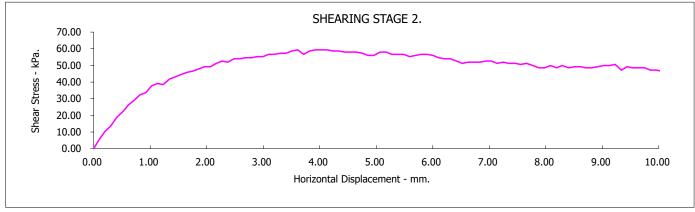
Checked Pages 1-4 by:

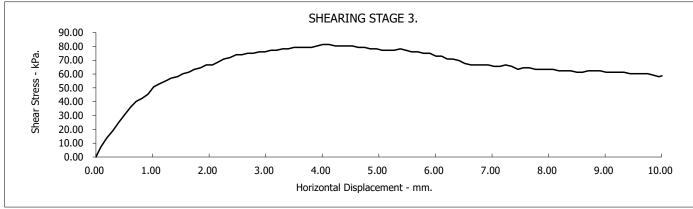
Date:

Approved Pages 1-4 by: Date

Contract No.: **35579**

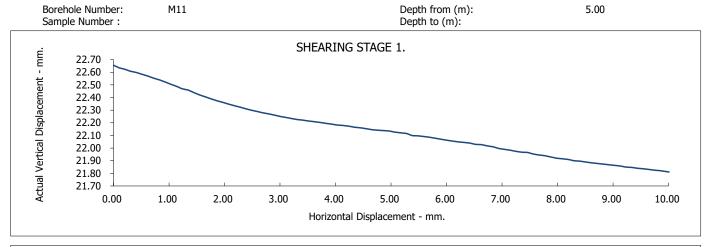

Foynes Port

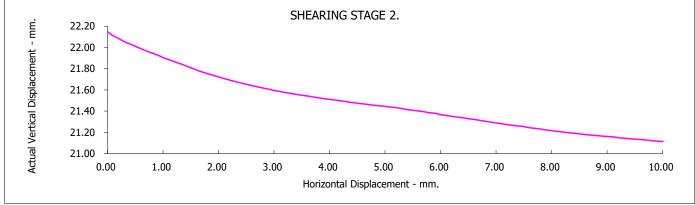


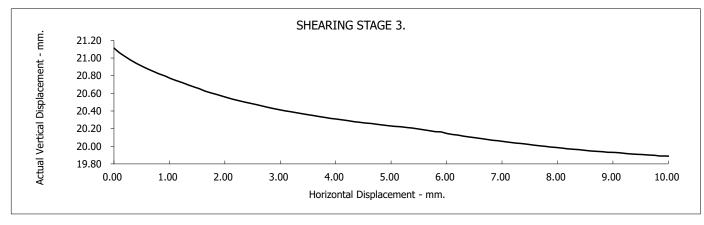


BS1377:Part 7:4.5 :1990.

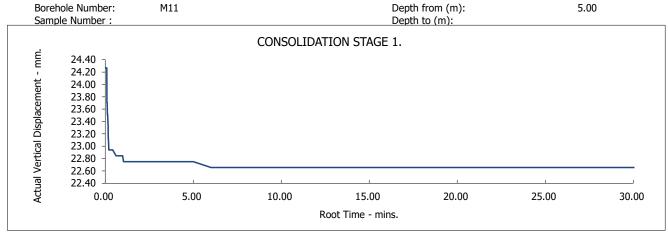
Borehole Number: M11 Depth from (m): 5.00 Sample Number: Depth to (m):

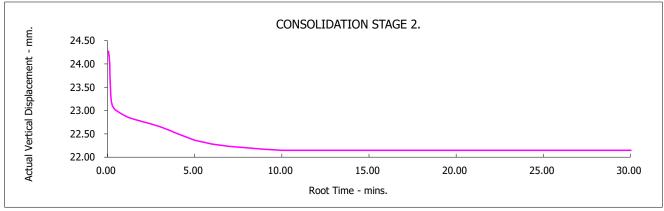


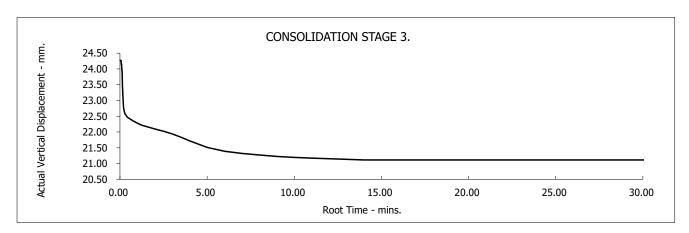

Foynes Port


Contract No.: **35579**

BS1377:Part 7:4.5 :1990.


Contract No.: **35579**


Foynes Port


Client Ref Number: **0.00**

BS1377:Part 7:4.5 :1990.

Contract No.: 35579

Client Ref Number:

0.00

Foynes Port

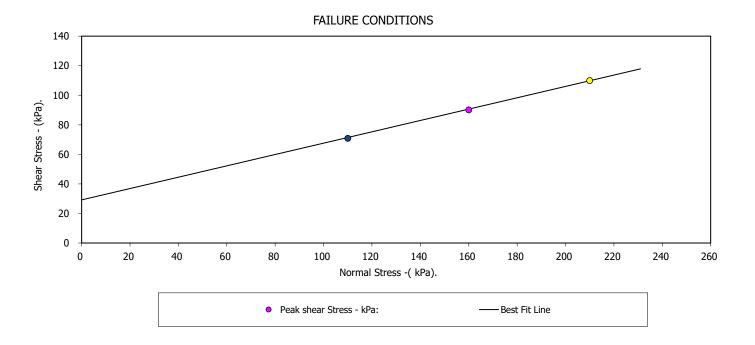
BS1377:Part 7:4.5 :1990.

Borehole Number: M11 Sample Number:		Depth from (m): Depth to (m):	11.00	
Sample Type:	UT	,		
Particle Density - Mg/m3:	2.65	(Assumed)		
Specimen Tested:	Submerged, Undisturbe	ed, Material above 2mm i	removed.	
Sample Description:				
Brown grey soft silty CLAY				
STAGE		1	2	3
Initial Conditions				
Height - mm:		24.27	24.27	24.27
Length - mm:		59.97	59.97	59.97
Moisture Content - %:		50	50	50
Bulk Density - Mg/m3:		1.70	1.70	1.71
Dry Density - Mg/m3:		1.14	1.14	1.14
Voids Ratio:		1.3307	1.3320	1.3273
Normal Pressure- kPa		110	160	210
Consolidation				
Consolidated Height - mm:		22.23	21.16	20.20
Shear				

PEAK	
Angle of Shearing Resistance:(0)	21.0
Effective Cohesion - kPa:	29

0.010

0.010


9.67

90

0.010

110

10.05

DP Rons

08/08/17

2P Gans

08/08/17

Checked Pages 1-4 by:

Date:

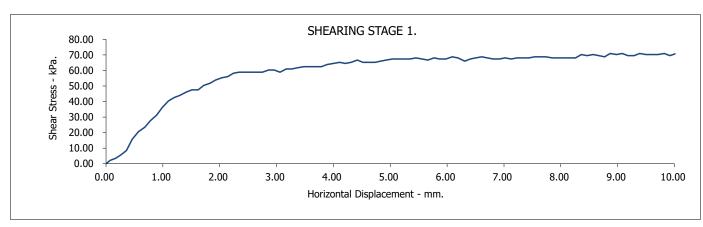
Approved Pages 1-4 by: Date

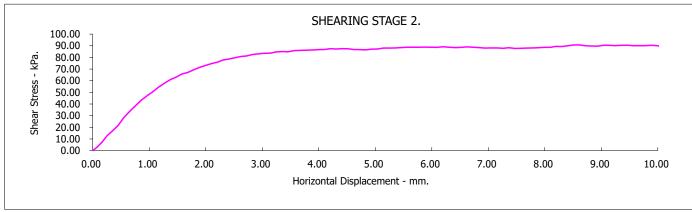
Contract No.: **35579**

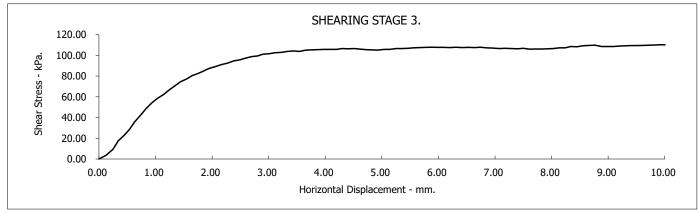
Foynes Port

1 of 4

Client Ref Number:

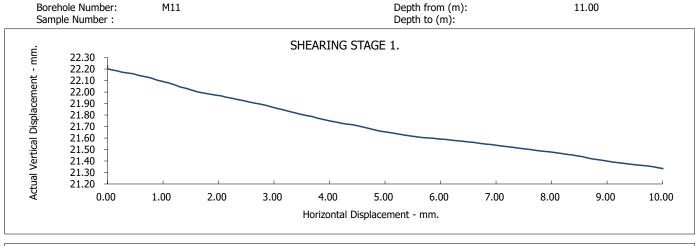


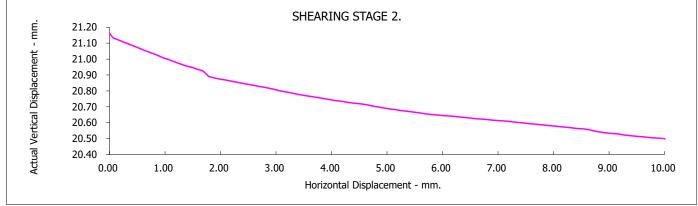

Rate of Strain (mm/min)
Strain at peak shear stress (mm)

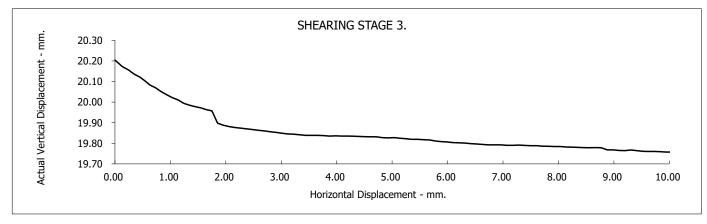

Peak shear Stress - kPa:

BS1377:Part 7:4.5 :1990.

Borehole Number: M11 Depth from (m): 11.00 Sample Number: Depth to (m):



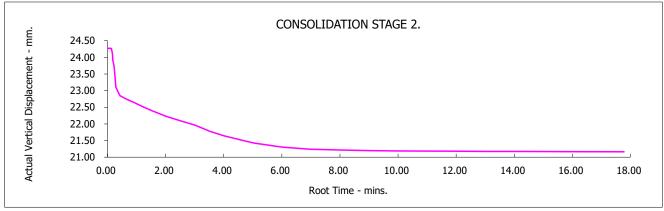

Foynes Port

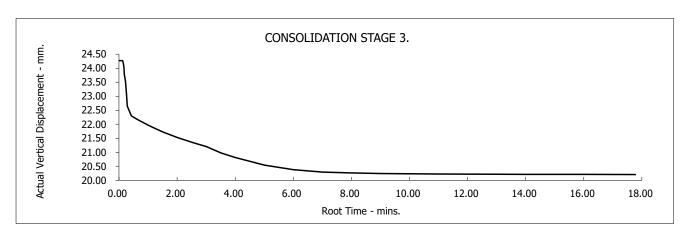

Contract No.: **35579**

BS1377:Part 7:4.5 :1990.

Contract No.: 35579

Client Ref Number:


0.00


Foynes Port

BS1377:Part 7:4.5 :1990.

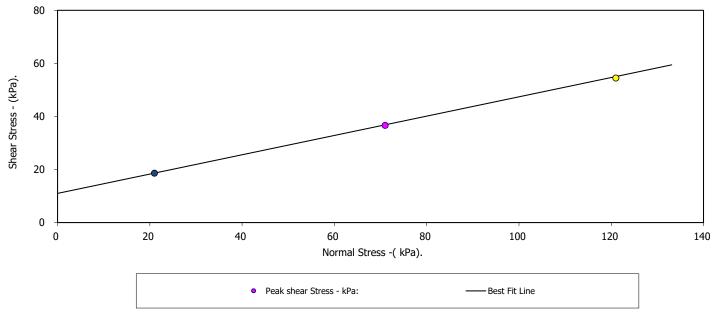
Contract No.: **35579**

Cli

Client Ref Number: **0.00**

Foynes Port

4 of 4


BS1377:Part 7:4.5 :1990.

Borehole Number: M13 Depth from (m): 2.10
Sample Number: Depth to (m):

UT			<u>-</u>
2.65	(Assumed)		
Submerged, Undisturbed, Material above 2mm removed.			
ΛΥ			
	1	2	3
	24.27	24.27	24.27
	59.97	59.97	59.97
	48	48	48
	1.67	1.67	1.67
	1.13	1.13	1.13
	1.3400	1.3383	1.3367
	21	71	121
	23.65	22.41	21.18
	0.010	0.010	0.010
	3.28	4.36	4.86
	19	37	54
	Y	1 24.27 59.97 48 1.67 1.13 1.3400 21 23.65	1 2 24.27 24.27 59.97 59.97 48 48 1.67 1.67 1.13 1.13 1.3400 1.3383 21 71 23.65 22.41 0.010 0.010 3.28 4.36

PEAK	
Angle of Shearing Resistance:(0)	20.0
Effective Cohesion - kPa:	11

FAILURE CONDITIONS

DP Rions

25/07/17

DP GOOD

25/07/17

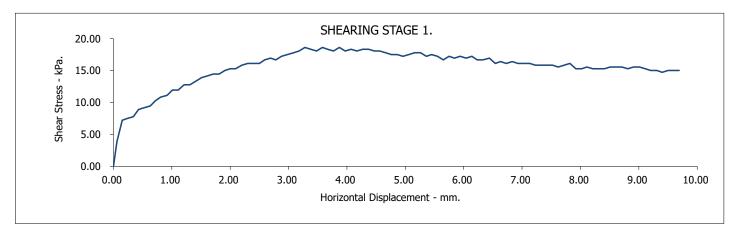
Checked Pages 1-4 by:

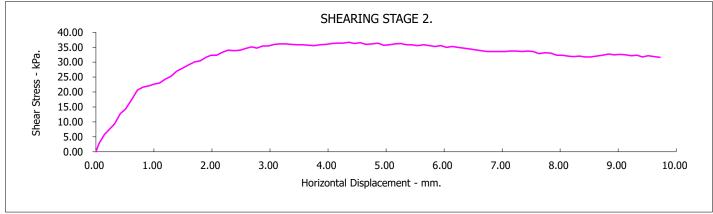
Date:

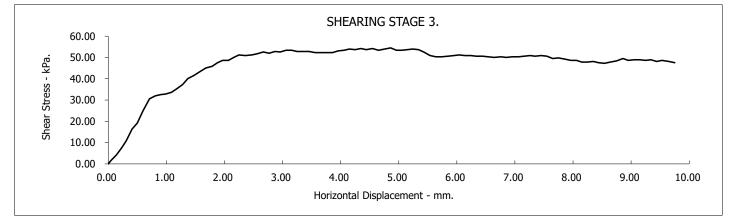
Approved Pages 1-4 by: Date

Contract No.: **35579**

Foynes Port

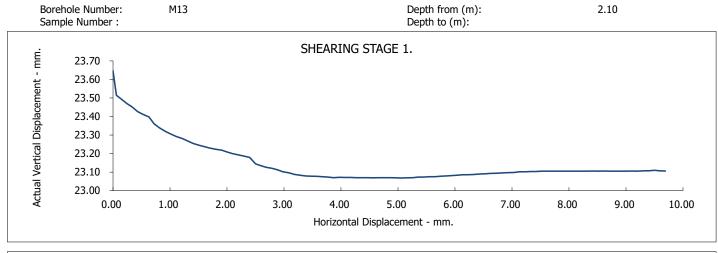


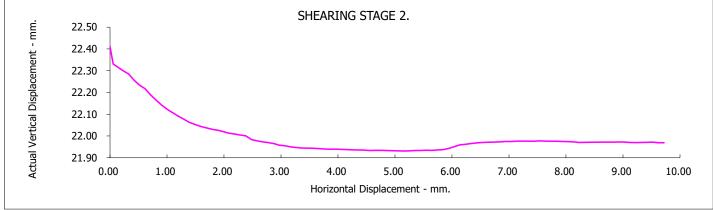


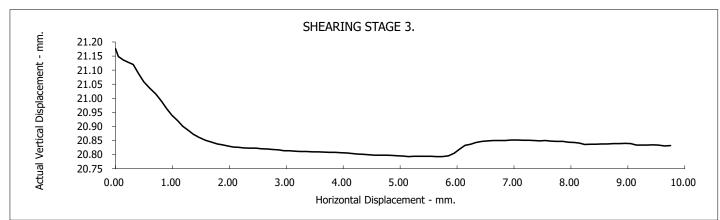

BS1377:Part 7:4.5 :1990.

Borehole Number: Sample Number: M13

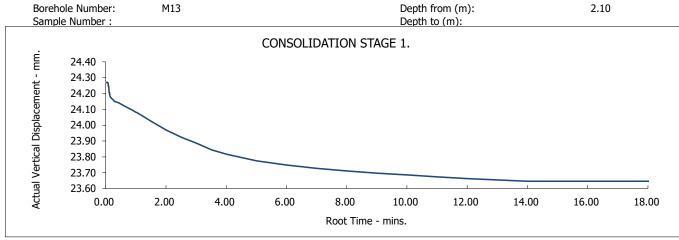
Depth from (m): Depth to (m): 2.10

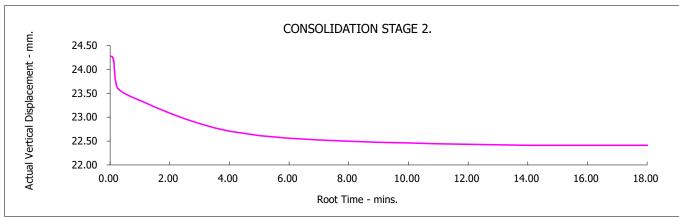


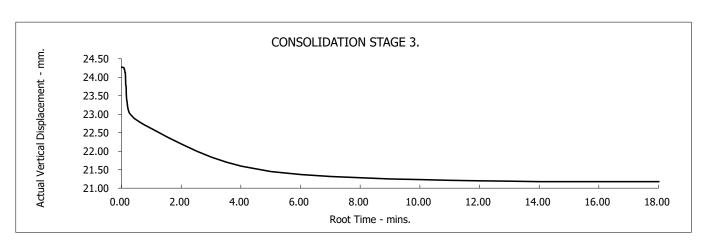

Foynes Port


Contract No.: **35579**

BS1377:Part 7:4.5 :1990.


Contract No.: **35579**


Foynes Port

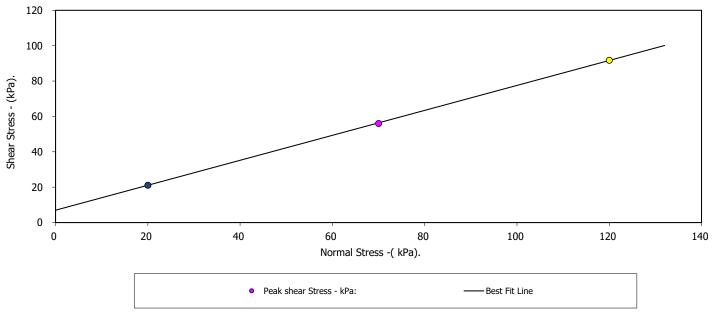

Client Ref Number:

BS1377:Part 7:4.5 :1990.

Contract No.: **35579**

Foynes Port

Client Ref Number:


BS1377:Part 7:4.5 :1990.

Borehole Number: M15 Depth from (m): 2.00 Sample Number: Depth to (m):

Sample Type:	UT	,		
Particle Density - Mg/m3:	2	.65 (Assumed)		
Specimen Tested:	Submerged, Undist	Submerged, Undisturbed, Material above 2mm removed.		
Sample Description:				
Brown slightly gravelly soft sandy si	Ity CLAY		_	
STAGE		1	2	3
Initial Conditions				
Height - mm:		24.27	24.27	24.27
Length - mm:		59.97	59.97	59.97
Moisture Content - %:		46	46	46
Bulk Density - Mg/m3:		1.69	1.69	1.69
Dry Density - Mg/m3:		1.16	1.16	1.16
Voids Ratio:		1.2936	1.2905	1.2888
Normal Pressure- kPa		20	70	120
Consolidation				
Consolidated Height - mm:		23.54	22.29	21.04
Shear				
Rate of Strain (mm/min)		0.010	0.010	0.010
Strain at peak shear stress (mm)		5.87	8.31	8.00
Peak shear Stress - kPa:		21	56	92

PEAK	
Angle of Shearing Resistance:(0)	35.2
Effective Cohesion - kPa:	7

FAILURE CONDITIONS

DP Rions

25/07/17

DP GONS

25/07/17

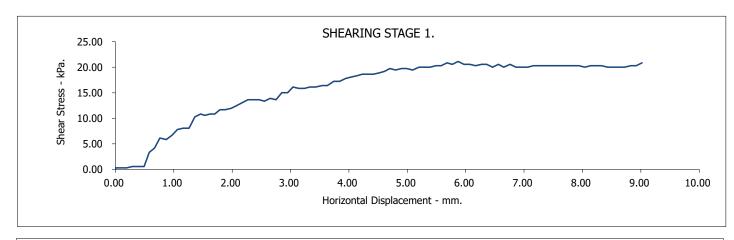
Checked Pages 1-4 by:

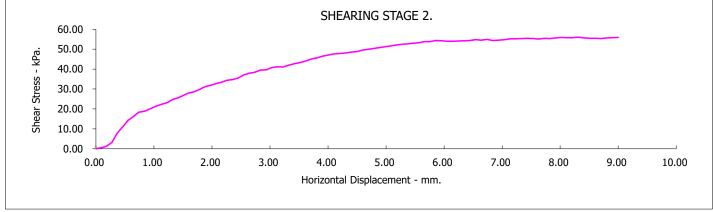
Date:

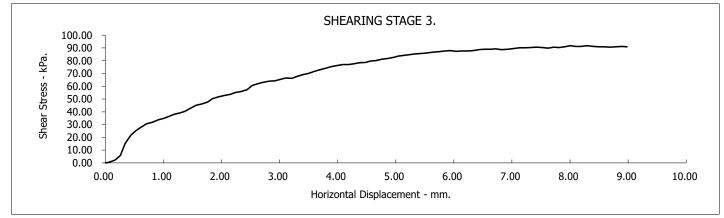
Approved Pages 1-4 by: Date

Contract No.: **35579**

Foynes Port

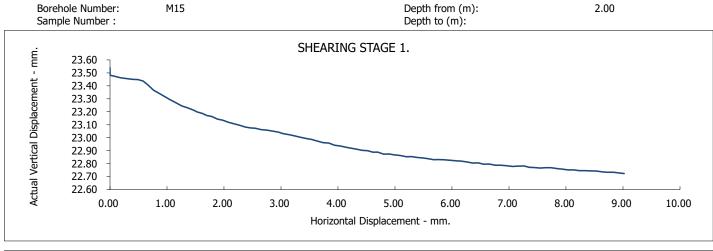


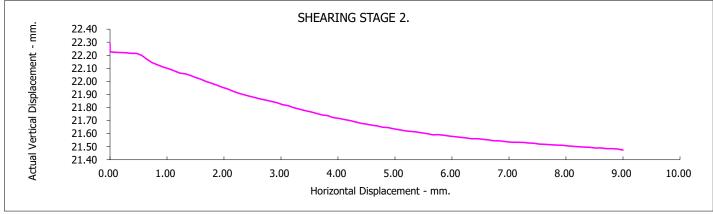


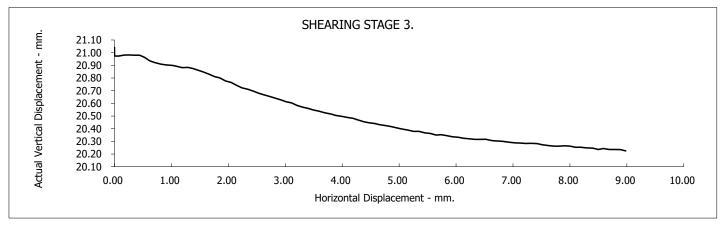

BS1377:Part 7:4.5 :1990.

Borehole Number: Sample Number: M15

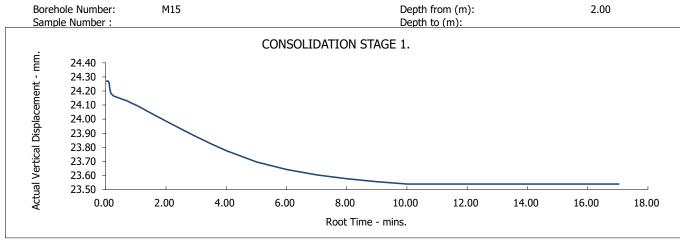
Depth from (m): Depth to (m): 2.00

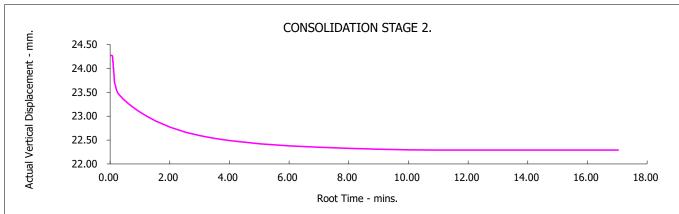


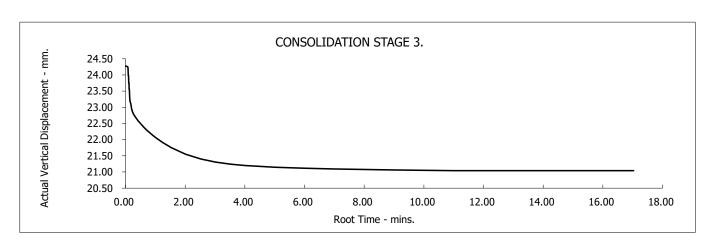

Foynes Port


Contract No.: 35579

BS1377:Part 7:4.5 :1990.




Contract No.: 35579

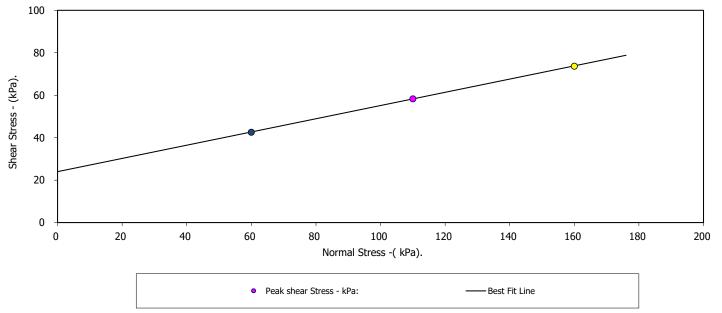

Foynes Port

BS1377:Part 7:4.5 :1990.

Contract No.: 35579

Foynes Port

Client Ref Number:


BS1377:Part 7:4.5 :1990.

Borehole Number: M15 Depth from (m): 6.00
Sample Number: Depth to (m):

Sample Type:	UT			
Particle Density - Mg/m3:		2.65 (Assumed)		
Specimen Tested:	Submerged, Undis	Submerged, Undisturbed, Material above 2mm removed.		
Sample Description:				
Dark grey slightly gravelly soft slight	tly sandy silty CLAY			
STAGE		1	2	3
Initial Conditions				
Height - mm:		24.27	24.27	24.27
Length - mm:		59.97	59.97	59.97
Moisture Content - %:		46	46	46
Bulk Density - Mg/m3:		1.66	1.66	1.66
Dry Density - Mg/m3:		1.14	1.14	1.14
Voids Ratio:		1.3297	1.3281	1.3265
Normal Pressure- kPa		60	110	160
Consolidation				
Consolidated Height - mm:		21.38	20.67	19.97
Shear				
Rate of Strain (mm/min)		0.010	0.010	0.010
Strain at peak shear stress (mm)		4.81	4.50	5.76
Peak shear Stress - kPa:		43	58	74

	·
PEAK	
Angle of Shearing Resistance:(0)	17.3
Effective Cohesion - kPa:	24

FAILURE CONDITIONS

DP Rions

25/07/17

DP GONS

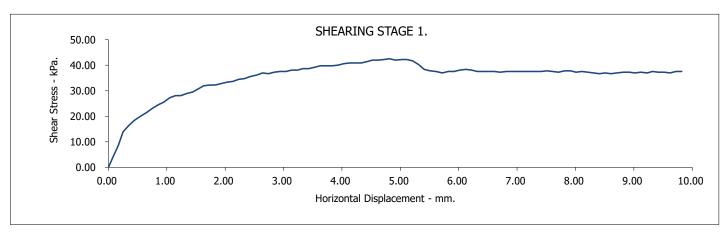
25/07/17

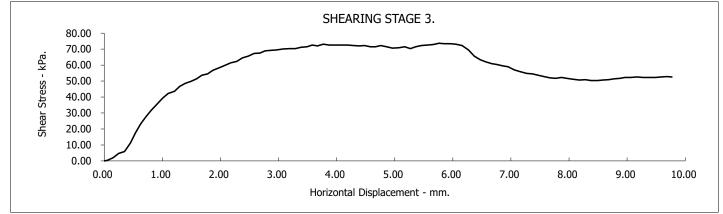
Checked Pages 1-4 by:

Date:

Approved Pages 1-4 by: Date

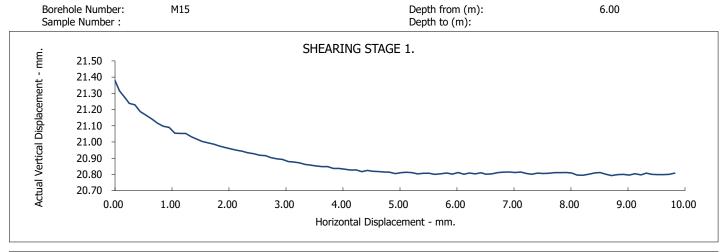
Contract No.: **35579**

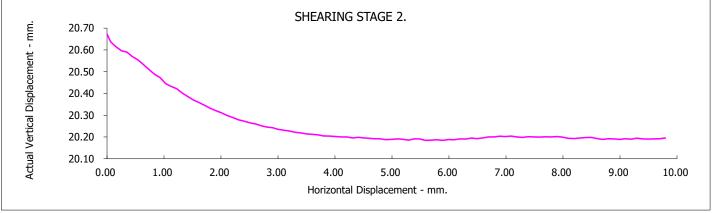

Foynes Port

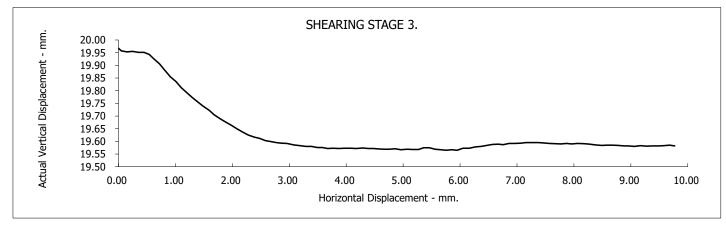


BS1377:Part 7:4.5 :1990.

Borehole Number: M15 Depth from (m): 6.00 Sample Number: Depth to (m):


Foynes Port

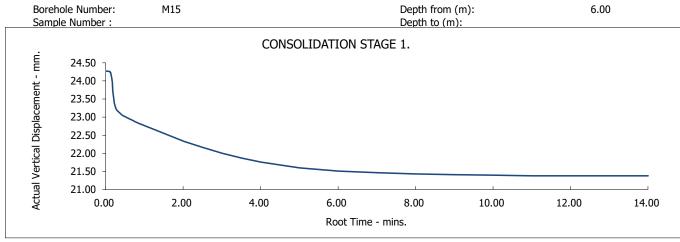

Contract No.: **35579**

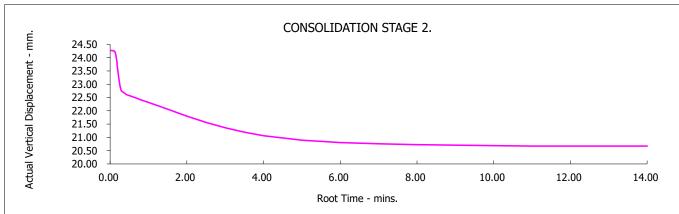


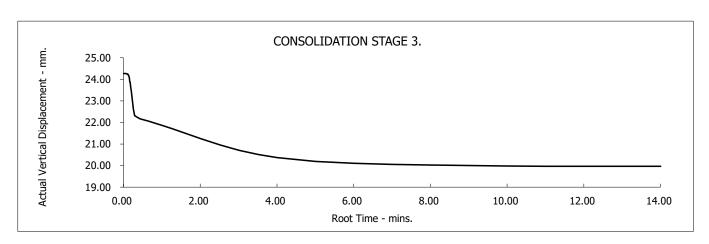
Test Report: CONSOLIDATED DRAINED SHEARBOX TEST.

BS1377:Part 7:4.5 :1990.

Contract No.: **35579**


Foynes Port


Client Ref Number: **0.00**



Test Report: CONSOLIDATED DRAINED SHEARBOX TEST.

BS1377:Part 7:4.5 :1990.

Contract No.: **35579**

Foynes Port

Client Ref Number:

0.00

LABORATORY TEST CERTIFICATE

10 Queenslie Point Queenslie Industrial Estate 120 Stepps Road

Glasgow G33 3NQ

Tel: 0141 774 4032 Fax: 0141 774 3552

email: info@mattest.org Website: www.mattest.org

Certificate No : 17/1099 - 01

To: Conor Finnerty

Client : Ground Investigations Ireland Limited

Catherinestown House Hazelhatch Road

Newcastle Co. Dublin **D22 YD52**

Dear Sirs,

LABORATORY TESTING OF ROCK

Introduction

We refer to samples taken from Shannon Foynes Port Company and delivered to our laboratory on 20th September 2017.

Material & Source

Sample Reference : See Report Plates

Sampled By : Client

Sampling Certificate : Not Supplied

Location : See Report Plates

Description : Rock cores

Date Sampled : Not Supplied

Date Tested : 20th September 2017 Onwards

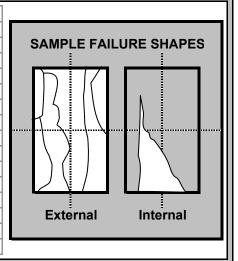
Source : Shannon Foynes Port Company

Test Results;

As Detailed On Page 2 to Page 26 inclusive

Comments:

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory. All remaining samples for this project will be disposed of 28 days after issue of this test certificate.


Remarks;

Approved for Issue			
	Date	19/10/2017	
T McLelland (Director)	-		

Issue No. 01 Page 1 of 26

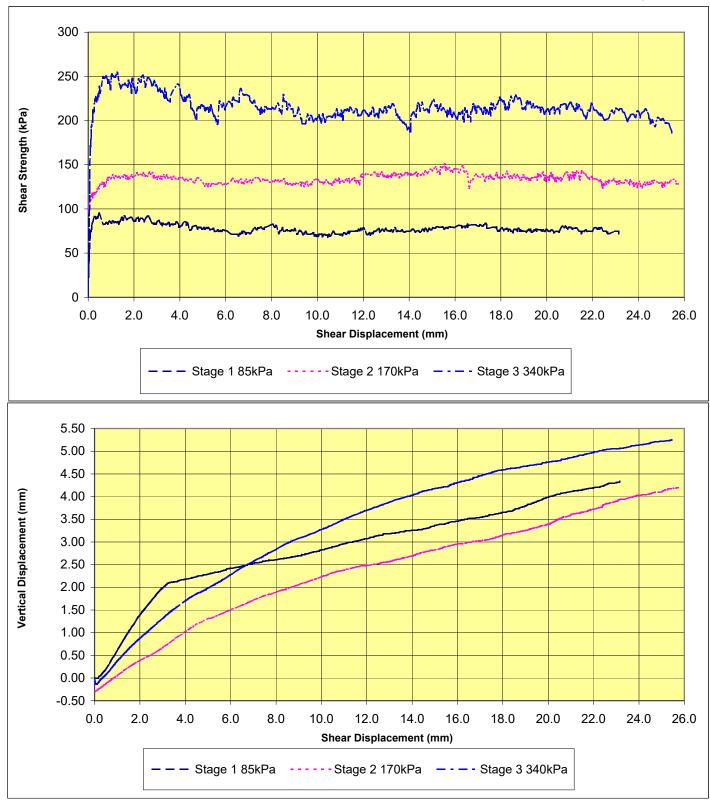
BOREHOLE		LD05
SAMPLE		С
DEPTH	m	8.20-8.40
SAMPLE DIAMETER	mm	101.50
SAMPLE HEIGHT	mm	218.72
TEST CONDITION		As Received
RATE OF LOADING	kN/s	1.1
TEST DURATION	min.sec	13.09
DATE OF TESTING		27/09/2017
LOAD FRAME USED		2000kN
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		Unknown
FAILURE LOAD	kN	842.9
UNCONFINED COMPRESSIVE STRENGTH	MPa	104.2
WATER CONTENT (ISRM Suggested Methods)	%	0.2
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	2.68
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	2.67

BOREHOLE			
SAMPLE			
DEPTH	m	SAMPLE FAILURE SHAPES	
SAMPLE DIAMETER	mm		
SAMPLE HEIGHT	mm		
TEST CONDITION			
RATE OF LOADING	kN/s		
TEST DURATION	min.sec		
DATE OF TESTING			
LOAD FRAME USED			
LOAD DIRECTION WITH RESPECT TO LITHOLOGY			
FAILURE LOAD	kN		
UNCONFINED COMPRESSIVE STRENGTH	MPa		
WATER CONTENT (ISRM Suggested Methods)	%	External Internal	
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³		
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³		

BOREHOLE				
SAMPLE				
DEPTH	m	SAMPLE FAIL	URE SHAPES	3
SAMPLE DIAMETER	mm			
SAMPLE HEIGHT	mm			
TEST CONDITION				
RATE OF LOADING	kN/s			
TEST DURATION	min.sec			
DATE OF TESTING				
LOAD FRAME USED				
LOAD DIRECTION WITH RESPECT TO LITHOLOGY				
FAILURE LOAD	kN			
UNCONFINED COMPRESSIVE STRENGTH	MPa			
WATER CONTENT (ISRM Suggested Methods)	%	External	Internal	
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³			
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³			

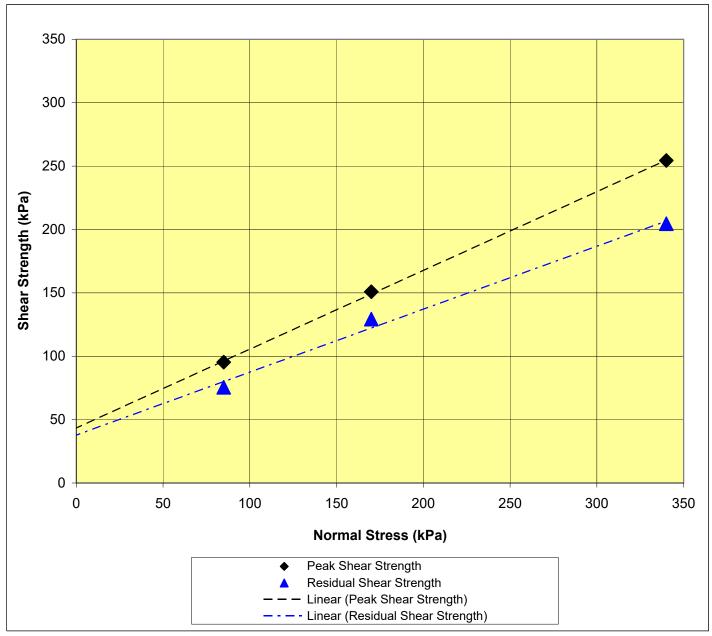
Tested in accordance with ASTM D7012 - 14

	SAMPLE DETAILS					
Borehole		L07				
Sample Type		С				
Depth	(m)	17.10				
Type Of Discontinuity		Existing				
Moisture Condition Use	d During Test	As Received				
Initial Sample Shape		Cylindrical Core				
Date Of Sampling		Not Supplied				
Date Of Test		12/10/2017				
Number Of Specimens	Tested	1				
Type Of Encapsulating	Material	Gypsum Plaster				


LOADING DETA	AILS	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5
Normal Stress	(kPa)	85	170	340	-	-
Shear Stress	(kPa)	95	151	254	-	-
Residual Stress	(kPa)	75	129	205	-	-
Normal Displacement	(mm)	0.18	2.90	0.52	-	-
Shear Displacement	(mm)	0.48	15.56	1.27	-	-

FRICTION ANGLE				
Peak Stress	(°)	31.9		
Residual Stress	(°)	26.4		

COHESION				
Peak Stress	(kPa)	43.5		
Residual Stress	(kPa)	37.8		


С	OMMENTS

Borehole: L07
Sample: C
Depth: 17.10

Borehole: L07
Sample: C
Depth: 17.10

UPPER SURFACE BEFORE TEST

LOWER SURFACE BEFORE TEST

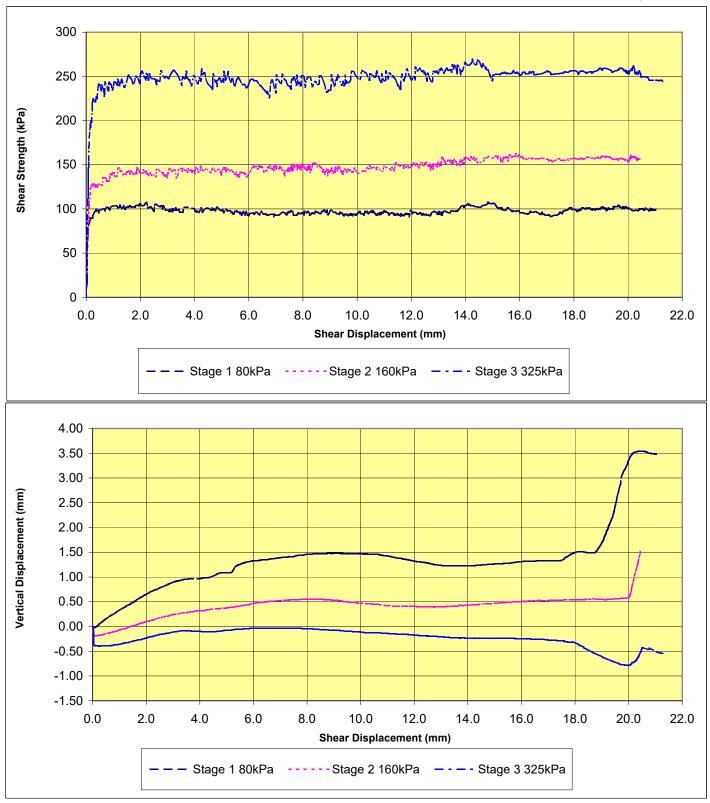
Borehole L07 Sample: C Depth: 17.10

UPPER SURFACE AFTER TEST

LOWER SURFACE AFTER TEST

Borehole L07 Sample : C Depth : 17.10

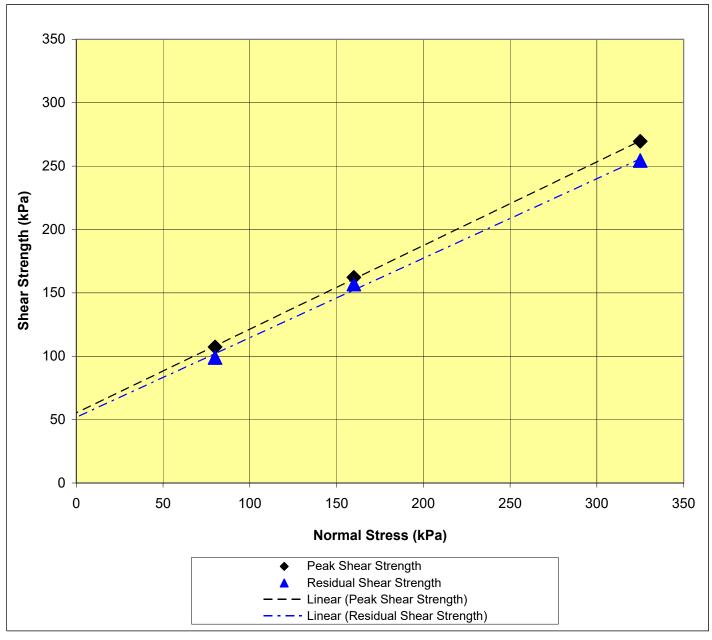
SAMPLE DETAILS					
Borehole	LD02				
Sample Type	С				
Depth (m)	14.95				
Type Of Discontinuity	Existing				
Moisture Condition Used During Test	As Received				
Initial Sample Shape	Cylindrical Core				
Date Of Sampling	Not Supplied				
Date Of Test	12/10/2017				
Number Of Specimens Tested	1				
Type Of Encapsulating Material	Gypsum Plaster				


LOADING DETA	AILS	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5
Normal Stress	(kPa)	80	160	325	-	-
Shear Stress	(kPa)	107	162	270	-	-
Residual Stress	(kPa)	99	157	254	-	-
Normal Displacement	(mm)	0.72	0.50	-0.24	-	-
Shear Displacement	(mm)	2.23	15.86	14.25	-	-

FRICTION ANGLE			
Peak Stress (°)	33.4	
Residual Stress (°)	32.1	

сон	ESION	
Peak Stress	(kPa)	55.4
Residual Stress	(kPa)	51.9

С	OMMENTS



Borehole: LD02
Sample: C
Depth: 14.95

Issue No.01 Page 9 of 26 Certificate Number 17/1099 - 01

Borehole: LD02 Sample: C Depth: 14.95

UPPER SURFACE BEFORE TEST

LOWER SURFACE BEFORE TEST

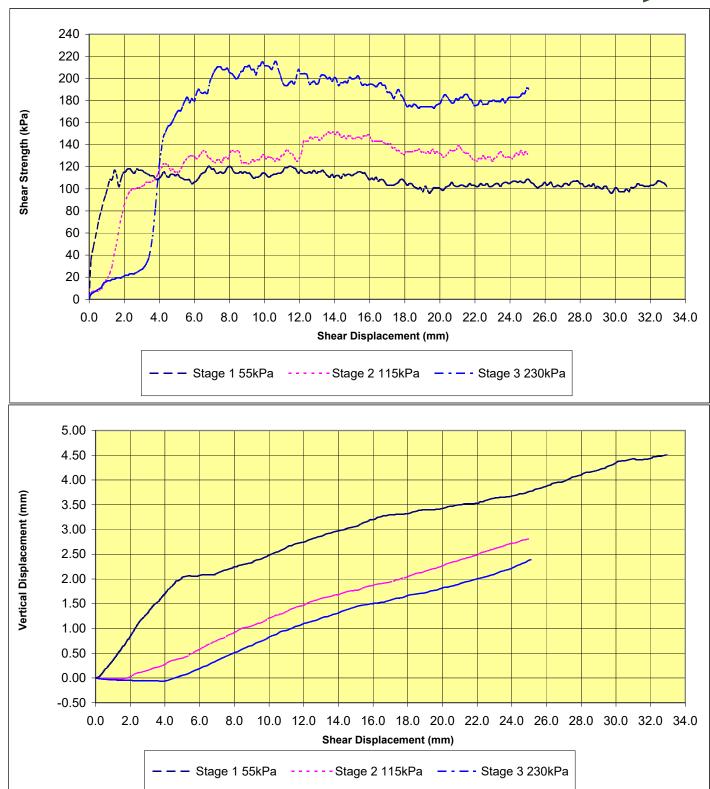
Borehole LD02 Sample: C Depth: 14.95

UPPER SURFACE AFTER TEST

LOWER SURFACE AFTER TEST

Borehole LD02 Sample : C Depth : 14.95

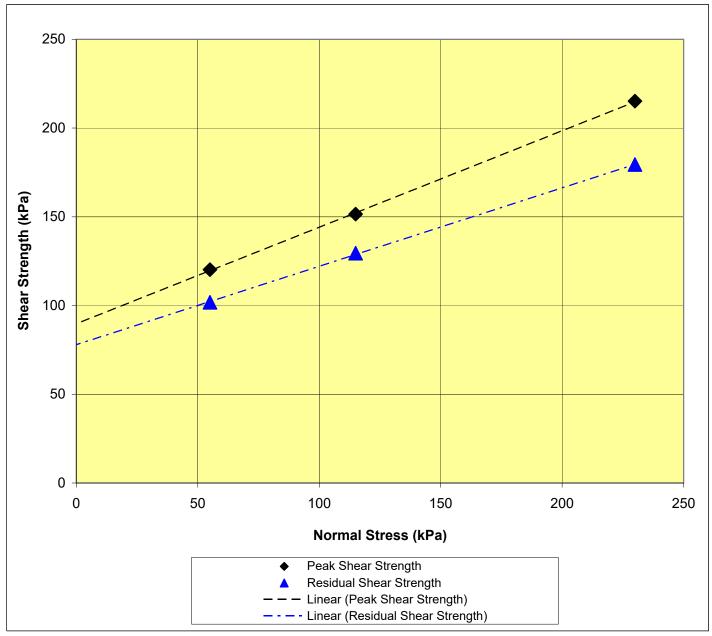
SAMPLE DETAILS		
Borehole	LD05	
Sample Type	С	
Depth (m)	9.20	
Type Of Discontinuity	Existing	
Moisture Condition Used During Test	As Received	
Initial Sample Shape	Cylindrical Core	
Date Of Sampling	Not Supplied	
Date Of Test	13/10/2017	
Number Of Specimens Tested	1	
Type Of Encapsulating Material	Gypsum Plaster	


LOADING DETA	AILS	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5
Normal Stress	(kPa)	55	115	230	-	-
Shear Stress	(kPa)	120	151	215	-	-
Residual Stress	(kPa)	102	129	179	-	-
Normal Displacement	(mm)	2.09	1.66	0.80	-	-
Shear Displacement	(mm)	6.86	13.65	9.88	-	-

F	RICTION ANGLE	
Peak Stress	(°)	28.6
Residual Stress	(°)	23.9

COHESIG	ON	
Peak Stress	(kPa)	89.7
Residual Stress	(kPa)	78.0

СОММ	ENTS

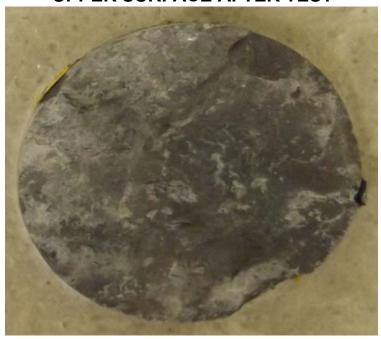


Borehole: LD05
Sample: C
Depth: 9.20

Issue No.01 Page 14 of 26 Certificate Number 17/1099 - 01

Borehole: LD05
Sample: C
Depth: 9.20

UPPER SURFACE BEFORE TEST


LOWER SURFACE BEFORE TEST

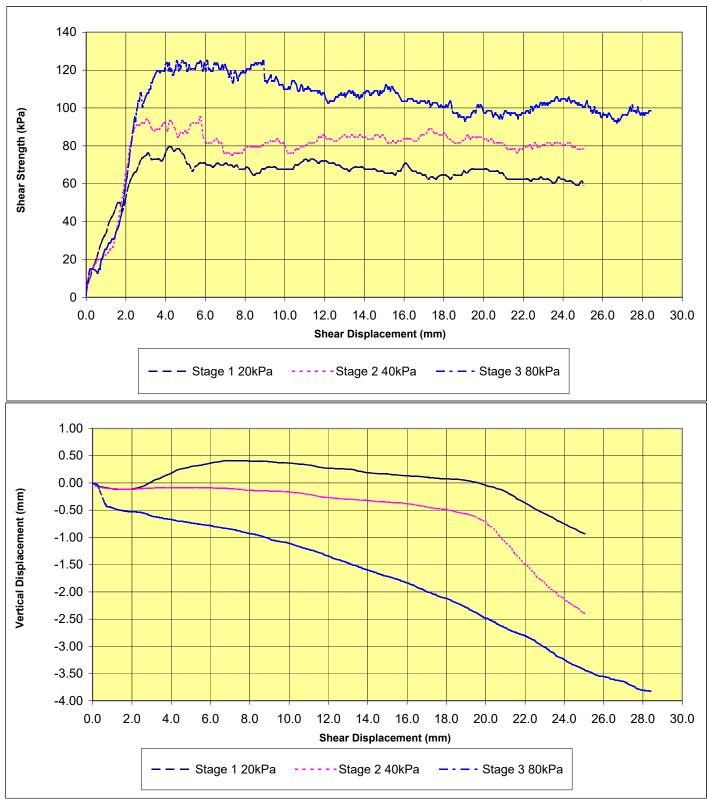
Borehole LD05 Sample: C Depth: 9.20

UPPER SURFACE AFTER TEST

LOWER SURFACE AFTER TEST

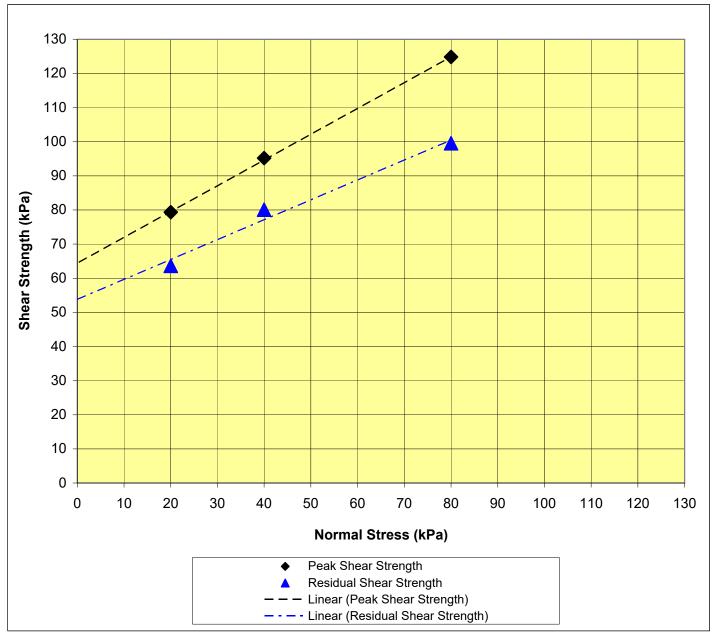
Borehole LD05 Sample: C Depth: 9.20

SAMPLE DETAILS		
Borehole	LD07	
Sample Type	С	
Depth (m)	1.90	
Type Of Discontinuity	Existing	
Moisture Condition Used During Test	As Received	
Initial Sample Shape	Cylindrical Core	
Date Of Sampling	Not Supplied	
Date Of Test	13/10/2017	
Number Of Specimens Tested	1	
Type Of Encapsulating Material	Gypsum Plaster	


LOADING DETA	AILS	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5
Normal Stress	(kPa)	20	40	80	-	-
Shear Stress	(kPa)	79	95	125	-	-
Residual Stress	(kPa)	64	80	100	-	-
Normal Displacement	(mm)	0.21	-0.09	-0.71	-	-
Shear Displacement	(mm)	4.15	5.76	4.55	-	-

FRI	CTION ANGLE	
Peak Stress	(°)	37.1
Residual Stress	(°)	30.3

Co	OHESION	
Peak Stress	(kPa)	64.5
Residual Stress	(kPa)	53.9


СОММІ	ENTS

Borehole: LD07
Sample: C
Depth: 1.90

Borehole: LD07 Sample: C Depth: 1.90

UPPER SURFACE BEFORE TEST

LOWER SURFACE BEFORE TEST

Borehole LD07 Sample: C Depth: 1.90

UPPER SURFACE AFTER TEST

LOWER SURFACE AFTER TEST

Borehole LD07 Sample: C Depth: 1.90

A 101.61 77.95 46.96 9.05 1.49 1	BOREHOLE	SAMPLE	MPLE DEPTH	MOISTURE CONTENT (%)	TYPE OF TEST * (see below)	CORE DIAMETER (mm)	EQUIVALENT DIAMETER (mm)	PLATEN SEPARATION (mm)	FAILURE LOAD (kN)	Is (MPa)	Is(50) (MPa)
A 101.51 76.32 45.07 12.25 2.10 2	L07	C		(%)	(see below)	101.60	(mm) 101.60	(mm) 101.60	(kN) 1.28	0.12	0.17 1.82 2.54

NOTE: N/M - Not measured NOTE: A dash (-) signifies that scale

did not register a reading

* I = IRREGULAR TEST D = DIAMETRAL TEST A = AXIAL TEST

Tested in accordance with ISRM Standard, "Suggested Method for determining Point Load Strength"

LD02 C 15.70 As received D 101.20 78.94 48.33 24.62 3.95 4.80 A 101.21 69.13 37.08 20.57 4.30 4.90

NOTE: N/M - Not measured NOTE: A dash (-) signifies that scale

did not register a reading

* I = IRREGULAR TEST D = DIAMETRAL TEST A = AXIAL TEST

Mean Is(50) - Axial tests	4.92
Mean Is(50) - Diametrical tests	4.33
Ia(50)	1.13

Tested in accordance with ISRM Standard, "Suggested Method for determining Point Load Strength"

BOREHOLE	SAMPLE	DEPTH	MOISTURE CONTENT (%)	TYPE OF TEST * (see below)	CORE DIAMETER (mm)	EQUIVALENT DIAMETER (mm)	PLATEN SEPARATION (mm)	FAILURE LOAD (kN)	Is (MPa)	Is(50) (MPa)
LD05	C	(m) 8.60							(MPa) 3.46 4.17 4.64	(MPa) 4.76 5.29 5.66

NOTE: N/M - Not measured NOTE: A dash (-) signifies that scale

did not register a reading

* I = IRREGULAR TEST D = DIAMETRAL TEST A = AXIAL TEST

Mean Is(50) - Axial tests	5.48
Mean Is(50) - Diametrical tests	4.76
Ia(50)	1.15

Tested in accordance with ISRM Standard, "Suggested Method for determining Point Load Strength"

BOREHOLE	SAMPLE	DEPTH (m)	MOISTURE CONTENT (%)	TYPE OF TEST * (see below)	CORE DIAMETER (mm)	EQUIVALENT DIAMETER (mm)	PLATEN SEPARATION (mm)	FAILURE LOAD (kN)	Is (MPa)	Is(50) (MPa)
LD07	C	(m) 2.50							(MPa) 2.18 1.75 2.23	(MPa) 2.99 2.24 3.03

NOTE: N/M - Not measured NOTE: A dash (-) signifies that scale

did not register a reading

* I = IRREGULAR TEST D = DIAMETRAL TEST A = AXIAL TEST

Mean Is(50) - Axial tests	-
Mean Is(50) - Diametrical tests	2.99
Ia(50)	-

Tested in accordance with ISRM Standard, "Suggested Method for determining Point Load Strength"

GSTL Job Ref: 35579 Project Title: Foynes Part

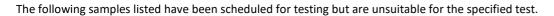
Client: Ground Investigations IRELAND

For the attention of:

Dear Sir/Madam,

The following samples listed have been scheduled for testing but are unsuitable for the specified test.

BH/TP no	Sample no	Depth	Testing required	Reason for unsuitability
L04		12.50M	СИТ	Sample to soft to obtain a CUT test (SLUMPED)


From Lee Gliddon Date 21/06/2017

GSTL Job Ref : 35579 Project Title: Foynes Port

Client: Ground Investigation Ireland

For the attention of: Connor

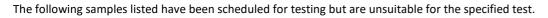
Dear Sir/Madam,

BH/TP no	Sample no	Depth	Testing required	Reason for unsuitability
L05		14.00M	СИТ	Sample to soft to obatain a CUT specimen (slumped)

From Jason Date 11/07/2017

GSTL Job Ref : 35579 Project Title: Foynes Port

Client: Ground Investigation
For the attention of: Connor Finnety


BH/TP no	Sample no	Depth	Testing required	Reason for unsuitability
моз		1.00M	СИТ	Sample slumped when being extruded (very soft)
моз		3.00M	СИТ	Sample slumped when being extruded (very soft)

From Lee Gliddon Date 16/06/2017

GSTL Job Ref : 35579 Project Title: Foynes Port

Client : Ground Investigation
For the attention of: Connor Finnety

Dear Sir/Madam,

BH/TP no	Sample no	Depth	Testing required	Reason for unsuitability
моз		5.00M	QUT, CUT	Sample sof, slumped when being extruded

From David Date 28/06/2017

GSTL Job Ref : 35579 Project Title: Foynes Port

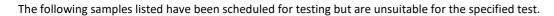
Client: Ground Investigations IRELAND

For the attention of:

Dear Sir/Madam,

The following samples listed have been scheduled for testing but are unsuitable for the specified test.

BH/TP no	Sample no	Depth	Testing required	Reason for unsuitability
M11		11.00-11.50	QUT	Sample to soft to obtain a QUT test (SLUMPED)
M11		5.00	QUT	Sample to soft to obtain a QUT test (SLUMPED)


From Lee Gliddon Date 21/06/2017

GSTL Job Ref : 35579 Project Title: Foynes Port

Client: Ground Investigations Ireland

For the attention of: Connor

Dear Sir/Madam,

BH/TP no	Sample no	Depth	Testing required	Reason for unsuitability
L04		12.50M	SHEARBOX	Sample too soft to test, leaking out shearbox when
M04		13.00M	SHEARBOX	consolidating and submerged with water

From Brendan Evans Date 12/07/2017

Contract Number: 36330

Client's Reference: 6552-02-17 Report Date: 20-09-2017

Client Ground Investigation Ireland
Catherinestown House
Hazelhatch Road
Newcastle
Co. Dublin

Contract Title: Foynes Port

For the attention of: Fergal Mcnamara

Date Received: **18-08-2017**Date Commenced: **18-08-2017**Date Completed: **20-09-2017**

Test Description	Qty
Moisture Content 1377 : 1990 Part 2 : 3.2 - * UKAS	109
4 Point Liquid & Plastic Limit (LL/PL) 1377: 1990 Part 2: 4.3 & 5.3 - * UKAS	52
PSD Wet Sieve method 1377 : 1990 Part 2 : 9.2 - * UKAS	62
Particle Density (Gas Jar) BS 1377: 1990 Part 2: 8.2 - * UKAS	68
PSD: Sedimentation by pipette carried out separately 1377: 1990 Part 2: 9.4 - * UKAS	10
One-dimensional Consolidation 75mm or 50mm diameter specimens (5 days) 1377 : 1990 Part 5 : 3 - * UKAS	12
Natural Shear Strength by Hand Vane (3 measurements) - @ Non Accredited Test	12

Notes: Observations and Interpretations are outside the UKAS Accreditation

- * denotes test included in laboratory scope of accreditation
- # denotes test carried out by approved contractor
- @ denotes non accredited tests

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved Signatories:

Alex Wynn (Associate Director) - Ben Sharp (Contracts Manager) - Emma Sharp (Office Manager)
Paul Evans (Quality/Technical Manager) - Richard John (Advanced Testing Manager) - Sean Penn (Administrative Assistant)
Vaughan Edwards (Managing Director) - Wayne Honey (Administrative/Quality Assistant)

Contract Number: 36330

Test Description	Qty
Quick Undrained Triaxial Compression test - single specimen at one confining pressure (100mm or 38mm diameter) 1377: 1990 Part 7: 8 - * UKAS	6
Large Shear Box 300mm Peak with 3 confining pressures includes remoulding (BS1377: Part 7: Clause 5: 1990) and (Specification for Highway Works Vol.1 Clause 636 Part 2) - @ Non Accredited Test	1
CUD 100mm Consolidated undrained triaxial compression test on a Single Specimen with Multistage Loading with the measurement of pore water pressure including saturation and consolidation, test duration FOUR days. BS1377: Part 8: Clause 7: 1990 - @ Non Accredited Test	2
Extra over items for test duration in excess of four days.	7
Disposal of Samples on Project	1

Notes: Observations and Interpretations are outside the UKAS Accreditation

- * denotes test included in laboratory scope of accreditation
- # denotes test carried out by approved contractor
- @ denotes non accredited tests

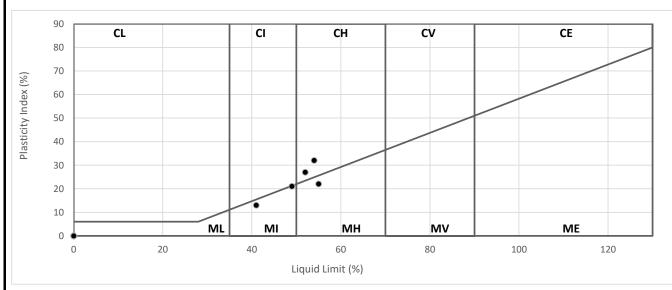
This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved Signatories

Alex Wynn (Associate Director) - Ben Sharp (Contracts Manager) - Emma Sharp (Office Manager)
Paul Evans (Quality/Technical Manager) - Richard John (Advanced Testing Manager) - Sean Penn (Administrative Assistant)
Vaughan Edwards (Managing Director) - Wayne Honey (Administrative/Quality Assistant)

Tel: 01554 784040 Fax: 01554 784041 info@gstl.co.uk gstl.co.uk

GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5) DESCRIPTIONS	
Contract Number	36330	
Site Name	Foynes Port	


Hole Reference	Sample Number	Sample Type	D	epth (r	m)	Descriptions
L01		В	0.50	-		Brown fine to coarse sandy silty clayey fine to coarse GRAVEL with many cobbles.
L01		В	1.00	-		Brown fine to medium sandy SILT/CLAY.
L01		В	2.70	-		Greyish brown fine gravelly silty CLAY.
L01		В	3.10	-		Brown fine to medium sandy SILT/CLAY.
L01		В	4.00	-		Brown fine to medium sandy CLAY/SILT.
L01		В	5.00	-		Brown fine to medium sandy CLAY/SILT.
L01		В	6.00	-		Brown fine to medium sandy CLAY/SILT.
L01		В	7.00	-		Brown fine to medium sandy CLAY/SILT.
L01		В	8.00	-		Brown fine to medium sandy CLAY/SILT.
L01		В	9.00	-		Brown fine to coarse sandy CLAY/SILT.
L01		В	10.00	-		Brown fine to medium sandy SILT/CLAY.
L01		В	11.00	-		Brown fine to medium sandy SILT/CLAY.
L01		В	12.00	-		Greyish brown fine gravelly silty CLAY.
				-		
				-		
				-		
				-		
				-		
				-		
				-		
_				-		
_				-		
				-		
				-		

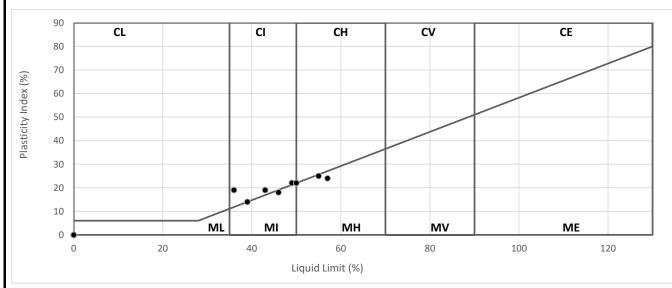
Operators	Checked	19-09-17	Emma Sharp	Eude
RO/MH	Approved	20-09-17	Paul Evans	DP GONS

GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)	
Contract Number	36330	
Site Name	Foynes Port	

Hole Reference	Sample Number	Sample Type	D	epth (ı	m)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing .425mm %	Remarks
L01		В	0.50	-		8.1					
L01		В	1.00	-		18	54	22	32	99	CH High Plasticity
L01		В	2.70	-		8.3					
L01		В	3.10	-		33		NP		99	
L01		В	4.00	-		30	41	28	13	99	MI Intermediate Plasticity
L01		В	5.00	-		31					
L01		В	6.00	-		31	49	28	21	99	MI Intermediate Plasticity
L01		В	7.00	-		35					
L01		В	8.00	-		44	55	33	22	99	MH High Plasticity
L01		В	9.00	-		34					
L01		В	10.00	-		34	52	25	27	99	CH High Plasticity
L01		В	11.00	-		38					
L01		В	12.00	-		44					
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							

Operators	Checked	19-09-17	Emma Sharp	Eud
DB	Approved	20-09-17	Paul Evans	DP Grans

GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5) DESCRIPTIONS	
Contract Number	36330	
Site Name	Foynes Port	


Hole Reference	Sample Number	Sample Type	Depth (m)		m)	Descriptions
L02		В	0.50	-		Brown gravelly sandy silty CLAY.
L02		В	1.00	-		Brown silty clayey fine to coarse sandy fine to coarse GRAVEL.
L02		В	2.00	-		Brown gravelly sandy silty CLAY.
L02		В	2.60	-		Brown slightly silty fine to coarse sandy fine to coarse GRAVEL.
L02		В	3.00	-		Brown gravelly sandy silty CLAY.
L02		В	3.30	-		Grey fine to medium gravely silty clayey fine to coarse SAND.
L02		В	4.00	-		Brown silty CLAY
L02		В	5.00	-		Grey fine to medium sandy SILT/CLAY.
L02		В	6.00	-		Grey silty CLAY.
L02		В	7.00	-		Grey fine to medium sandy SILT/CLAY.
L02		В	8.00	-		Grey silty CLAY.
L02		В	9.00	-		Grey fine sandy CLAY/SILT.
L02		В	10.00	-		Grey silty CLAY.
L02		В	11.00	-		Grey fine sandy SILT/CLAY.
L02		В	12.00	-		Grey fine sandy CLAY/SILT.
L02		В	13.00	-		Grey silty CLAY.
L02		В	14.00	-		Brown fine to medium sandy CLAY/SILT.
L02		В	15.00	-		Brown silty CLAY
L02		В	16.00	-		Grey fine sandy SILT/CLAY.
				-		
				-		
				-		
				-		
				-		

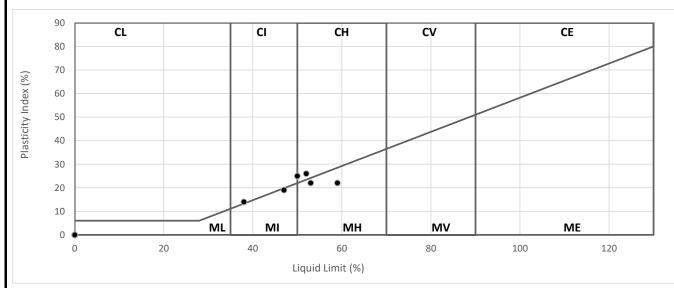
Operators	Checked	19-09-17	Emma Sharp	Eude
RO/MH	Approved	20-09-17	Paul Evans	DP GONS

GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)	
Contract Number	36330	
Site Name	Foynes Port	

Hole Reference	Sample Number	Sample Type	D	epth (r	m)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing .425mm %	Remarks
L02		В	0.50	-		13					
L02		В	1.00	-		13	36	17	19	40	CI Intermediate Plasticity
L02		В	2.00	-		11					
L02		В	2.60	-		6.5		NP		8	
L02		В	3.00	-		22					
L02		В	3.30	-		32	39	25	14	76	CI Intermediate Plasticity
L02		В	4.00	-		27					
L02		В	5.00	-		31		NP		99	
L02		В	6.00	-		27					
L02		В	7.00	-		34	49	27	22	99	CI Intermediate Plasticity
L02		В	8.00	-		42					
L02		В	9.00	-		35	46	28	18	100	MI Intermediate Plasticity
L02		В	10.00	-		33					
L02		В	11.00	-		38	50	28	22	99	CI/H Inter/High Plasticity
L02		В	12.00	-		37	57	33	24	99	MH High Plasticity
L02		В	13.00	-		36					
L02		В	14.00	-		40	55	30	25	99	MH High Plasticity
L02		В	15.00	-		36					
L02		В	16.00	-		40	43	24	19	99	CI Intermediate Plasticity
				-							
				-							
				-							
				-							
				-							

Operators	Checked	19-09-17	Emma Sharp	Eud
DB	Approved	20-09-17	Paul Evans	DP Grans

CCTI	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)	
GSIL	DESCRIPTIONS	
Contract Number	36330	
Site Name	Foynes Port	


Hole Reference	Sample Number	Sample Type	Depth (m)		m)	Descriptions
L03		В	1.00	-		Brown fine to medium sandy gravelly silty CLAY.
L03		В	3.00	-		Dark grey clayey silty GRAVEL.
L03		В	5.00	-		Grey fine to coarse sandy SILT/CLAY.
L03		В	6.00	-		Brown fine to coarse sandy SILT/CLAY.
L03		В	7.00	-		Grey silty CLAY.
L03		В	8.00	-		Brown fine to coarse sandy SILT/CLAY.
L03		В	9.00	-		Grey silty CLAY.
L03		В	10.00	-		Brown fine to coarse sandy CLAY/SILT.
L03		В	11.00	-		Grey silty CLAY.
L03		В	12.00	-		Brown fine slightly sandy CLAY/SILT
L03		В	13.00	-		Grey silty CLAY.
L03		В	14.00	-		Grey fine to medium sandy CLAY/SILT
L03		В	15.00	-		Grey silty CLAY.
L03		В	17.00	-		Grey silty CLAY.
L03		В	18.00	-		Brown fine to coarse slightly sandy silty fine to coarse GRAVEL.
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		

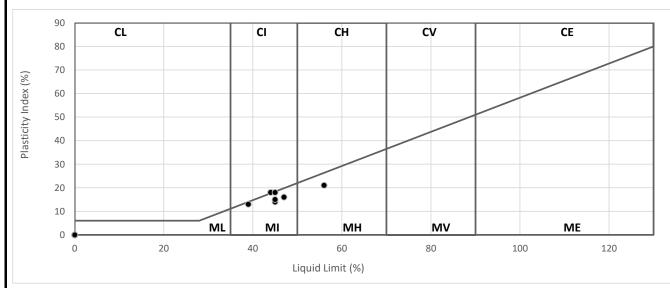
Operators	Checked	19-09-17	Emma Sharp	Euge
RO/MH	Approved	20-09-17	Paul Evans	DP Grons

GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)	
Contract Number	36330	
Site Name	Foynes Port	

Hole Reference	Sample Number	Sample Type	D	epth (ı	m)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing .425mm %	Remarks
L03		В	1.00	-		14					
L03		В	3.00	-		14					
L03		В	5.00	-		46	50	25	25	98	CI/H Inter/High Plasticity
L03		В	6.00	-		31	52	26	26	99	CH High Plasticity
L03		В	7.00	-		28					
L03		В	8.00	-		33	38	24	14	100	CI Intermediate Plasticity
L03		В	9.00	-		37					
L03		В	10.00	-		34	47	28	19	99	MI Intermediate Plasticity
L03		В	11.00	-		35					
L03		В	12.00	-		34	53	31	22	100	MH High Plasticity
L03		В	13.00	-		37					
L03		В	14.00	-		35	59	37	22	99	MH High Plasticity
L03		В	15.00	-		42					
L03		В	17.00	-		54					
L03		В	18.00	-		11		NP		8	
				-							
				-							
				-							
				-							
				-							
				-							
				-							
•				-							<u> </u>
·				-							_

Operators	Checked	19-09-17	Emma Sharp	Eud
DB	Approved	20-09-17	Paul Evans	DP Grons

GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5) DESCRIPTIONS	
Contract Number	36330	
Site Name	Foynes Port	


Hole Reference	Sample Number	Sample Type	Depth (m)		m)	Descriptions
L06		В	9.00	-		Grey fine to coarse sandy fine to coarse gravelly CLAY/SILT with many cobbles.
L06		В	10.00	-		Greyish brown gravelly silty CLAY
L06		В	11.00	-		Brown fine to medium gravelly fine to coarse sandy CLAY/SILT.
L06		В	12.00	-		Greyish brown gravelly silty CLAY
L06		В	13.00	-		Brown fine to coarse sandy SILT/CLAY.
L06		В	14.00	-		Greyish brown silty CLAY
L06		В	15.00	-		Brown fine to medium sandy CLAY/SILT.
L06		В	16.00	-		Greyish brown silty CLAY
L06		В	17.00	-		Brown fine to medium slightly sandy CLAY/SILT.
L06		В	18.00	-		Greyish brown silty CLAY
L06		В	19.00	-		Brown fine to medium slightly sandy CLAY/SILT.
L06		В	20.00	-		Greyish brown silty CLAY
L06		В	21.00	-		Brown fine to medium slightly sandy CLAY/SILT.
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		

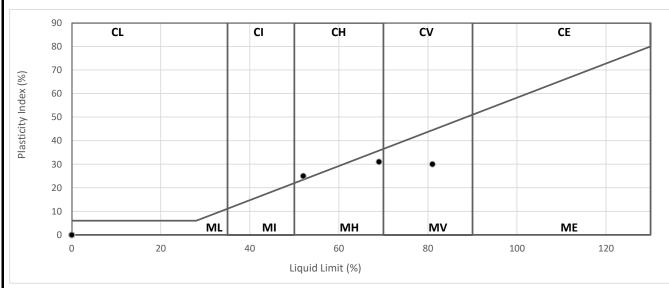
Operators	Checked	21-09-17	Emma Sharp	Euge
RO/MH	Approved	22-09-17	Paul Evans	DP Grons

GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)	
Contract Number	36330	
Site Name	Foynes Port	

Hole Reference	Sample Number	Sample Type	D	epth (r	m)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing .425mm %	Remarks
L06		В	9.00	-		32	45	31	14	32	MI Intermediate Plasticity
L06		В	10.00	-		35					
L06		В	11.00	•		36	47	31	16	89	MI Intermediate Plasticity
L06		В	12.00	-		32					
L06		В	13.00	-		35	44	26	18	98	CI Intermediate Plasticity
L06		В	14.00	-		33					
L06		В	15.00	-		34	39	26	13	99	MI Intermediate Plasticity
L06		В	16.00	-		39					
L06		В	17.00	-		35	45	30	15	99	MI Intermediate Plasticity
L06		В	18.00	-		41					
L06		В	19.00	-		39	45	27	18	99	MI Intermediate Plasticity
L06		В	20.00	-		44					
L06		В	21.00	-		47	56	35	21	99	MH High Plasticity
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							

Operators	Checked	21-09-17	Emma Sharp	Eud
DB	Approved	22-09-17	Paul Evans	DP Grans

GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5) DESCRIPTIONS	
Contract Number	36330	
Site Name	Foynes Port	


Hole Reference	Sample Number	Sample Type	Depth (m)		m)	Descriptions
L07		В	0.00	-		Brown silty CLAY.
L07		В	0.50	-		Brown fine to medium sandy CLAY/SILT.
L07		В	1.50	-		Brown silty CLAY.
L07		В	2.50	-		Brown fine slightly gravelly fine to coarse sandy CLAY/SILT.
L07		В	4.50	-		Brown silty CLAY.
L07		В	5.50	-		Brown fine to coarse sandy SILT/CLAY.
L07		В	7.00	-		Brown fine to coarse sandy SILT/CLAY.
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
_				-		
				-		
				-		
				-		
				-		

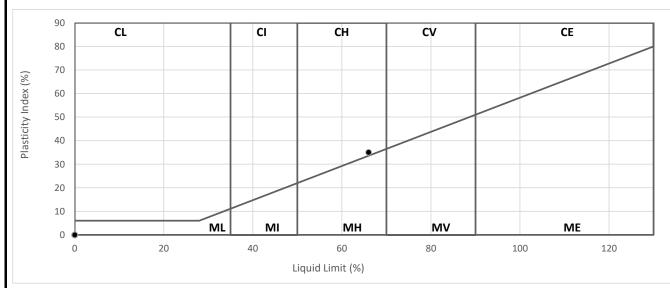
Operators	Checked	21-09-17	Emma Sharp	Eug
RO/MH	Approved	22-09-17	Paul Evans	DP Grons

GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)	
Contract Number	36330	
Site Name	Foynes Port	

Hole Reference	Sample Number	Sample Type	D	epth (r	m)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing .425mm %	Remarks
L07		В	0.00	-		64					
L07		В	0.50	-		66	69	38	31	99	MH High Plasticity
L07		В	1.50	-		70					
L07		В	2.50	-		74	81	51	30	98	MV Very High Plasticity
L07		В	4.50	-		54					
L07		В	5.50	-		45	52	27	25	98	CH High Plasticity
L07		В	7.00	-		25					
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							

Operators	Checked	21-09-17	Emma Sharp	Eud
DB	Approved	22-09-17	Paul Evans	DP Grans

GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5) DESCRIPTIONS	
Contract Number	36330	
Site Name	Foynes Port	


Hole Reference	Sample Number	Sample Type	Depth (m)		e Depth (m)			Descriptions
L08		В	0.00	-		Greyish brown sity CLAY.		
L08		В	0.50	-		Grey fine to coarse sandy SILT/CLAY.		
L08		В	1.50	-		Greyish brown sity CLAY.		
L08		В	4.50	-		Greyish brown fine to gravelly silty CLAY.		
L08		В	6.80	-		Greyish brown clayey sandy GRAVEL.		
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
	1			-				
				-				

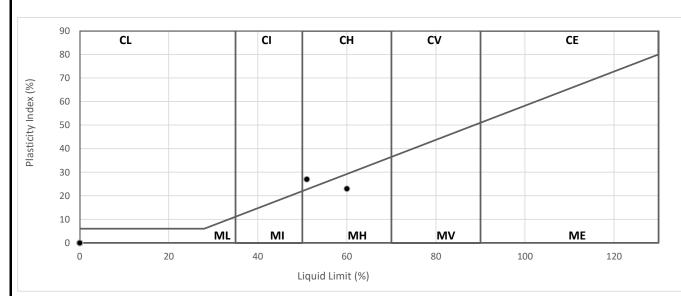
Operators	Checked	21-09-17	Emma Sharp	Eude
RO/MH	Approved	22-09-17	Paul Evans	DP GONS

GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)	
Contract Number	36330	
Site Name	Foynes Port	

Hole Reference	Sample Number	Sample Type	D	epth (ı	m)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing .425mm %	Remarks
L08		В	0.00	-		65					
L08		В	0.50	-		55	66	31	35	99	CH High Plasticity
L08		В	1.50	-		43					
L08		В	4.50	-		23					
L08		В	6.80	-		5.6					
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
_				-							
				-							
				-							

Operators	Checked	21-09-17	Emma Sharp	Eud
DB	Approved	22-09-17	Paul Evans	DP Grans

GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5) DESCRIPTIONS	
Contract Number	36330	
Site Name	Foynes Port	


Hole Reference	Sample Number	Sample Type	D	Depth (m)		Descriptions
LD01		В	1.00	-		Brown silty CLAY.
LD01		В	2.00	-		Brown slightly fine to medium gravelly slightly fine to coarse sandy CLAY/SILT.
LD01		В	3.00	-		Brown silty CLAY.
LD01		В	4.00	-		Brown slightly fine gravelly SILT/CLAY.
LD01		В	6.00	-		Brown slightly fine sandy SILT/CLAY.
LD01		В	8.00	-		Grey fine to coasre sandy silty clayey fine to coarse GRAVEL with many cobbles.
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		

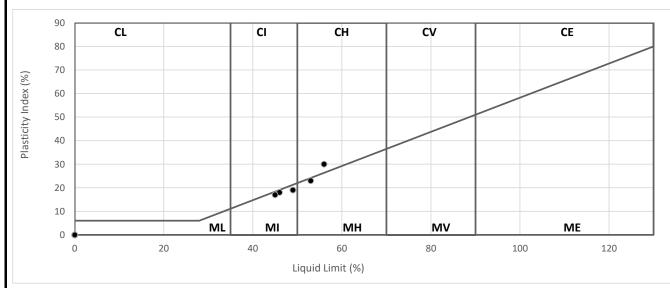
Operators	Checked	19-09-17	Emma Sharp	Euge
RO/MH	Approved	20-09-17	Paul Evans	DP Grons

GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)	
Contract Number	36330	
Site Name	Foynes Port	

Hole Reference	Sample Number	Sample Type	D	epth (r	m)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing .425mm %	Remarks
LD01		В	1.00	-		38					
LD01		В	2.00	-		46	60	37	23	95	MH High Plasticity
LD01		В	3.00	-		36					
LD01		В	4.00	-		27	51	24	27	99	CH High Plasticity
LD01		В	6.00	-		29		NP		98	
LD01		В	8.00	-		ey fine to co					
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							

Operators	Checked	19-09-17	Emma Sharp	Eud
DB	Approved	20-09-17	Paul Evans	DP Grons

GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5) DESCRIPTIONS	
Contract Number	36330	
Site Name	Foynes Port	


Hole Reference	Sample Number	Sample Type	Depth (m)		Depth (m)			Descriptions
LD02		В	1.00	-		Brown fine to medium slightly sandy SILT/CLAY.		
LD02		В	2.00	-		Brown sandy silty CLAY.		
LD02		В	3.00	-		Brown fine to medium sandy CLAY/SILT.		
LD02		В	4.00	-		Greyish brown clsyey SILT.		
LD02		В	5.00	-		Brown fine to medium sandy CLAY/SILT.		
LD02		В	6.00	-		Grey silty CLAY.		
LD02		В	7.00	-		Brown fine to medium sandy CLAY/SILT.		
LD02		В	8.00	-		Grey silty CLAY.		
LD02		В	9.00	-		Brown fine to medium sandy CLAY/SILT.		
LD02		В	10.00	-		Brown fine to medium sandy SILTCLAY.		
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				

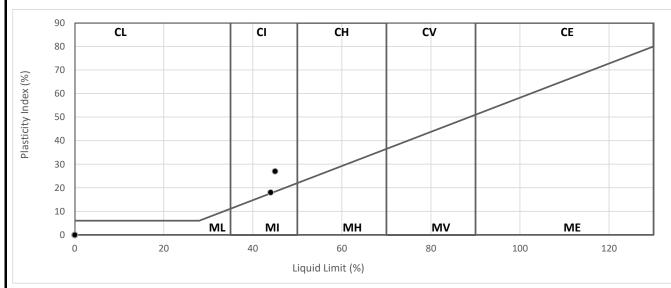
Operators	Checked	19-09-17	Emma Sharp	Eug
RO/MH	Approved	20-09-17	Paul Evans	DP Grons

GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)	
Contract Number	36330	
Site Name	Foynes Port	

Hole Reference	Sample Number	Sample Type	D	epth (r	m)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing .425mm %	Remarks
LD02		В	1.00	-		31	56	26	30	99	CH High Plasticity
LD02		В	2.00	-		33					
LD02		В	3.00	-		36	49	30	19	100	MI Intermediate Plasticity
LD02		В	4.00	-		33					
LD02		В	5.00	-		34	46	28	18	99	MI Intermediate Plasticity
LD02		В	6.00	-		39					
LD02		В	7.00	-		37	45	28	17	100	MI Intermediate Plasticity
LD02		В	8.00	-		40					
LD02		В	9.00	-		39	53	30	23	97	MH High Plasticity
LD02		В	10.00	-		136	139	49	90	99	CE Extremely High Plasticity
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							_
				-							
				-							

Operators	Checked	19-09-17	Emma Sharp	Eud
DB	Approved	20-09-17	Paul Evans	DP Grans

GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5) DESCRIPTIONS	
Contract Number	36330	
Site Name	Foynes Port	


Hole Reference	Sample Number	Sample Type	D	Depth (m)		Descriptions
LD04		В	1.00	-		Brown fine to coarse sandy fine to coarse gravelly SILT/CLAY.
LD04		В	3.50	-		Brown fine to coarse slightly sandy fine to coarse gravelly SILT/CLAY.
LD04		В	4.50	-		Brown fine to coarse sandy gravelly silty CLAY.
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		

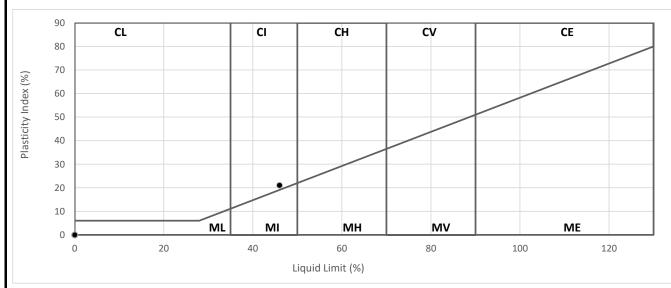
Operators	Checked	19-09-17	Emma Sharp	Eud
RO/MH	Approved	20-09-17	Paul Evans	DP GONS

GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)	
Contract Number	36330	
Site Name	Foynes Port	

Hole Reference	Sample Number	Sample Type	D	epth (r	m)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing .425mm %	Remarks
LD04		В	1.00	-		29	44	26	18	51	CI Intermediate Plasticity
LD04		В	3.50	-		34	45	18	27	83	CI Intermediate Plasticity
LD04		В	4.50	-		30					
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							

Operators	Checked	19-09-17	Emma Sharp	Eud
DB	Approved	20-09-17	Paul Evans	DP Grans

GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5) DESCRIPTIONS	
Contract Number	36330	
Site Name	Foynes Port	


Hole Reference	Sample Number	Sample Type	D	Depth (m)		Descriptions
LD06		В	1.50	-		Brown fine to coarse sandy silty clayey fine to coarse GRAVEL.
LD06		В	2.50	-		Grey slightly silty fine to coarse sandy fine to coarse GRAVEL with many cobbles.
LD06		В	3.40	-		Grey fine to coarse sandy silty clayey fine to coarse GRAVEL.
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		

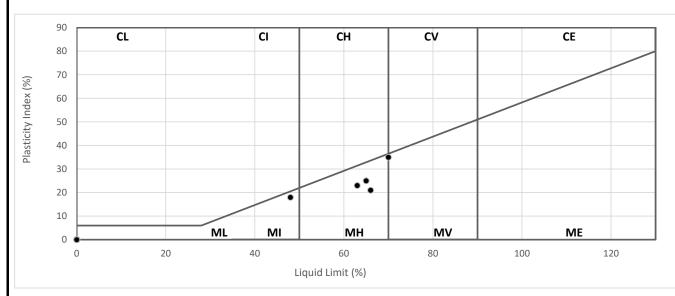
Operators	Checked	19-09-17	Emma Sharp	Eud
RO/MH	Approved	20-09-17	Paul Evans	DP GONS

GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)	
Contract Number	36330	
Site Name	Foynes Port	

Hole Reference	Sample Number	Sample Type	D	epth (ı	m)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing .425mm %	Remarks
LD06		В	1.50	-		16	46	25	21	51	CI Intermediate Plasticity
LD06		В	2.50	-		8.1				14	
LD06		В	3.40	-		10		NP	#VALUE!	14	#VALUE!
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
·				-							
				-							
				-							
				-							
<u> </u>				-							

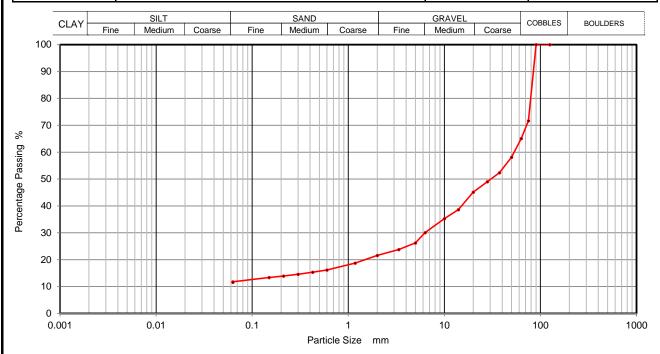
Operators	Checked	19-09-17	Emma Sharp	Eud
DB	Approved	20-09-17	Paul Evans	DP Grans

CSTI	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)	
GOIL	DESCRIPTIONS	
Contract Number	36330	
Site Name	Foynes Port	


Hole Reference	Sample Number	Sample Type	D	epth (r	m)	Descriptions
M09		В	0.50	-		Greyish brown silty CLAY.
M09		В	2.00	-		Grey fine to coarse sandy CLAY/SILT.
M09		В	3.00	-		Greyish brown silty CLAY.
M09		В	4.00	-		Grey fine to coarse sandy CLAY/SILT.
M09		В	5.00	-		Grey fine to coarse sandy CLAY/SILT.
M09		В	6.50	-		Grey fine to medium sandy CLAY/SILT.
M09		В	6.50	-		Greyish brown gravelly silty CLAY.
M09		В	8.50	-		Grey fine to coarse sandy CLAY/SILT.
M09		В	10.00	-		Grey fine to coarse sandy CLAY/SILT.
M09		В	11.50	-		Brown gravelly silty CLAY.
M09		В	13.00	-		Brown silty CLAY.
M09		В	15.50	-		Brown sandy GRAVEL.
M09		В	18.20	-		Grey GRAVEL.
M09		В	20.20	-		Grey GRAVEL.
M09		В	26.00	-		Brown clayey GRAVEL.
				-		
				-		
				-		
				-		
				-		
_				-		
_				-		
_				-		

Operators	Checked	21-09-17	Emma Sharp	Eug
RO/MH	Approved	22-09-17	Paul Evans	DP GONS

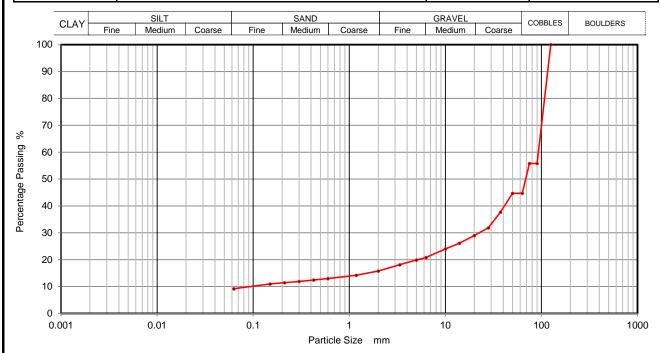
GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)	
Contract Number	36330	
Site Name	Foynes Port	


Hole Reference	Sample Number	Sample Type	D	epth (r	m)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing .425mm %	Remarks
M09		В	0.50	-		59					
M09		В	2.00	-		58	66	45	21	99	MH High Plasticity
M09		В	3.00	-		53					
M09		В	4.00	-		59	65	40	25	97	MH High Plasticity
M09		В	5.00	-		54					
M09		В	6.50	-		59	70	35	35	98	MH/V High/HighPlasticity
M09		В	6.50	-		52					
M09		В	8.50	-		54	63	40	23	98	MH High Plasticity
M09		В	10.00	-		40	48	30	18	97	MI Intermediate Plasticity
M09		В	11.50	-		50					
M09		В	13.00	-		58					
M09		В	15.50	-		5.2					
M09		В	18.20	-		0.5					
M09		В	20.20	-		1.4					
M09		В	26.00	-		4.8					
				-							
				-							
				-							
				-							
				-							
_				-							_
				-							
				-							

Operators	Checked	21-09-17	Emma Sharp	Lie
DB	Approved	22-09-17	Paul Evans	DP Grons

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L01
Site Name	Foyne Port	Sample No.	
Soil Description	Brown fine to coarse sandy silty clayey fine to coarse GRAVEL with	Depth Top	0.50
	many cobbles.	Depth Base	
		Sample Type	В

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	72	0.0019	
63	65		
50	58		
37.5	52		
28	49		
20	45		
14	39		
10	35		
6.3	30		
5	26		
3.35	24		
2	22		
1.18	19		
0.6	16		
0.425	15		
0.3	15		
0.212	14		
0.15	13		
0.063	12		

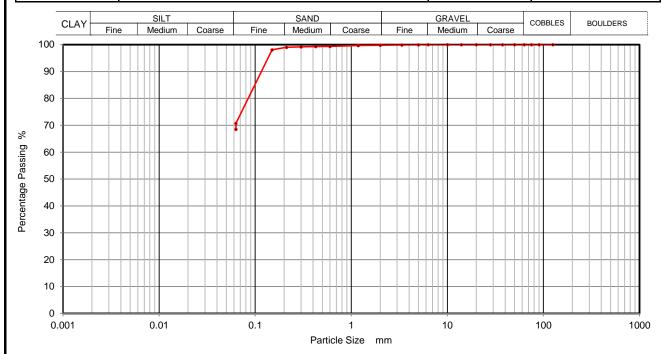

Sample Proportions	% dry mass
Cobbles	35
Gravel	43
Sand	10
Silt and Clay	12

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Eug
RO/MH	Approved	20-09-17	Paul Evans	DP Grons

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L01
Site Name	Foyne Port	Sample No.	
Soil Description	Brown fine to coarse slightly sandy silty fine to coarse GRAVEL with	Depth Top	2.00
	many cobbles.	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	56	0.0060	
75	56	0.0019	
63	45		
50	45		
37.5	38		
28	32		
20	29		
14	26		
10	24		
6.3	21		
5	20		
3.35	18		
2	16		
1.18	14		
0.6	13		
0.425	12		
0.3	12		
0.212	11		
0.15	11		
0.063	9		

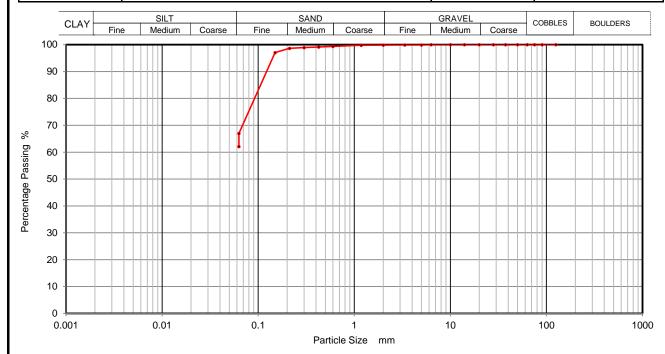

Sample Proportions	% dry mass
Cobbles	55
Gravel	29
Sand	7
Silt and Clay	9

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Euch)
RO/MH	Approved	20-09-17	Paul Evans	DP Grans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L01
Site Name	Foyne Port	Sample No.	
Soil Description	Brown fine to medium sandy SILT/CLAY.	Depth Top	3.10
	BIOWITHINE TO HIEDRINIT SAIRLY SILT/CLAT.	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	99		_
0.212	99		
0.15	98		
0.063	71		

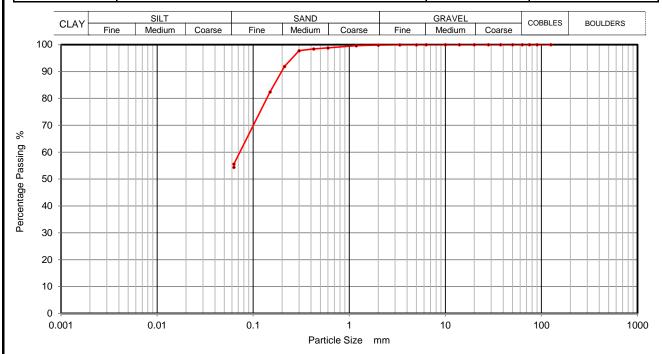

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	29
Silt and Clay	71

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Eug
RO/MH	Approved	20-09-17	Paul Evans	EP Grans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L01
Site Name	Foyne Port	Sample No.	
Soil Description	Brown fine to medium sandy CLAY/SILT.	Depth Top	5.00
	BIOWITHINE TO HIEDIGHT SAIRLY CLAT/SILT.	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	99		
0.212	99		
0.15	97		
0.063	67		

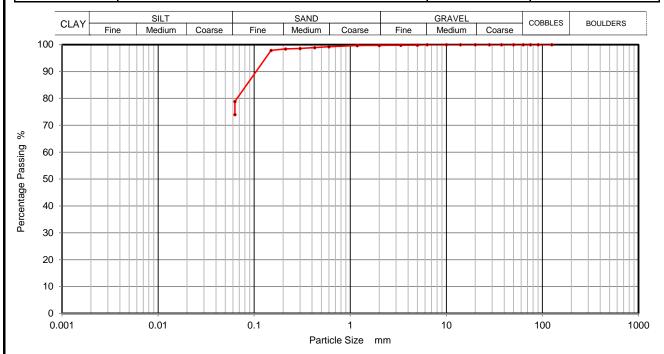

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	33
Silt and Clay	67

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Eug
RO/MH	Approved	20-09-17	Paul Evans	DP Grons

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L01
Site Name	Foyne Port	Sample No.	
Soil Description	Brown fine to coarse sandy CLAY/SILT.	Depth Top	7.00
	Blown line to coalse sailty CEAT/SIET.	Depth Base	
		Sample Type	В

Sie	ving	Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	98		
0.3	98		
0.212	92		
0.15	82		
0.063	56		

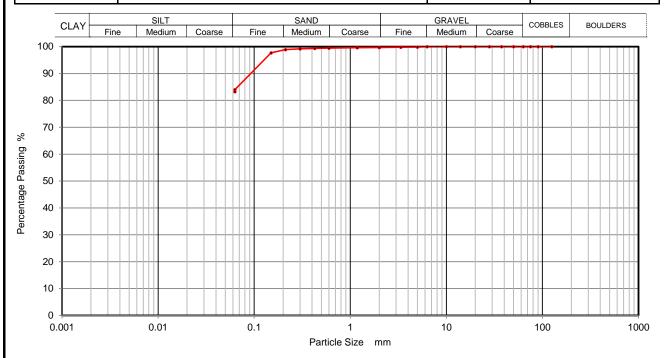

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	44
Silt and Clay	56

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Eug
RO/MH	Approved	20-09-17	Paul Evans	EP Grans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L01
Site Name	Foyne Port	Sample No.	
Soil Description	Brown fine to coarse sandy CLAY/SILT.	Depth Top	9.00
	Blown line to coalse sailty CEAT/SIET.	Depth Base	
		Sample Type	В

Sie	Sieving		entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 1 assirig	mm	70 T assiring
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	99		<u> </u>
0.212	98		
0.15	98		
0.063	79		

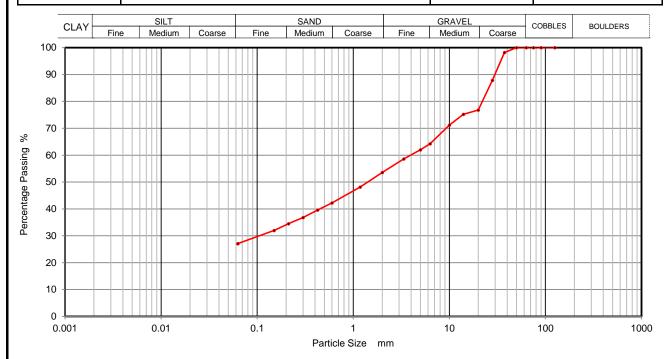

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	21
Silt and Clay	79

Grading A	nalysis	
Uniformity	Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Eug
RO/MH	Approved	20-09-17	Paul Evans	DP Grons

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L01
Site Name	Foyne Port	Sample No.	
Soil Description	Brown fine to coarse sandy CLAY/SILT.	Depth Top	11.00
	Brown line to coarse saridy CLAT/SILT.	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	99		
0.212	99		
0.15	98		
0.063	84		

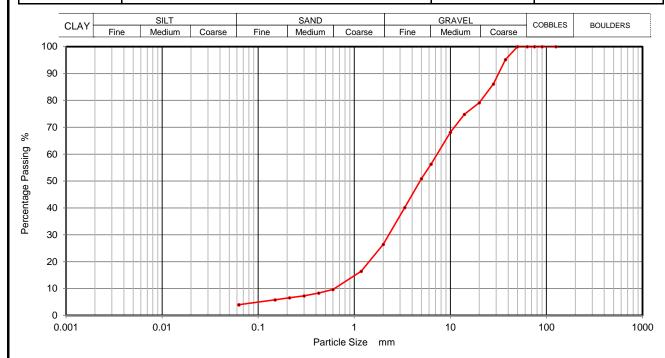

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	16
Silt and Clay	84

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Eug
RO/MH	Approved	20-09-17	Paul Evans	DP Grons

CCTI	PARTICLE SIZE DISTRIBUTION		36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L02
Site Name	Foyne Port	Sample No.	
Soil Description	Brown silty clayey fine to coarse sandy fine to coarse GRAVEL.	Depth Top	1.00
	Brown silty dayey line to coarse sandy line to coarse GRAVEL.	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	98		
28	88		
20	77		
14	75		
10	71		
6.3	64		
5	62		
3.35	59		
2	54		
1.18	48		
0.6	42		
0.425	40		
0.3	37		
0.212	34		
0.15	32		
0.063	27		


Sample Proportions	% dry mass
Cobbles	0
Gravel	46
Sand	27
Silt and Clay	27

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	21-09-17	Emma Sharp	Eust
RO/MH	Approved	22-09-17	Paul Evans	DP Grans

CCTI	PARTICLE SIZE DISTRIBUTION		36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L02
Site Name	Foyne Port	Sample No.	
Soil Description	Brown slightly silty fine to coarse sandy fine to coarse GRAVEL.	Depth Top	2.60
	Brown slightly slity line to coarse sandy line to coarse GRAVEL.	Depth Base	
		Sample Type	В

Sie	Sieving		entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	95		
28	86		
20	79		
14	75		
10	68		
6.3	56		
5	51		
3.35	40		
2	26		
1.18	16		
0.6	10		
0.425	8		
0.3	7		
0.212	7		
0.15	6		
0.063	4		

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	74	
Sand	22	
Silt and Clay	4	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Eug
RO/MH	Approved	20-09-17	Paul Evans	EP Grans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L02
Site Name	Foyne Port	Sample No.	
Soil Description	Grey fine to medium gravely silty clayey fine to coarse SAND.	Depth Top	3.30
	Grey line to medium gravely sitty clayey line to coarse SAND.	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	79		
5	79		
3.35	78		
2	78		
1.18	77		
0.6	76		
0.425	76		
0.3	76		_
0.212	76		
0.15	75		
0.063	39		

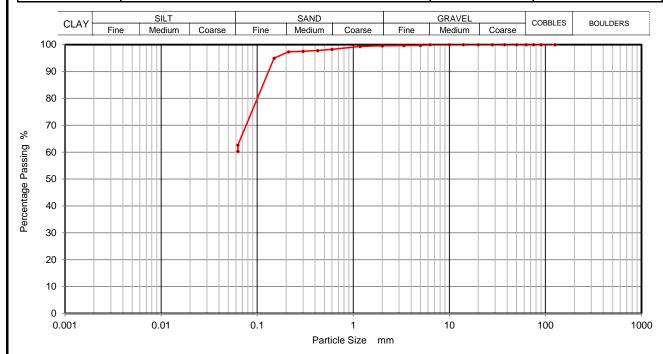
Sample Proportions	% dry mass
Cobbles	0
Gravel	22
Sand	39
Silt and Clay	39

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Eug
RO/MH	Approved	20-09-17	Paul Evans	EP Grans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L02
Site Name	Foyne Port	Sample No.	
Soil Description	Grey fine to medium sandy SILT/CLAY.	Depth Top	5.00
	Gley line to medium sandy SILT/CLAT.	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	99		
0.212	99		
0.15	95		
0.063	59		

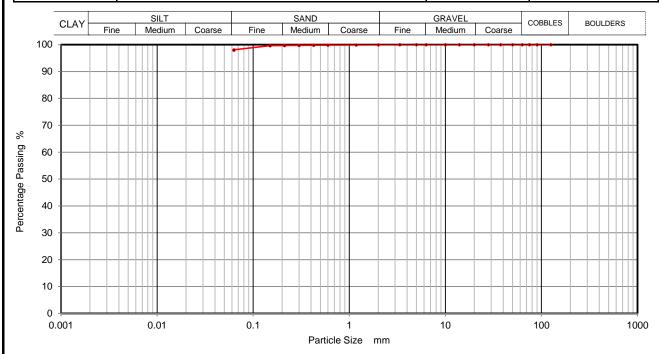

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	41
Silt and Clay	59

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Eug
RO/MH	Approved	20-09-17	Paul Evans	DP Grans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L02
Site Name	Foyne Port	Sample No.	
Soil Description	Grey fine to medium sandy SILT/CLAY.	Depth Top	7.00
	Gley line to medium sandy SILT/CLAT.	Depth Base	
		Sample Type	В

Sie	Sieving		entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	99		
0.6	98		
0.425	98		
0.3	98		<u> </u>
0.212	97		
0.15	95		
0.063	63		

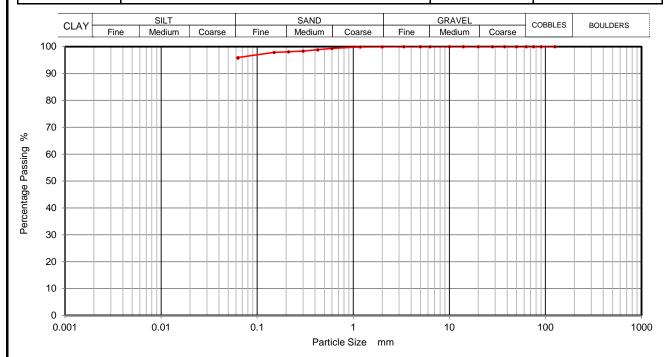

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	37
Silt and Clay	63

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	-Euse
RO/MH	Approved	20-09-17	Paul Evans	EP Grans

CCTI	PARTICLE SIZE DISTRIBUTION		36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L02
Site Name	Foyne Port	Sample No.	
Soil Description	Grey fine sandy CLAY/SILT.	Depth Top	9.00
	Gley line Salidy CLA1/SIL1.	Depth Base	
		Sample Type	В

Sie	Sieving		entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	100		
0.3	100		
0.212	100		
0.15	100		
0.063	98		

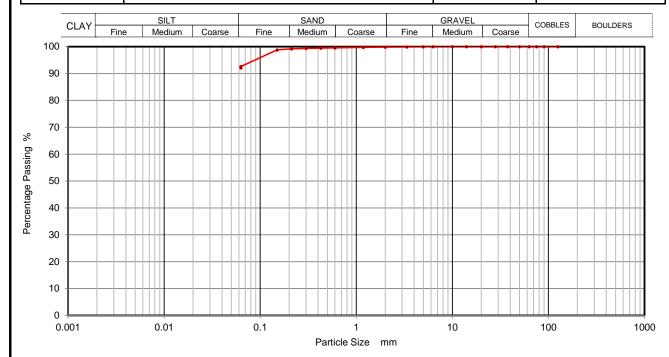

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	2
Silt and Clay	98

Grading A	nalysis	
Uniformity	Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Eug
RO/MH	Approved	20-09-17	Paul Evans	EP Grans

CCTI	PARTICLE SIZE DISTRIBUTION		36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L02
Site Name	Foyne Port	Sample No.	
Soil Description	Grey fine sandy SILT/CLAY.	Depth Top	11.00
	Gley line salidy SILT/CLAT.	Depth Base	
		Sample Type	В

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	98		
0.212	98		
0.15	98		
0.063	96		

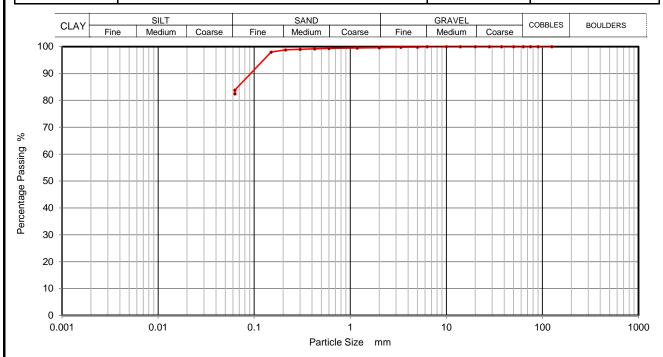

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	4
Silt and Clay	96

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Eug)
RO/MH	Approved	20-09-17	Paul Evans	DP Grans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L02
Site Name	Foyne Port	Sample No.	
Soil Description	Brown fine sandy CLAY/SILT.	Depth Top	12.00
	Brown line sandy CLAT/SiLT.	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	99		
0.3	99		
0.212	99		
0.15	99		
0.063	93		

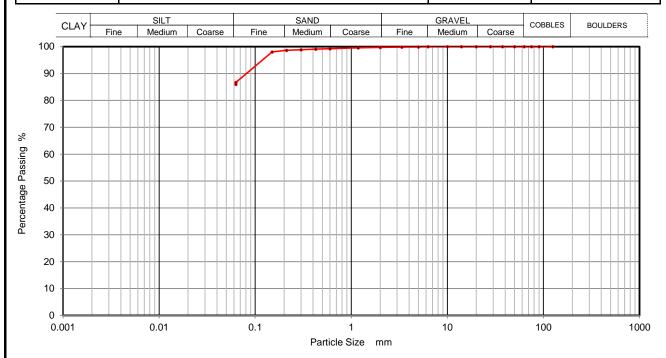

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	7
Silt and Clay	93

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Eug
RO/MH	Approved	20-09-17	Paul Evans	DP Grans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L02
Site Name	Foyne Port	Sample No.	
Soil Description	Brown fine to medium sandy CLAY/SILT.	Depth Top	14.00
	BIOWITHINE TO MECHANIST SANDY CLAT/SILT.	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	0/ Bassing
mm	% Passing	mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	99		
0.212	99		
0.15	98		
0.063	84		

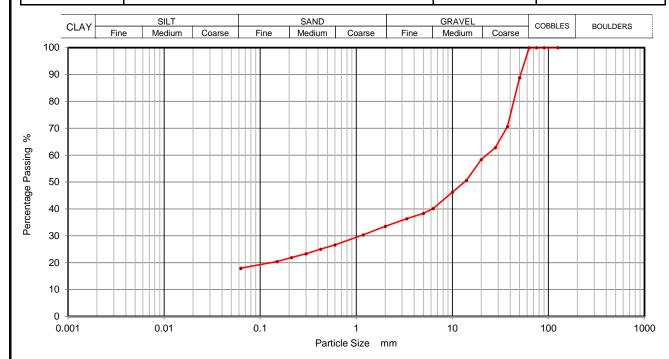

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	16
Silt and Clay	84

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Eug
RO/MH	Approved	20-09-17	Paul Evans	EP Grans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L02
Site Name	Foyne Port	Sample No.	
Soil Description	Grey fine to medium sandy SILT/CLAY.	Depth Top	16.00
	Grey line to medium sandy Sil 1/CLA1.	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	99		
0.212	99		
0.15	98		
0.063	87		

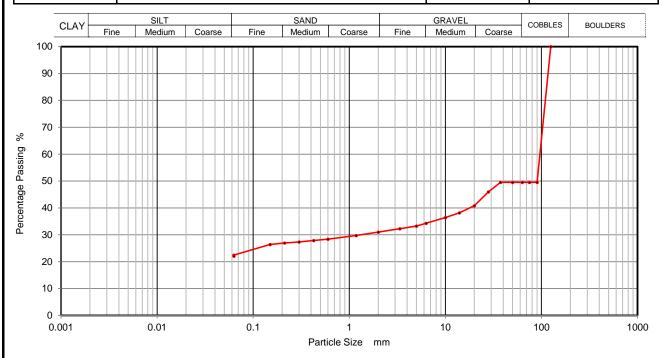

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	13
Silt and Clay	87

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Eug
RO/MH	Approved	20-09-17	Paul Evans	DP Grans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L03
Site Name	Foyne Port	Sample No.	
Soil Description	Dark brown fine to coarse sandy silty clayey fine to coarse GRAVEL.	Depth Top	2.00
	Dark blown line to coarse sandy siny dayey line to coarse GRAVEL.	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	89		
37.5	71		
28	63		
20	58		
14	51		
10	46		
6.3	40		
5	38		
3.35	36		
2	34		
1.18	30		
0.6	27		
0.425	25		
0.3	23		<u> </u>
0.212	22		
0.15	20		
0.063	18		

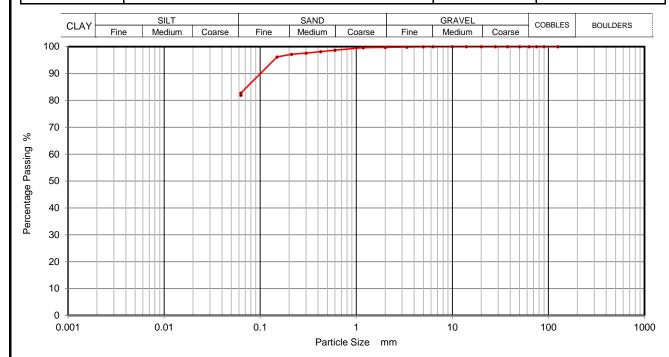

Sample Proportions	% dry mass
Cobbles	0
Gravel	66
Sand	16
Silt and Clay	18

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Euch)
RO/MH	Approved	20-09-17	Paul Evans	DP Grans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L03
Site Name	Foyne Port	Sample No.	
Soil Description	Grey fine to coarse sandy fine to coarse gravelly SILT/CLAY with	Depth Top	4.00
	many cobbles.	Depth Base	
		Sample Type	В

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	50	0.0060	
75	50	0.0019	
63	50		
50	50		
37.5	50		
28	46		
20	41		
14	38		
10	36		
6.3	34		
5	33		
3.35	32		
2	31		
1.18	30		
0.6	28		
0.425	28		
0.3	27		
0.212	27		
0.15	26		
0.063	22		

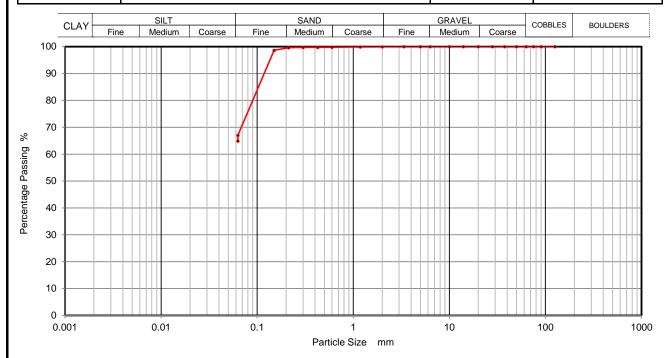

Sample Proportions	% dry mass
Cobbles	50
Gravel	19
Sand	9
Silt and Clay	22

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Eug
RO/MH	Approved	20-09-17	Paul Evans	DP Grans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L03
Site Name	Foyne Port	Sample No.	
Soil Description	Grey fine to coarse sandy SILT/CLAY.	Depth Top	5.00
	Grey life to coarse sarity SILT/CLAT.	Depth Base	
		Sample Type	В

Sie	Sieving		entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	98		
0.3	98		
0.212	97		
0.15	96		
0.063	83		

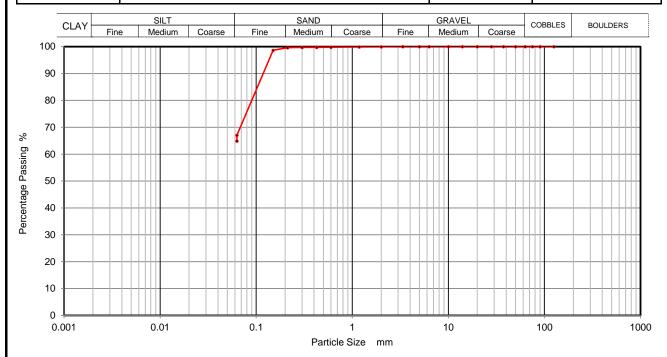

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	17
Silt and Clay	83

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Eug
RO/MH	Approved	20-09-17	Paul Evans	EP Grans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L03
Site Name	Foyne Port	Sample No.	
Soil Description	Prove fine to general condu SILT/CLAV	Depth Top	6.00
	Brown fine to coarse sandy SILT/CLAY.	Depth Base	
		Sample Type	В

Sie	Sieving		entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	100		
0.3	100		_
0.212	100		
0.15	99		
0.063	67		

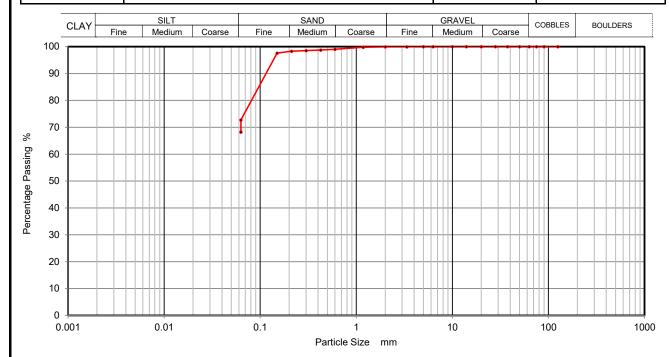

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	33
Silt and Clay	67

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Euch)
RO/MH	Approved	20-09-17	Paul Evans	DP Gans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L03
Site Name	Foyne Port	Sample No.	
Soil Description	Brown fine to coarse sandy SILT/CLAY.	Depth Top	8.00
	Brown line to coarse sarity SiLT/GLAT.	Depth Base	
		Sample Type	В

Sie	ving	Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 T d55H1g	mm	70 T d55111g
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	100		
0.3	100		_
0.212	100		
0.15	99		
0.063	67		

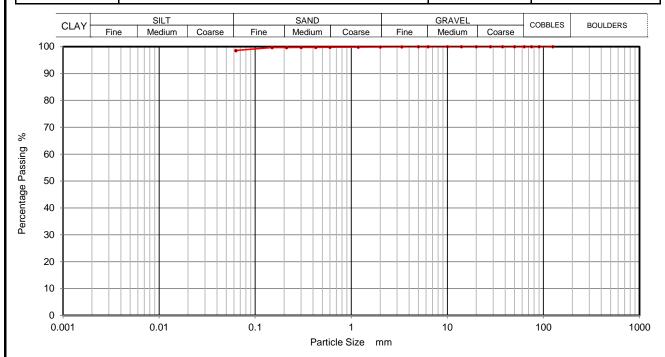

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	33
Silt and Clay	67

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Euch)
RO/MH	Approved	20-09-17	Paul Evans	DP Grans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L03
Site Name	Foyne Port	Sample No.	
Soil Description	Prove for the construct of AVIOLET	Depth Top	10.00
	Brown fine to coarse sandy CLAY/SILT.	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	99		
0.212	98		
0.15	98		
0.063	73		


Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	27
Silt and Clay	73

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Eug
RO/MH	Approved	20-09-17	Paul Evans	DP Grans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L03
Site Name	Foyne Port	Sample No.	
Soil Description	Development of AVOLT	Depth Top	12.00
	Brown fine slightly sandy CLAY/SILT	Depth Base	
		Sample Type	В

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	100		
0.3	100		
0.212	100		
0.15	100		
0.063	99		

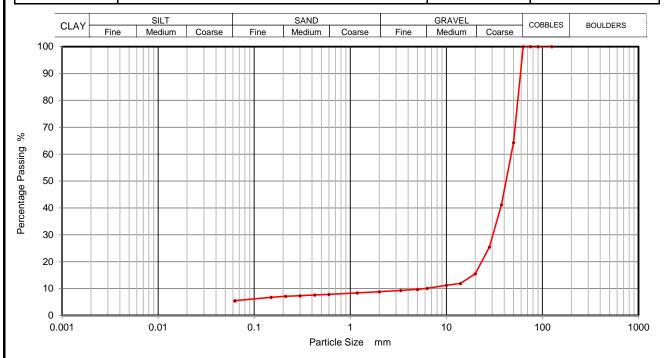
Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	1
Silt and Clay	99

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Euch)
RO/MH	Approved	20-09-17	Paul Evans	DP Gans

CCTI	PARTICLE SIZE DISTRIBUTION		36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L03
Site Name	Foyne Port	Sample No.	
Soil Description	Grey fine to medium sandy CLAY/SILT	Depth Top	14.00
	Grey line to medium sandy CLAT/SILT	Depth Base	
		Sample Type	В

Sie	ving	Sedimentation	
Particle Size	% Passing	Particle Size	% Passing
mm	% Fassing	mm	76 Fassing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	99		_
0.212	99		
0.15	94		
0.063	73		

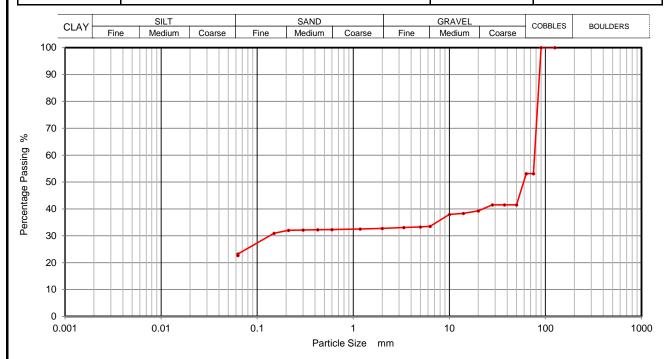

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	27
Silt and Clay	73

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Eug
RO/MH	Approved	20-09-17	Paul Evans	EP Grans

CCTI	PARTICLE SIZE DISTRIBUTION		36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L03
Site Name	Foyne Port	Sample No.	
Soil Description	Brown fine to coarse slightly sandy silty fine to coarse GRAVEL.	Depth Top	18.00
	Brown line to coarse slightly salidy slity line to coarse GRAVEL.	Depth Base	
		Sample Type	В

Sie	ving	Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	64		
37.5	41		
28	25		
20	15		
14	12		
10	11		
6.3	10		
5	10		
3.35	9		
2	9		
1.18	8		
0.6	8		
0.425	8		
0.3	7		<u> </u>
0.212	7		
0.15	7		
0.063	5		


Sample Proportions	% dry mass
Cobbles	0
Gravel	91
Sand	4
Silt and Clay	5

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Eug
RO/MH	Approved	20-09-17	Paul Evans	DP Grans

CCTI	PARTICLE SIZE DISTRIBUTION		36330
GJIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L06
Site Name	Foyne Port	Sample No.	
Soil Description	Grey fine to coarse sandy fine to coarse gravelly CLAY/SILT with	Depth Top	9.00
	many cobbles.	Depth Base	
		Sample Type	В

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	53	0.0019	
63	53		
50	42		
37.5	42		
28	42		
20	39		
14	38		
10	38		
6.3	34		
5	33		
3.35	33		
2	33		
1.18	33		
0.6	32		
0.425	32		
0.3	32		
0.212	32		
0.15	31		
0.063	23		

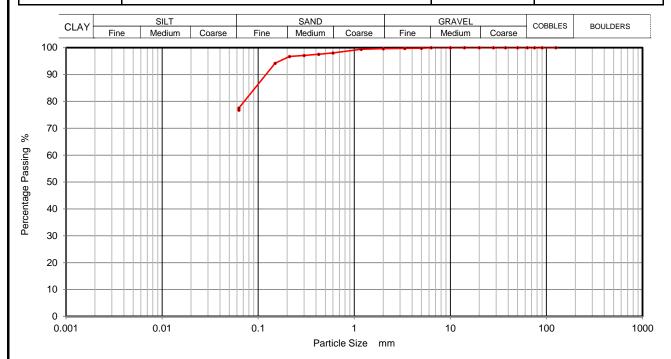
Sample Proportions	% dry mass	
Cobbles	47	
Gravel	20	
Sand	10	
Silt and Clay	23	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	21-09-17	Emma Sharp	Eug
RO/MH	Approved	22-09-17	Paul Evans	DP Grans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L06
Site Name	Foyne Port	Sample No.	
Soil Description	Brown fine to medium gravelly fine to coarse sandy CLAY/SILT.	Depth Top	11.00
	Brown line to medium gravelly line to coarse sandy CLAT/SILT.	Depth Base	
		Sample Type	В

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	98		
6.3	96		
5	95		
3.35	94		
2	94		
1.18	93		
0.6	90		
0.425	89		
0.3	88		_
0.212	88		
0.15	85		
0.063	68		

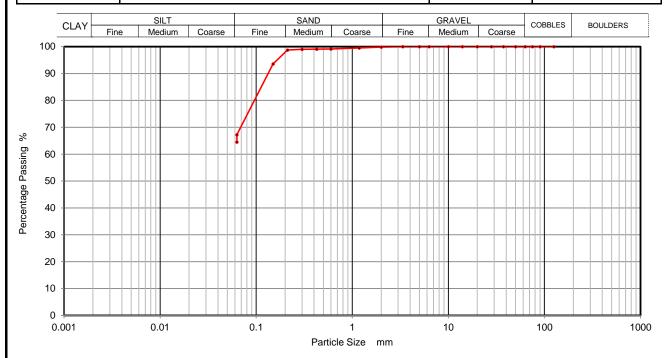

Sample Proportions	% dry mass
Cobbles	0
Gravel	6
Sand	26
Silt and Clay	68

Grading A	nalysis	
Uniformity	Coefficient	

Operators	Checked	21-09-17	Emma Sharp	Eug
RO/MH	Approved	22-09-17	Paul Evans	DP Grans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L06
Site Name	Foyne Port	Sample No.	
Soil Description	Prove fine to general condu SILT/CLAV	Depth Top	13.00
	Brown fine to coarse sandy SILT/CLAY.	Depth Base	
		Sample Type	В

Sie	Sieving		entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	99		
0.6	98		
0.425	98		
0.3	97		
0.212	97		
0.15	94		
0.063	78		

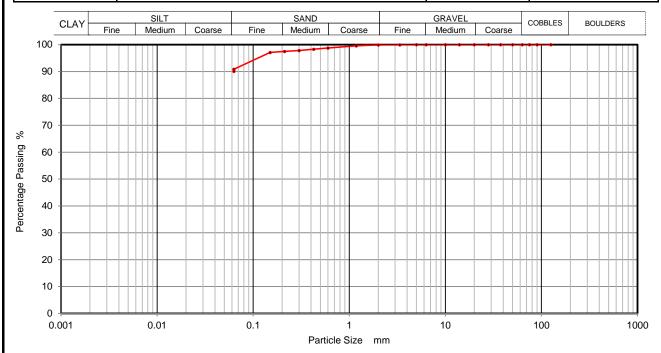

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	22
Silt and Clay	78

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	21-09-17	Emma Sharp	Eug
RO/MH	Approved	22-09-17	Paul Evans	DP Grons

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L06
Site Name	Foyne Port	Sample No.	
Soil Description	Brown fine to medium sandy CLAY/SILT.	Depth Top	15.00
	blown line to medium sandy CLA 1/SiL1.	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	99		<u> </u>
0.212	99		
0.15	94		
0.063	67		

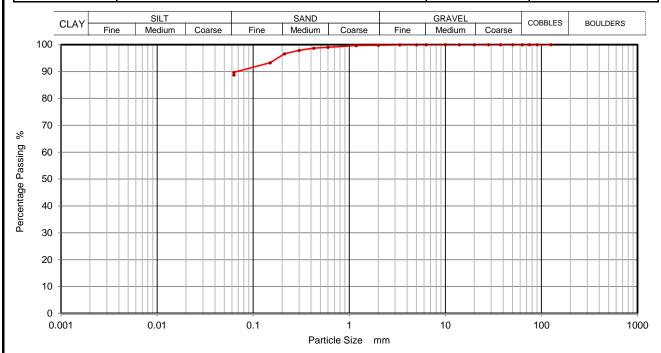

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	33
Silt and Clay	67

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	21-09-17	Emma Sharp	Eug
RO/MH	Approved	22-09-17	Paul Evans	DP Grans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L06
Site Name	Foyne Port	Sample No.	
Soil Description	Brown fine to medium slightly sandy CLAY/SILT.	Depth Top	17.00
	Blown line to medium signify sandy CLAT/SiLT.	Depth Base	
		Sample Type	В

Sie	Sieving		entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	98		
0.3	98		
0.212	97		
0.15	97		
0.063	91		

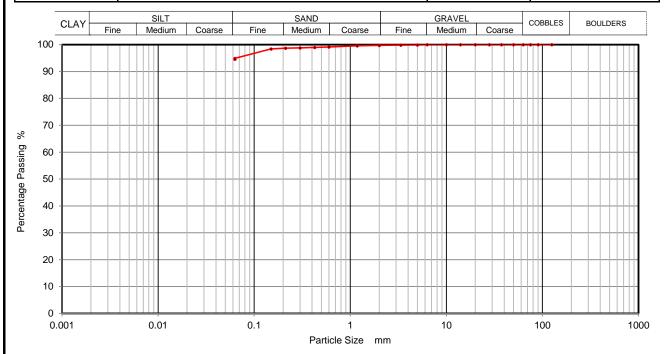

Sample Proportions % dry mass	
Cobbles	0
Gravel	0
Sand	9
Silt and Clay	91

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	21-09-17	Emma Sharp	Eug
RO/MH	Approved	22-09-17	Paul Evans	DP Grons

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L06
Site Name	Foyne Port	Sample No.	
Soil Description	Brown fine to medium slightly sandy CLAY/SILT.	Depth Top	19.00
	Blown line to medium signify sandy CLAT/SiLT.	Depth Base	
		Sample Type	В

Sie	Sieving		entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	98		
0.212	97		
0.15	93		
0.063	90		

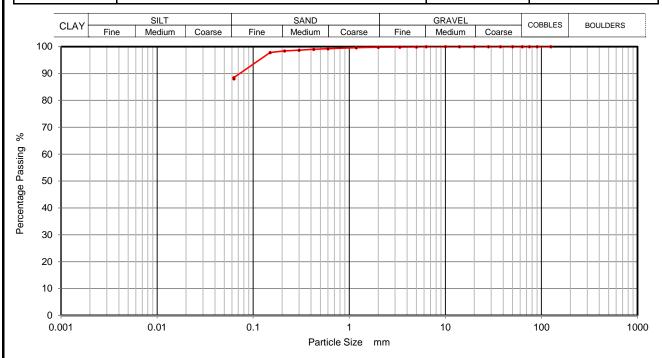

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	10
Silt and Clay	90

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	21-09-17	Emma Sharp	Euch)
RO/MH	Approved	22-09-17	Paul Evans	EP Gans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L06
Site Name	Foyne Port	Sample No.	
Soil Description	Brown fine to medium slightly sandy CLAY/SILT.	Depth Top	21.00
	Blown line to medium signity sandy CLAT/SiLT.	Depth Base	
		Sample Type	В

Sie	Sieving		entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	99		<u> </u>
0.212	99		
0.15	98		
0.063	95		

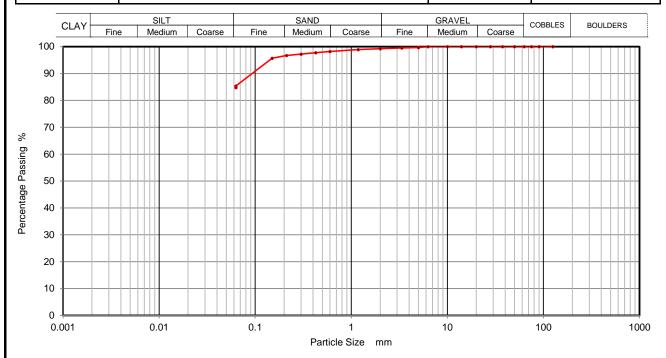

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	5
Silt and Clay	95

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	21-09-17	Emma Sharp	Eug
RO/MH	Approved	22-09-17	Paul Evans	DP Grons

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L07
Site Name	Foyne Port	Sample No.	
Soil Description	Brown fine to medium sandy CLAY/SILT.	Depth Top	0.50
	Blown line to medium sandy CLA 1/SIL1.	Depth Base	
		Sample Type	В

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	99		
0.212	98		
0.15	98		
0.063	89		


Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	11
Silt and Clay	89

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	21-09-17	Emma Sharp	Eug
RO/MH	Approved	22-09-17	Paul Evans	DP Grons

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L07
Site Name	Foyne Port	Sample No.	
Soil Description	Brown fine slightly gravelly fine to coarse sandy CLAY/SILT.	Depth Top	2.50
	brown line slightly gravelly line to coarse sarity CLA 1/SIL1.	Depth Base	
		Sample Type	В

Sie	ving	Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	76 F assiriy	mm	70 F assiriy
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	99		
1.18	99		
0.6	98		
0.425	98		
0.3	97		
0.212	97		
0.15	96		
0.063	85		

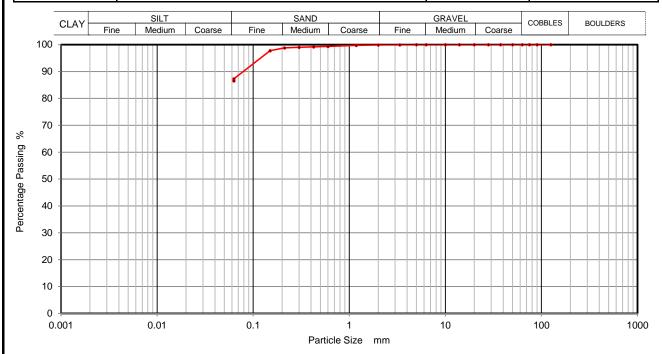
Sample Proportions	% dry mass
Cobbles	0
Gravel	1
Sand	14
Silt and Clay	85

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	21-09-17	Emma Sharp	Euch)
RO/MH	Approved	22-09-17	Paul Evans	EP Gans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L07
Site Name	Foyne Port	Sample No.	
Soil Description	Down for the control of AV/OILT	Depth Top	5.50
	Brown fine to coarse sandy CLAY/SILT.	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	98		
0.425	98		
0.3	97		<u> </u>
0.212	96		
0.15	95		
0.063	84		

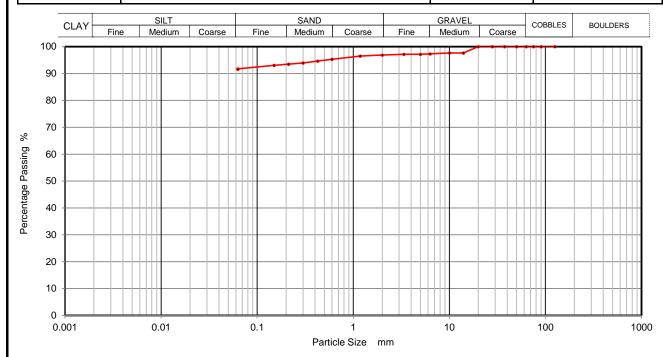

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	16
Silt and Clay	84

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	21-09-17	Emma Sharp	Eug
RO/MH	Approved	22-09-17	Paul Evans	DP Grons

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	L08
Site Name	Foyne Port	Sample No.	
Soil Description	Grey fine to coarse sandy SILT/CLAY.	Depth Top	0.50
	Grey line to coarse sarity SILT/CLAT.	Depth Base	
		Sample Type	В

Sie	Sieving		entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	99		
0.212	99		
0.15	98		
0.063	87		

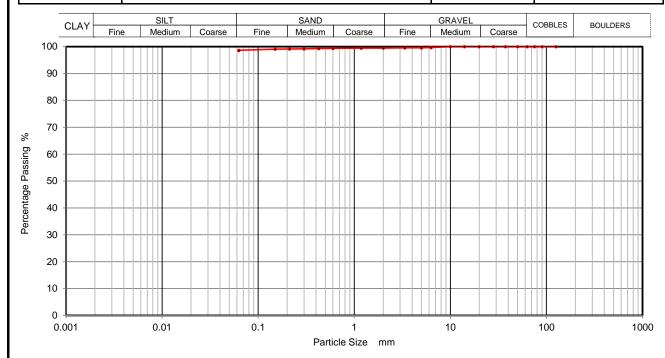

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	13
Silt and Clay	87

Grading A	nalysis	
Uniformity	Coefficient	

Operators	Checked	21-09-17	Emma Sharp	Eug
RO/MH	Approved	22-09-17	Paul Evans	DP Grons

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	LD01
Site Name	Foyne Port	Sample No.	
Soil Description	Brown slightly fine to medium gravelly slightly fine to coarse sandy	Depth Top	2.00
	CLAY/SILT.	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	98		
10	98		
6.3	97		
5	97		
3.35	97		
2	97		
1.18	96		
0.6	95		
0.425	95		
0.3	94		
0.212	93		
0.15	93		
0.063	92		

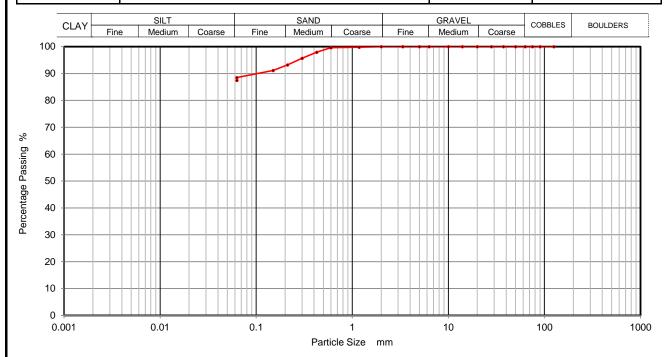

Sample Proportions	% dry mass
Cobbles	0
Gravel	3
Sand	5
Silt and Clay	92

Grading A	nalysis	
Uniformity	Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Euch)
RO/MH	Approved	20-09-17	Paul Evans	DP Grans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	LD01
Site Name	Foyne Port	Sample No.	
Soil Description	Brown slightly fine gravelly SILT/CLAY.	Depth Top	4.00
	Brown slightly line gravelly SILT/CLAT.	Depth Base	
		Sample Type	В

Sie	Sieving		entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	99		
1.18	99		
0.6	99		
0.425	99		
0.3	99		
0.212	99		
0.15	99		
0.063	99		

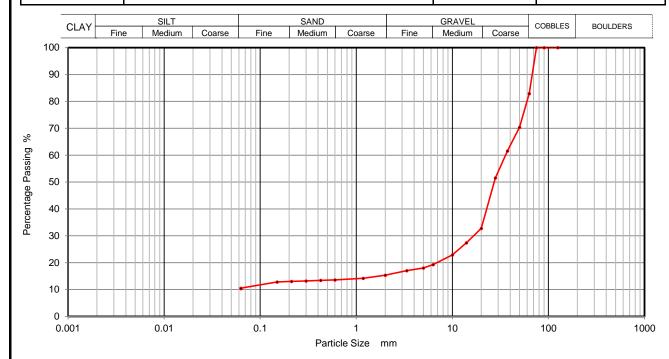

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	1	
Sand	0	
Silt and Clay	99	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Eug
RO/MH	Approved	20-09-17	Paul Evans	DP Grons

CCTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990 Wet Sieve, Clause 9.2		36330
GOIL			LD01
Site Name	Foyne Port	Sample No.	
Soil Description	Brown slightly fine sandy SILT/CLAY.	Depth Top	6.00
	BIOWIT SIIGHTUY STILL TOLEAT.	Depth Base	
		Sample Type	В

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	98		
0.3	96		
0.212	93		
0.15	91		
0.063	89		

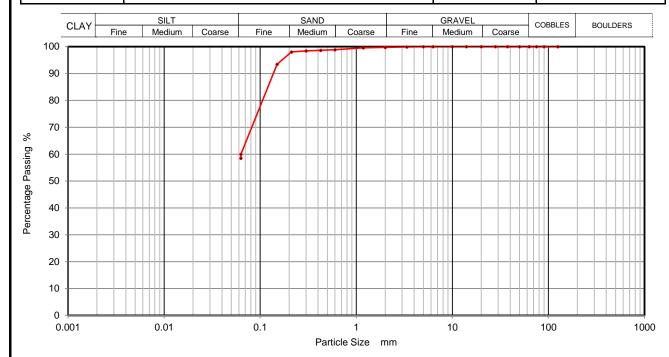

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	11
Silt and Clay	89

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Eug
RO/MH	Approved	20-09-17	Paul Evans	DP Grons

CCTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990 Wet Sieve, Clause 9.2		36330
GOIL			LD01
Site Name	Foyne Port	Sample No.	
Soil Description	Grey fine to coasre sandy silty clayey fine to coarse GRAVEL with	Depth Top	8.00
	many cobbles.	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	83		
50	70		
37.5	62		
28	52		
20	33		
14	27		
10	23		
6.3	19		
5	18		
3.35	17		
2	15		
1.18	14		
0.6	14		
0.425	13		
0.3	13		
0.212	13		
0.15	13		
0.063	10		

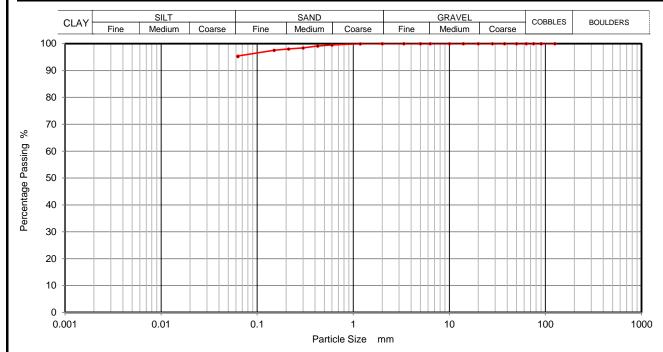

Sample Proportions	% dry mass
Cobbles	17
Gravel	68
Sand	5
Silt and Clay	10

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Eug
RO/MH	Approved	20-09-17	Paul Evans	DP Grons

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	LD02
Site Name	Foyne Port	Sample No.	
Soil Description	Brown fine to medium sandy CLAY/SILT.	Depth Top	5.00
	BIOWITHINE TO MECHANIST SANDY CLAT/SILT.	Depth Base	
		Sample Type	В

Sie	Sieving		entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	98		
0.212	98		
0.15	93		
0.063	60		

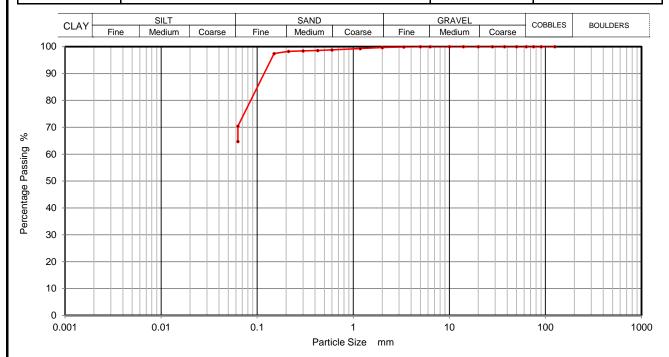

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	40
Silt and Clay	60

Grading A	nalysis	
Uniformity	Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Euch)
RO/MH	Approved	20-09-17	Paul Evans	DP Gans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	LD02
Site Name	Foyne Port	Sample No.	
Soil Description	Brown fine to medium slightly sandy SILT/CLAY.	Depth Top	1.00
	Blown line to medium signify sandy SILT/CLAT.	Depth Base	
		Sample Type	В

Sie	Sieving		entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	99		
0.3	98		
0.212	98		
0.15	98		
0.063	95		

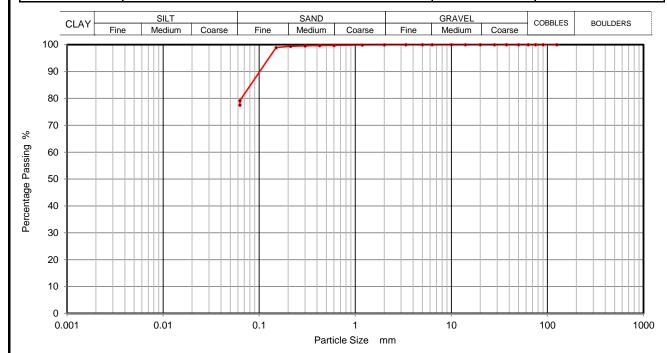

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	5
Silt and Clay	95

Grading A	nalysis	
Uniformity	Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Eug
RO/MH	Approved	20-09-17	Paul Evans	DP Grons

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	LD02
Site Name	Foyne Port	Sample No.	
Soil Description	Brown fine to medium sandy SILT/CLAY.	Depth Top	10.00
	BIOWITHINE TO HIEDIGHT SAINLY SILT/CLAT.	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	99		
0.6	99		
0.425	99		
0.3	98		<u> </u>
0.212	98		
0.15	97		
0.063	70		

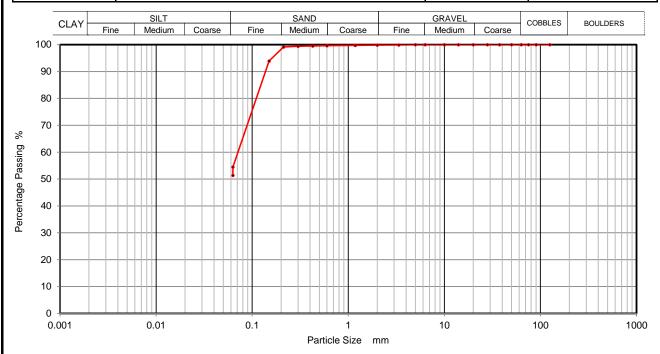

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	30
Silt and Clay	70

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Euch)
RO/MH	Approved	20-09-17	Paul Evans	DP Gans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	LD02
Site Name	Foyne Port	Sample No.	
Soil Description	Brown fine to medium sandy CLAY/SILT.	Depth Top	3.00
	BIOWITHINE TO HIEUTUHI SAHUY CLAT/SILT.	Depth Base	
		Sample Type	В

Sie	Sieving		entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	100		
0.3	100		
0.212	99		
0.15	99		
0.063	79		

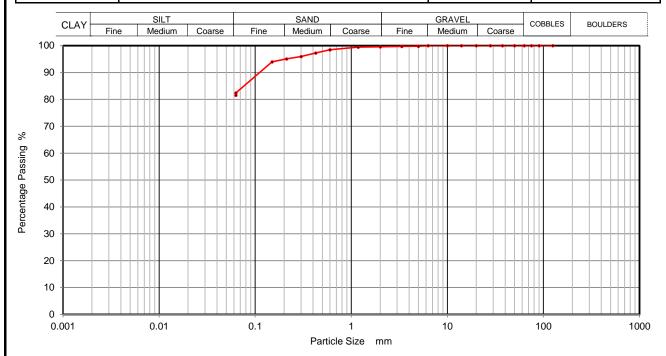

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	21
Silt and Clay	79

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Eug
RO/MH	Approved	20-09-17	Paul Evans	DP Grons

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	LD02
Site Name	Foyne Port	Sample No.	
Soil Description	Brown fine to medium sandy CLAY/SILT.	Depth Top	7.00
	BIOWITHINE TO HIEDIGHT SAIRLY CLAT/SILT.	Depth Base	
		Sample Type	В

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
	400		
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	100		
0.3	99		<u> </u>
0.212	99		
0.15	94		
0.063	54		

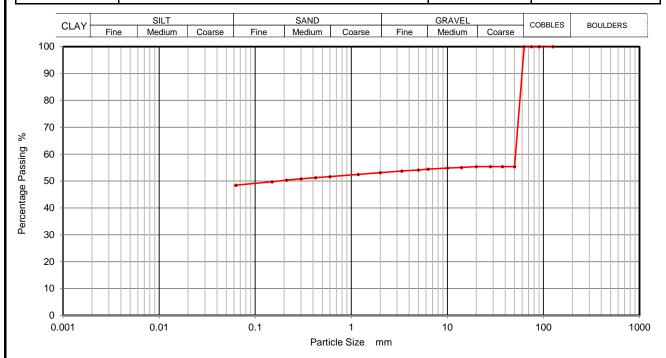

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	46
Silt and Clay	54

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	-Euse
RO/MH	Approved	20-09-17	Paul Evans	EP Grans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	LD02
Site Name	Foyne Port	Sample No.	
Soil Description	Danier fina de madiera anade OLAVIOLET	Depth Top	9.00
	Brown fine to medium sandy CLAY/SILT.	Depth Base	
		Sample Type	В

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	99		
0.6	98		
0.425	97		
0.3	96		<u> </u>
0.212	95		
0.15	94		
0.063	82		

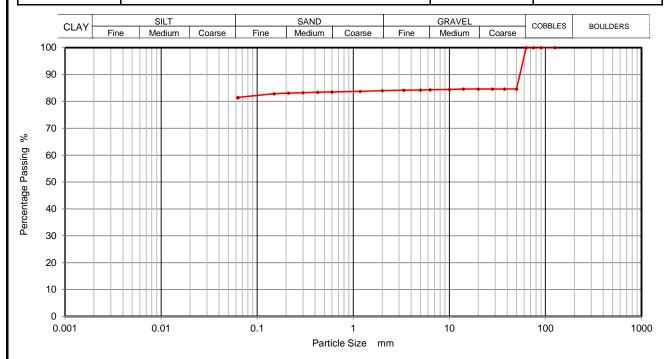

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	18
Silt and Clay	82

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Euch)
RO/MH	Approved	20-09-17	Paul Evans	DP Gans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	LD04
Site Name	Foyne Port	Sample No.	
Soil Description	Brown fine to coarse sandy fine to coarse gravelly SILT/CLAY.	Depth Top	1.00
	Brown line to coarse sandy line to coarse gravelly SILT/CLAT.	Depth Base	
		Sample Type	В

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	55		
37.5	55		
28	55		
20	55		
14	55		
10	55		
6.3	54		
5	54		
3.35	54		
2	53		
1.18	52		
0.6	52		
0.425	51		
0.3	51		•
0.212	50		
0.15	50		
0.063	48		


Sample Proportions	% dry mass
Cobbles	0
Gravel	47
Sand	5
Silt and Clay	48

Grading A	nalysis	
Uniformity	Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Eug
RO/MH	Approved	20-09-17	Paul Evans	DP Grons

CCTI	PARTICLE SIZE DISTRIBUTION		36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	LD04
Site Name	Foyne Port	Sample No.	
Soil Description	Brown fine to coarse slightly sandy fine to coarse gravelly SILT/CLAY.	Depth Top	3.50
	Shown time to coarse slightly samely line to coarse gravely SILT/CLAT.	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	85		
37.5	85		
28	85		
20	85		
14	85		
10	84		
6.3	84		
5	84		
3.35	84		
2	84		
1.18	84		
0.6	84		
0.425	83		
0.3	83		_
0.212	83		
0.15	83		
0.063	82		

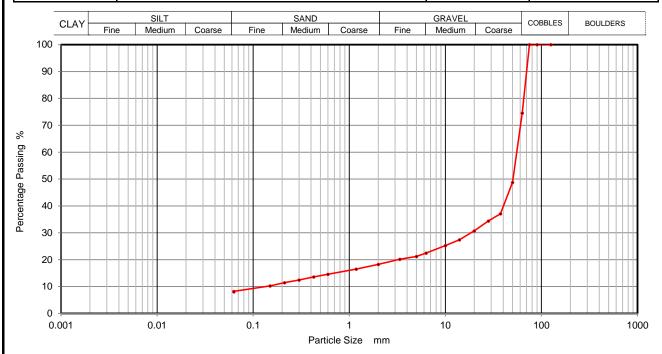

Sample Proportions	% dry mass
Cobbles	0
Gravel	16
Sand	2
Silt and Clay	82

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Eug
RO/MH	Approved	20-09-17	Paul Evans	DP Grans

CCTI	PARTICLE SIZE DISTRIBUTION		36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	LD06
Site Name	Foyne Port	Sample No.	
Soil Description	Brown fine to coarse sandy silty clayey fine to coarse GRAVEL.	Depth Top	1.50
	Brown line to coarse sarroy sitty dayey line to coarse GRAVEL.	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	76 F assiriy	mm	70 F assiriy
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	88		
37.5	75		
28	68		
20	64		
14	60		
10	58		
6.3	56		
5	55		
3.35	54		
2	53		
1.18	52		
0.6	51		
0.425	51		
0.3	50		_
0.212	49		
0.15	47		
0.063	44		

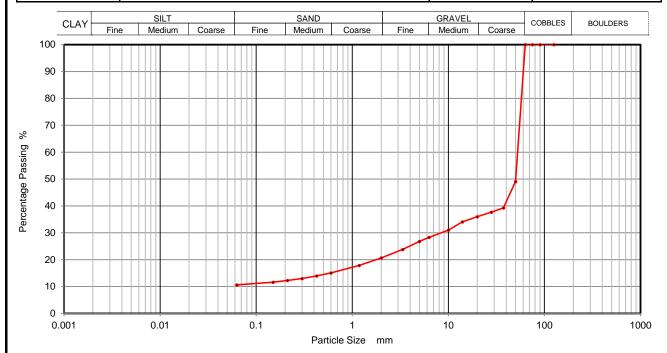

Sample Proportions	% dry mass
Cobbles	0
Gravel	47
Sand	9
Silt and Clay	44

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Euch)
RO/MH	Approved	20-09-17	Paul Evans	DP Grans

CCTI	PARTICLE SIZE DISTRIBUTION		36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	LD06
Site Name	Foyne Port	Sample No.	
Soil Description	Grey slightly silty fine to coarse sandy fine to coarse GRAVEL with	Depth Top	2.50
	many cobbles.	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	,	mm	70.000.00
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	75		
50	49		
37.5	37		
28	34		
20	31		
14	27		
10	25		
6.3	22		
5	21		
3.35	20		
2	18		
1.18	16		
0.6	15		
0.425	14		
0.3	12		
0.212	11		
0.15	10		
0.063	8		

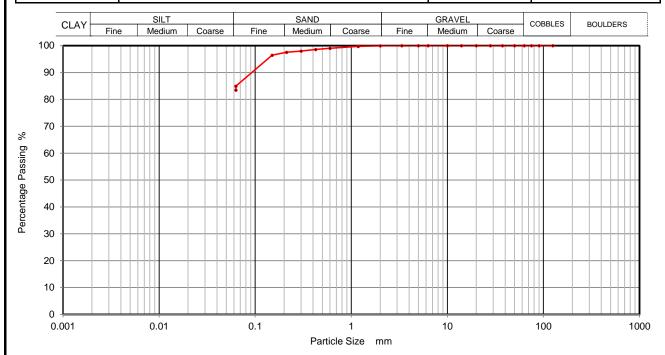

Sample Proportions	% dry mass	
Cobbles	25	
Gravel	57	
Sand	10	
Silt and Clay	8	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Eug
RO/MH	Approved	20-09-17	Paul Evans	DP Grons

CCTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990 Wet Sieve, Clause 9.2		36330
GOIL			LD06
Site Name	Foyne Port	Sample No.	
Soil Description	Grey fine to coarse sandy silty clayey fine to coarse GRAVEL.	Depth Top	3.40
	Grey line to coarse sarity stilly clayey line to coarse GRAVEL.	Depth Base	
		Sample Type	В

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	49		
37.5	39		
28	38		
20	36		
14	34		
10	31		
6.3	28		
5	27		
3.35	24		
2	21		
1.18	18		
0.6	15		
0.425	14		
0.3	13		
0.212	12		
0.15	12		
0.063	11		


Sample Proportions	% dry mass
Cobbles	0
Gravel	79
Sand	10
Silt and Clay	11

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	19-09-17	Emma Sharp	Eug
RO/MH	Approved	20-09-17	Paul Evans	DP Grons

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M09
Site Name	Foyne Port	Sample No.	
Soil Description	Grey fine to coarse sandy CLAY/SILT.	Depth Top	2.00
	Grey life to coalse sariay CLAT/SILT.	Depth Base	
		Sample Type	В

Sie	Sieving		entation
Particle Size mm	% Passing	Particle Size mm	% Passing
	400		
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	98		<u> </u>
0.212	98		
0.15	96		
0.063	85		

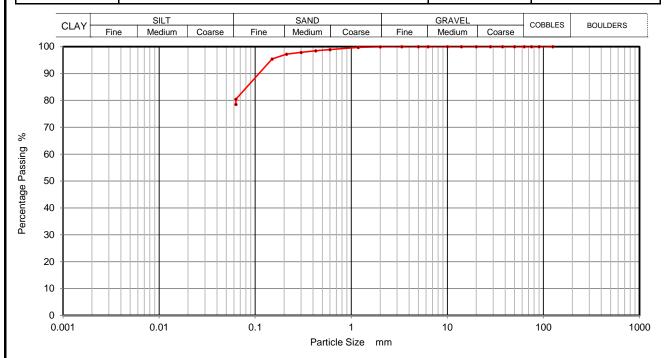
Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	15
Silt and Clay	85

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	21-09-17	Emma Sharp	Eug
RO/MH	Approved	22-09-17	Paul Evans	DP Grons

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M09
Site Name	Foyne Port	Sample No.	
Soil Description	Crowfine to gears a condu CLAV/SILT	Depth Top	4.00
	Grey fine to coarse sandy CLAY/SILT.	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	99		
0.6	98		
0.425	97		
0.3	96	_	
0.212	96		
0.15	94		
0.063	83		


Sample Proportions % dry mass	
Cobbles	0
Gravel	0
Sand	17
Silt and Clay	83

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	21-09-17	Emma Sharp	Eug
RO/MH	Approved	22-09-17	Paul Evans	DP Grans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M09
Site Name	Foyne Port	Sample No.	
Soil Description	Crowfine to gears a condu CLAV/SILT	Depth Top	6.50
	Grey fine to coarse sandy CLAY/SILT.	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	98		
0.3	98		_
0.212	97		
0.15	95		
0.063	80		

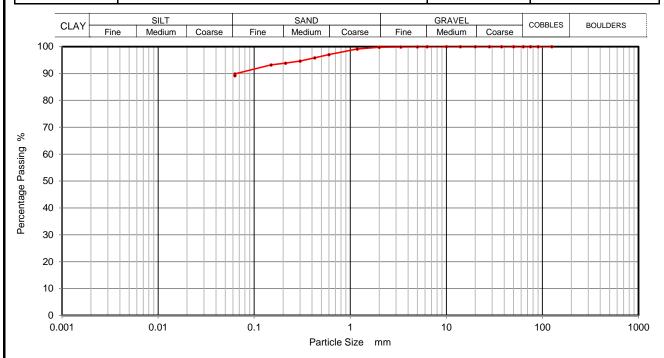
Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	20
Silt and Clay	80

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	21-09-17	Emma Sharp	Euch)
RO/MH	Approved	22-09-17	Paul Evans	DP Grans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M09
Site Name	Foyne Port	Sample No.	
Soil Description	Grey fine to medium sandy CLAY/SILT.	Depth Top	8.50
	Grey line to medium sandy CLAT/SiLT.	Depth Base	
		Sample Type	В

Sie	Sieving		entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	99		
0.212	98		
0.15	96		
0.063	80		

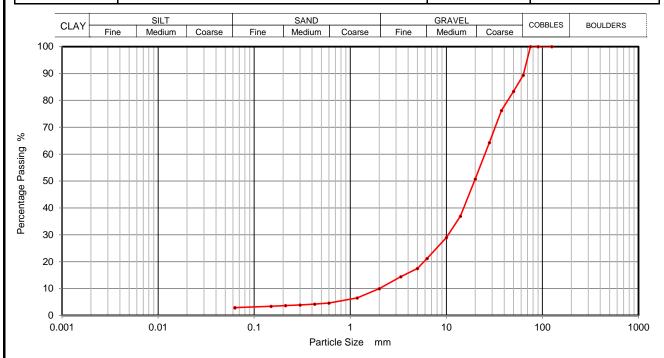

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	20
Silt and Clay	80

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	21-09-17	Emma Sharp	- Euch
RO/MH	Approved	22-09-17	Paul Evans	DP Grans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M09
Site Name	Foyne Port	Sample No.	
Soil Description	Crowfine to accree conduct! AV/SILT	Depth Top	10.00
	Grey fine to coarse sandy CLAY/SILT.	Depth Base	
		Sample Type	В

Sie	Sieving		entation
Particle Size	% Passing	Particle Size	% Passing
mm	76 F assiriy	mm	76 F assiriy
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	99		
0.6	97		
0.425	96		
0.3	95		<u> </u>
0.212	94		
0.15	93		
0.063	90		


Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	10
Silt and Clay	90

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	21-09-17	Emma Sharp	- Euch
RO/MH	Approved	22-09-17	Paul Evans	DP Grans

CCTI	PARTICLE SIZE DISTRIBUTION		36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M09
Site Name	Foyne Port	Sample No.	
Soil Description	Brown slightly silty fine to coarse slightly sandy fine to coarse	Depth Top	14.00
	GRAVEL with few cobbles.	Depth Base	
		Sample Type	В

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	89		
50	83		
37.5	76		
28	64		
20	51		
14	37		
10	29		
6.3	21		
5	17		
3.35	14		
2	10		
1.18	7		
0.6	5		
0.425	4		
0.3	4		<u> </u>
0.212	4		
0.15	3		
0.063	3		

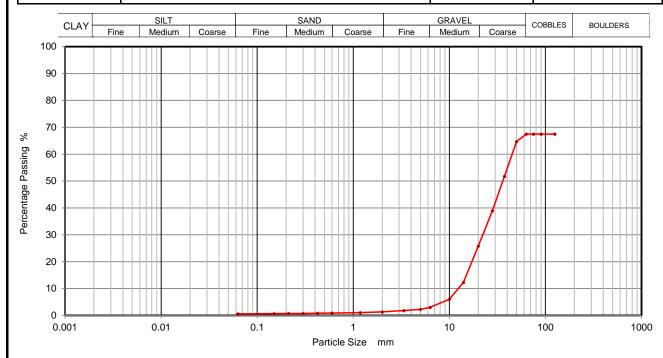
Sample Proportions	% dry mass
Cobbles	11
Gravel	79
Sand	7
Silt and Clay	3

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	21-09-17	Emma Sharp	Eug)
RO/MH	Approved	22-09-17	Paul Evans	DP Grans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M09
Site Name	Foyne Port	Sample No.	
Soil Description	Brown slightly silty fine to coarse slightly sandy fine to coarse	Depth Top	17.00
	GRAVEL with many cobbles.	Depth Base	
		Sample Type	В

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	76	0.0060	
75	63	0.0019	
63	53		
50	50		
37.5	49		
28	43		
20	38		
14	30		
10	25		
6.3	17		
5	14		
3.35	12		
2	7		
1.18	5		
0.6	3		
0.425	3		
0.3	2		
0.212	2		
0.15	2		
0.063	1		

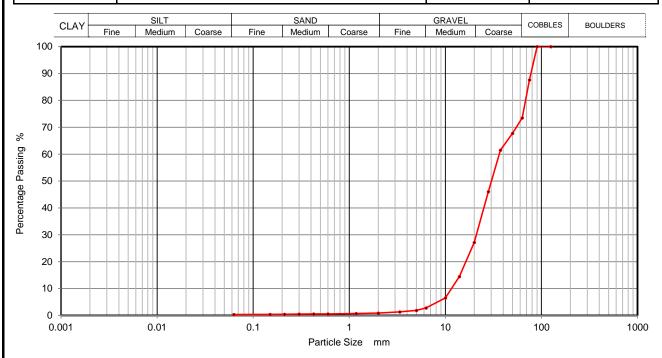

Sample Proportions	% dry mass
Cobbles	47
Gravel	46
Sand	6
Silt and Clay	1

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	21-09-17	Emma Sharp	Eust
RO/MH	Approved	22-09-17	Paul Evans	DP Grans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	M09
Site Name	Foyne Port	Sample No.	
Soil Description	Description of the control of the co	Depth Top	18.70
	Brown slightly silty fine to coarse GRAVEL with many cobbles.	Depth Base	
		Sample Type	В

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	67	0.0200	
90	67	0.0060	
75	67	0.0019	
63	67		
50	65		
37.5	52		
28	39		
20	26		
14	12		
10	6		
6.3	3		
5	2		
3.35	2		
2	1		
1.18	1		
0.6	1		
0.425	1		
0.3	1		
0.212	1		
0.15	1		
0.063	1		

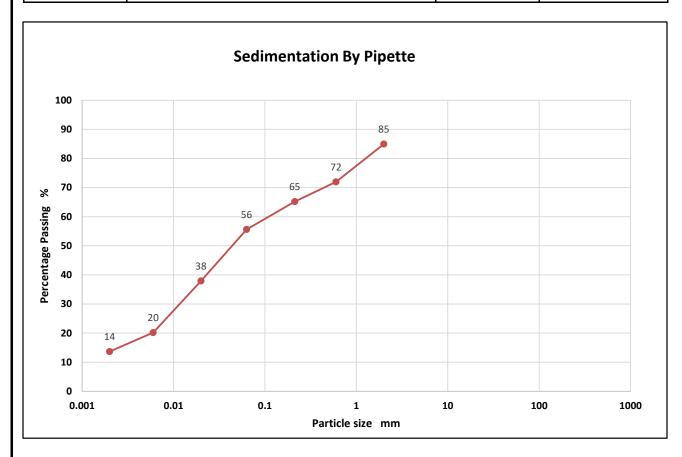

Sample Proportions	% dry mass
Cobbles	33
Gravel	66
Sand	0
Silt and Clay	1

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	21-09-17	Emma Sharp	-Euse
RO/MH	Approved	22-09-17	Paul Evans	DP Grans

CCTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990 Wet Sieve, Clause 9.2		36330
GOIL			M09
Site Name	Foyne Port	Sample No.	
Soil Description	Grey slightly fine to coarse sandy fine to coarse GRAVEL with many	Depth Top	21.70
	cobbles.	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	88	0.0019	
63	74		
50	68		
37.5	61		
28	46		
20	27		
14	14		
10	7		
6.3	3		
5	2		
3.35	1		
2	1		
1.18	1		
0.6	1		
0.425	1		
0.3	0		
0.212	0		
0.15	0		
0.063	0		

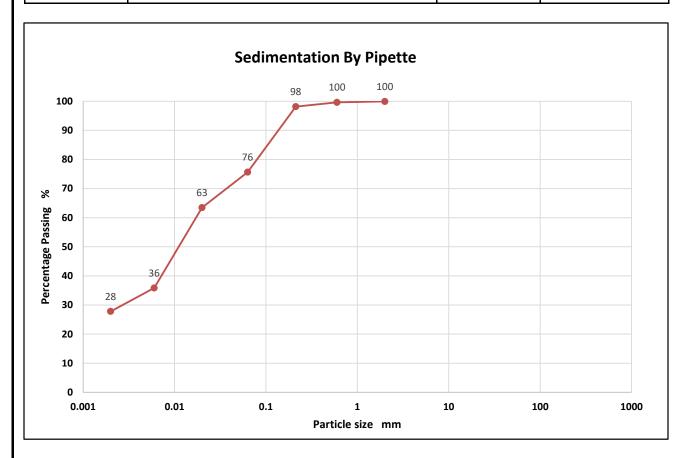

Sample Proportions	% dry mass	
Cobbles	26	
Gravel	73	
Sand	1	
Silt and Clay	0	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	21-09-17	Emma Sharp	Eug
RO/MH	Approved	22-09-17	Paul Evans	DP Grons

CCTI	Sedimentation By Pipette Analyisis	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Clause 9.4	Borehole/Pit No.	L01
Site Name	Foynes Port	Sample No.	
Soil Description	Croy aloyay groyally agody SILT	Depth Top	2.70
	Grey clayey gravelly sandy SILT.	Depth Base	
		Sample Type	В

BS Test Sieve	Percentage Passing
2.00	85
0.60	72
0.212	65
0.063	56

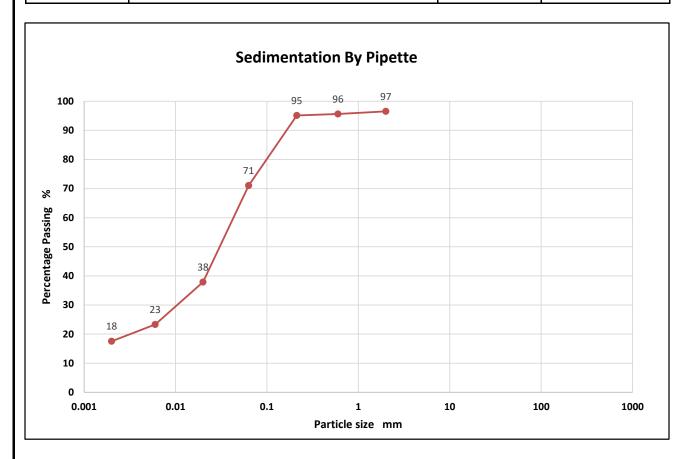

Particle Diameter	Percentage Passing
0.02	38
0.006	20
0.002	14

Soil Fraction	Total Percentage
Gravel	15
Sand	29
Silt	42
Clay	14

Operators	Checked	18-09-17	Emma Sharp	Eug
RO	Approved	19-09-17	Ben Sharp	

CCTI	Sedimentation By Pipette Analyisis	Contract Number	36330
GSIL	BS 1377 Part 2:1990 Clause 9.4	Borehole/Pit No.	L01
Site Name	Foynes Port	Sample No.	
Soil Description	Crow condy clayery SILT	Depth Top	4.00
	Grey sandy clayey SILT.	Depth Base	
		Sample Type	В

BS Test Sieve	Percentage Passing
2.00	100
0.60	100
0.212	98
0.063	76

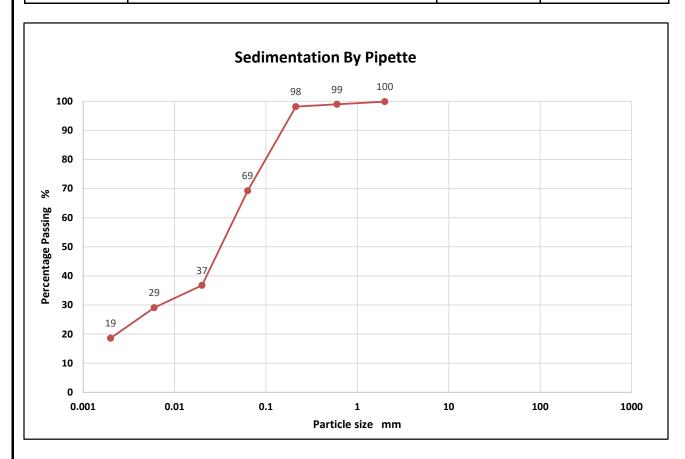

Particle Diameter	Percentage Passing
0.02	63
0.006	36
0.002	28

Soil Fraction	Total Percentage
Gravel	0
Sand	24
Silt	48
Clay	28

Operators	Checked	19-09-17	Emma Sharp	Eug
RO	Approved	20-09-17	Ben Sharp	

CCTI	Sedimentation By Pipette Analyisis	Contract Number	36330
GSIL	BS 1377 Part 2:1990 Clause 9.4	Borehole/Pit No.	L06
Site Name	Foynes Port	Sample No.	
Soil Description	Croy grovelly aleyey condy SILT	Depth Top	10.00
	Grey gravelly clayey sandy SILT.	Depth Base	
		Sample Type	В

BS Test Sieve	Percentage Passing
2.00	97
0.60	96
0.212	95
0.063	71

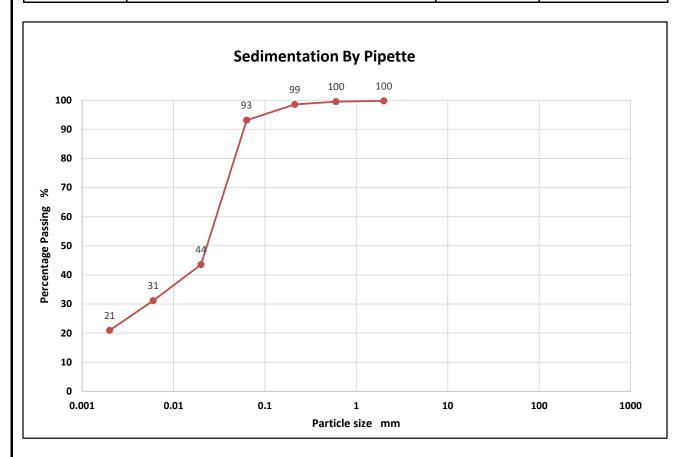

Particle Diameter	Percentage Passing
0.02	38
0.006	23
0.002	18

Soil Fraction	Total Percentage
Gravel	3
Sand	25
Silt	53
Clay	18

Operators	Checked	18-09-17	Emma Sharp	Eug
RO	Approved	19-09-17	Ben Sharp	

CCTI	Sedimentation By Pipette Analyisis	Contract Number	36330
GSIL	BS 1377 Part 2:1990 Clause 9.4	Borehole/Pit No.	L06
Site Name	Foynes Port	Sample No.	
Soil Description	Croy doyey condy SILT	Depth Top	14.00
	Grey clayey sandy SILT.	Depth Base	
		Sample Type	В

BS Test Sieve	Percentage Passing
2.00	100
0.60	99
0.212	98
0.063	69

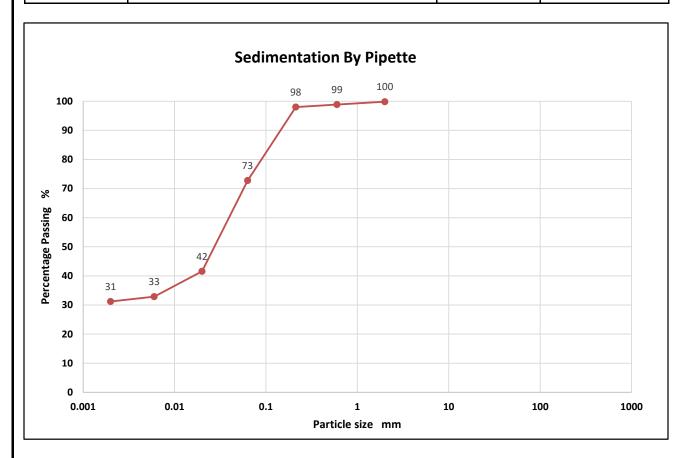

Particle Diameter	Percentage Passing
0.02	37
0.006	29
0.002	19

Soil Fraction	Total Percentage
Gravel	0
Sand	31
Silt	51
Clay	19

Operators	Checked	18-09-17	Emma Sharp	Eu D
RO	Approved	19-09-17	Ben Sharp	3

CCTI	Sedimentation By Pipette Analyisis	Contract Number	36330
GOIL	BS 1377 Part 2:1990 Clause 9.4	Borehole/Pit No.	L07
Site Name	Foynes Port	Sample No.	
Soil Description	Croy condy aloyay SILT	Depth Top	4.50
	Grey sandy clayey SILT.	Depth Base	
		Sample Type	В

BS Test Sieve	Percentage Passing
2.00	100
0.60	100
0.212	99
0.063	93

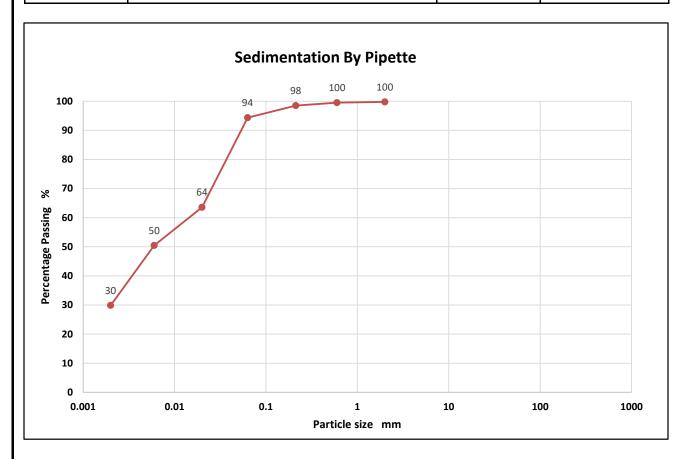

Particle Diameter	Percentage Passing
0.02	44
0.006	31
0.002	21

Soil Fraction	Total Percentage
Gravel	0
Sand	7
Silt	72
Clay	21

Operators	Checked	18-09-17	Emma Sharp	Eug
RO	Approved	19-09-17	Ben Sharp	

CCTI	Sedimentation By Pipette Analyisis	Contract Number	36330
GSIL	BS 1377 Part 2:1990 Clause 9.4	Borehole/Pit No.	LD01
Site Name	Foynes Port	Sample No.	
Soil Description	Cray condy alayay SILT	Depth Top	3.00
	Grey sandy clayey SILT.	Depth Base	
		Sample Type	В

BS Test Sieve	Percentage Passing
2.00	100
0.60	99
0.212	98
0.063	73

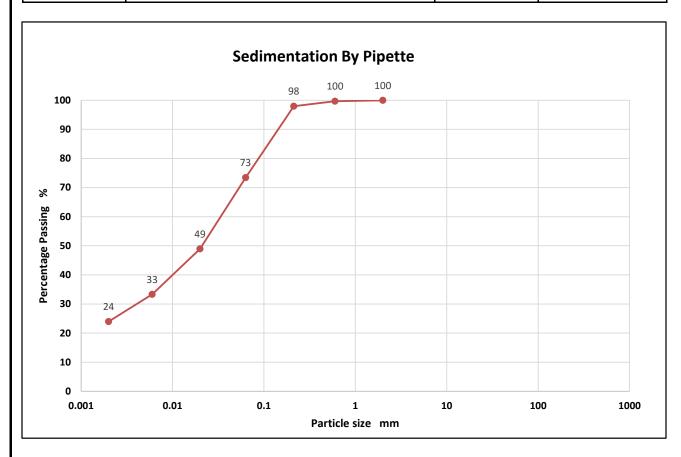

Particle Diameter	Percentage Passing
0.02	42
0.006	33
0.002	31

Soil Fraction	Total Percentage
Gravel	0
Sand	27
Silt	42
Clay	31

Operators	Checked	19-09-17	Emma Sharp	Eug
RO	Approved	20-09-17	Ben Sharp	

CCTI	Sedimentation By Pipette Analyisis	Contract Number	36330
GSIL	BS 1377 Part 2:1990 Clause 9.4	Borehole/Pit No.	LD02
Site Name	Foynes Port	Sample No.	
Soil Description	Croy condy aloyay SILT	Depth Top	8.00
	Grey sandy clayey SILT.	Depth Base	
		Sample Type	В

BS Test Sieve	Percentage Passing
2.00	100
0.60	100
0.212	98
0.063	94

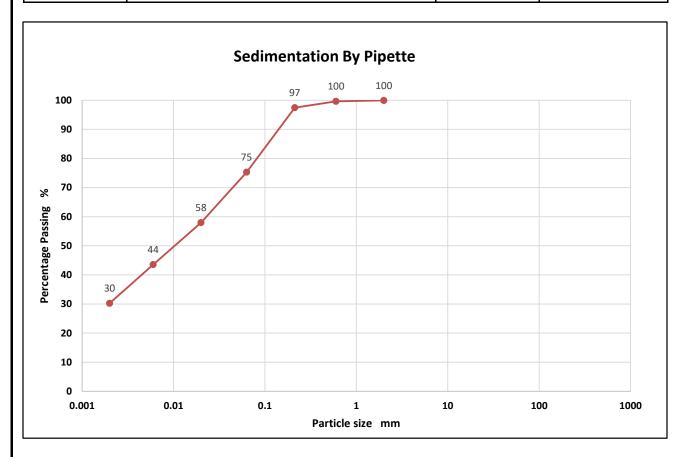

Particle Diameter	Percentage Passing
0.02	64
0.006	50
0.002	30

Soil Fraction	Total Percentage
Gravel	0
Sand	5
Silt	65
Clay	30

Operators	Checked	19-09-17	Emma Sharp	Eu D
RO	Approved	20-09-17	Ben Sharp	3

CCTI	Sedimentation By Pipette Analyisis	Contract Number	36330
GSIL	BS 1377 Part 2:1990 Clause 9.4	Borehole/Pit No.	M09
Site Name	Foynes Port	Sample No.	
Soil Description	Croy doyey condy SILT	Depth Top	3.00
	Grey clayey sandy SILT.	Depth Base	
		Sample Type	В

BS Test Sieve	Percentage Passing
2.00	100
0.60	100
0.212	98
0.063	73

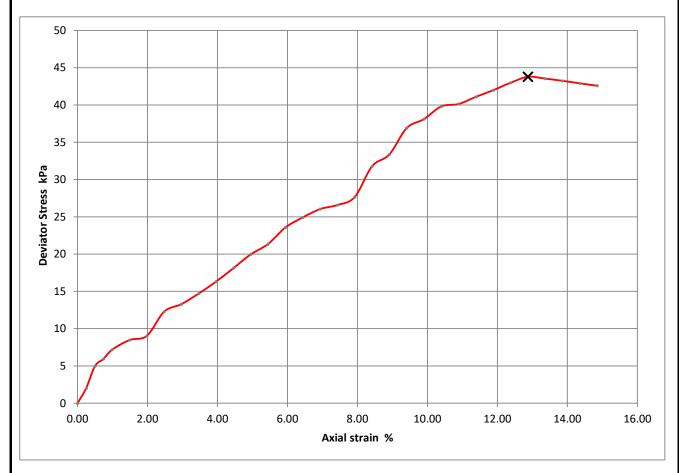

Particle Diameter	Percentage Passing
0.02	49
0.006	33
0.002	24

Soil Fraction	Total Percentage	
Gravel	0	
Sand	27	
Silt	49	
Clay	24	

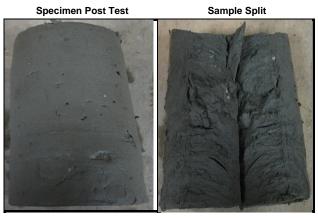
Operators	Checked	18-09-17	Emma Sharp	Eug
RO	Approved	19-09-17	Ben Sharp	

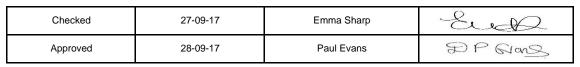
CCTI	Sedimentation By Pipette Analyisis	Contract Number	36330
GSIL	BS 1377 Part 2:1990 Clause 9.4	Borehole/Pit No.	M09
Site Name	Foynes Port	Sample No.	
Soil Description	Croy condy aloyay SILT	Depth Top	20.20
	Grey sandy clayey SILT.	Depth Base	
		Sample Type	В

BS Test Sieve	Percentage Passing	
2.00	100	
0.60	100	
0.212	97	
0.063	75	

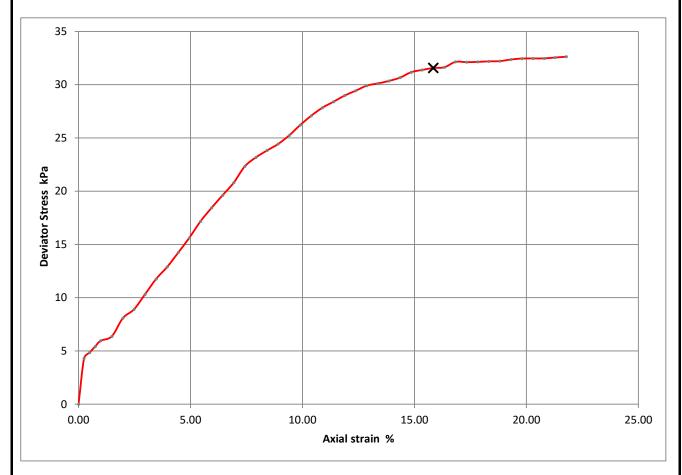

Particle Diameter	Percentage Passing
0.02	58
0.006	44
0.002	30

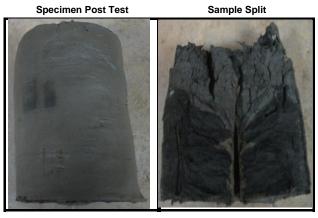
Soil Fraction	Total Percentage
Gravel	0
Sand	25
Silt	45
Clay	30


Operators	Checked	19-09-17	Emma Sharp	Eug
RO	Approved	20-09-17	Ben Sharp	

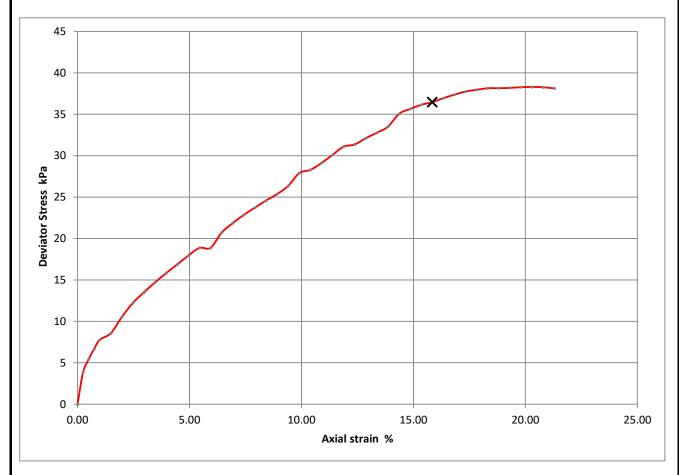


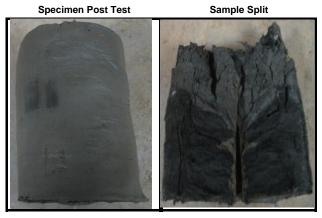
CCTI	Single Stage Unconsolidated-Undrained Triaxial Test	Contract Number	36330
GOIL	BS 1377 : 1990 Part 7 : 8	Borehole/Pit No.	L01
Site Name	Foynes Port	Sample No.	
Soil Description	Out of house and office OLAY	Depth Top (m)	4.00
	Greyish brown sandy silty CLAY.	Depth Base (m)	
		Sample Type	U


Moisture Content (%)	28
Bulk Density (Mg/m³)	1.78
Dry Density (Mg/m ³)	1.38
Specimen Length (mm)	202
Specimen Diameter (mm)	102
Cell Pressure (kPa)	80
Deviator Stress (kPa)	44
Undrained Shear Strength (kPa)	22
Failure Strain (%)	12.87
Mode Of Failure	Plastic
Membrane Used/Thickness	Rubber/0.3mm
Rate of Strain (%/min)	1.00

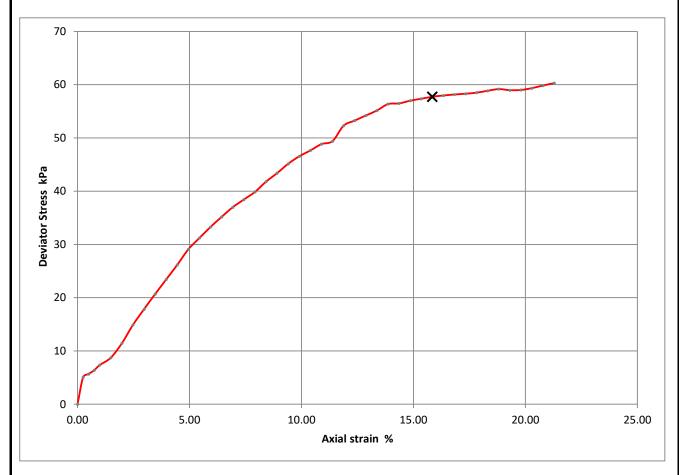


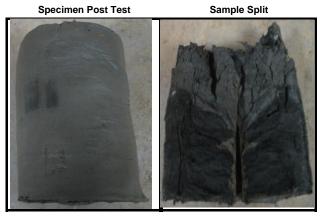
CSTI	Single Stage Unconsolidated-Undrained Triaxial Test	Contract Number	36330
GOIL	BS 1377 : 1990 Part 7 : 8	Borehole/Pit No.	L06
Site Name	Foynes Port	Sample No.	
Soil Description	Out of house and office OLAY	Depth Top (m)	13.00
	Greyish brown sandy silty CLAY.	Depth Base (m)	
		Sample Type	U


11:4 0 4 4(0)	0.5
Moisture Content (%)	35
Bulk Density (Mg/m ³)	1.85
Dry Density (Mg/m ³)	1.37
Specimen Length (mm)	202
Specimen Diameter (mm)	102
Cell Pressure (kPa)	260
Deviator Stress (kPa)	32
Undrained Shear Strength (kPa)	16
Failure Strain (%)	15.84
Mode Of Failure	Plastic
Membrane Used/Thickness	Rubber/0.3mm
Rate of Strain (%/min)	1.00

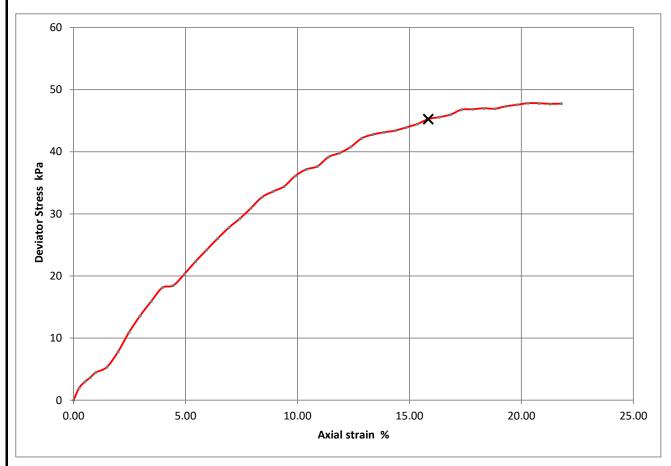

Checked	27-09-17	Emma Sharp	Eud
Approved	28-09-17	Paul Evans	DP Grons

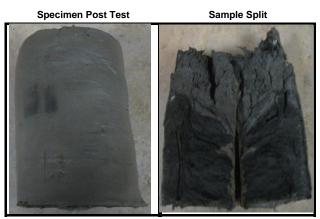
GSTL	Single Stage Unconsolidated-Undrained Triaxial Test	Contract Number	36330
GOIL	BS 1377 : 1990 Part 7 : 8	Borehole/Pit No.	L07
Site Name	Foynes Port	Sample No.	
Soil Description	Conside brown eith CLAV	Depth Top (m)	3.00
	Greyish brown silty CLAY.	Depth Base (m)	
		Sample Type	U


Moisture Content (%)	42
. ,	42
Bulk Density (Mg/m ³)	1.81
Dry Density (Mg/m ³)	1.27
Specimen Length (mm)	202
Specimen Diameter (mm)	102
Cell Pressure (kPa)	60
Deviator Stress (kPa)	36
Undrained Shear Strength (kPa)	18
Failure Strain (%)	15.84
Mode Of Failure	Plastic
Membrane Used/Thickness	Rubber/0.3mm
Rate of Strain (%/min)	1.00

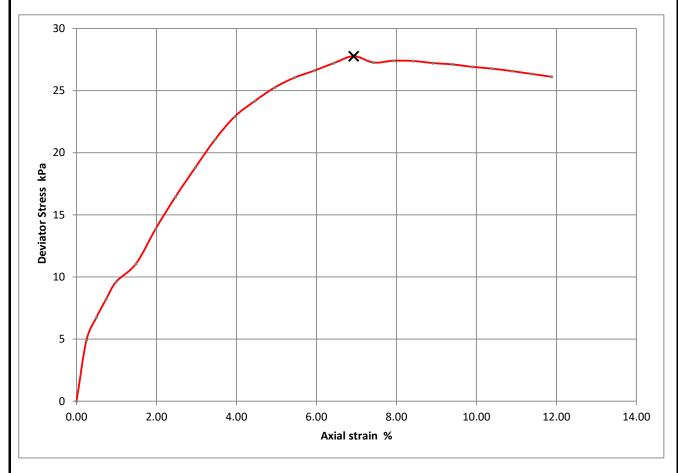

Checked	27-09-17	Emma Sharp	Eud
Approved	28-09-17	Paul Evans	DP Grons

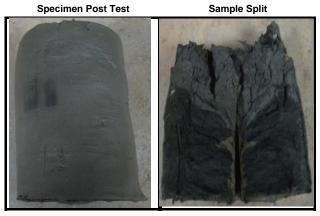
GSTL	Single Stage Unconsolidated-Undrained Triaxial Test	Contract Number	36330
GOIL	BS 1377 : 1990 Part 7 : 8	Borehole/Pit No.	LD02
Site Name	Foynes Port	Sample No.	
Soil Description	Grevish brown sandy silty CLAY.	Depth Top (m)	8.50
	Gleyish brown sality Sity CLAT.	Depth Base (m)	
		Sample Type	U


Moisture Content (%)	38
Bulk Density (Mg/m ³)	1.87
Dry Density (Mg/m ³)	1.35
Specimen Length (mm)	202
Specimen Diameter (mm)	102
Cell Pressure (kPa)	170
Deviator Stress (kPa)	58
Undrained Shear Strength (kPa)	29
Failure Strain (%)	15.84
Mode Of Failure	Plastic
Membrane Used/Thickness	Rubber/0.3mm
Rate of Strain (%/min)	1.00

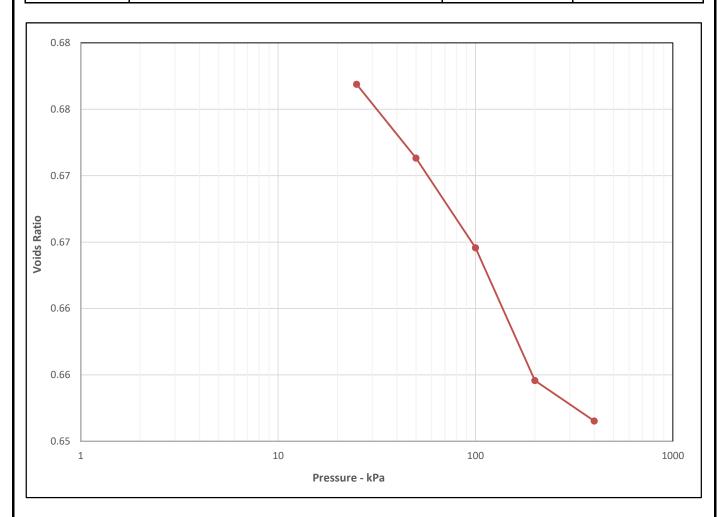

Checked	27-09-17	Emma Sharp	-Eud
Approved	28-09-17	Paul Evans	DP Grons

GSTI	Single Stage Unconsolidated-Undrained Triaxial Test	Contract Number	36330
GOIL	BS 1377 : 1990 Part 7 : 8	Borehole/Pit No.	LD04
Site Name	Foynes Port	Sample No.	
Soil Description	Grevish brown sandy silty CLAY.	Depth Top (m)	3.00
	Greyish brown suriey stily GEAT.	Depth Base (m)	
		Sample Type	U

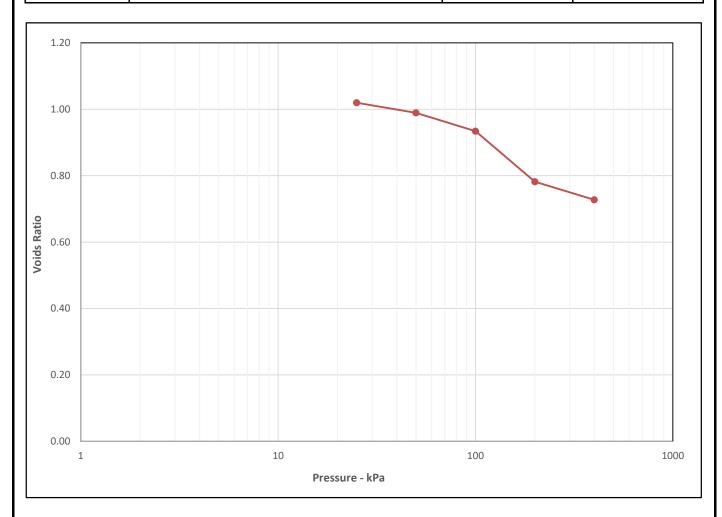

Moisture Content (%)	29
Bulk Density (Mg/m³)	1.75
Dry Density (Mg/m ³)	1.36
Specimen Length (mm)	202
Specimen Diameter (mm)	102
Cell Pressure (kPa)	60
Deviator Stress (kPa)	45
Undrained Shear Strength (kPa)	23
Failure Strain (%)	15.84
Mode Of Failure	Plastic
Membrane Used/Thickness	Rubber/0.3mm
Rate of Strain (%/min)	1.00


Checked	27-09-17	Emma Sharp	Eug
Approved	28-09-17	Paul Evans	DP Grans

GSTI	Single Stage Unconsolidated-Undrained Triaxial Test	Contract Number	36330
GOIL	BS 1377 : 1990 Part 7 : 8	Borehole/Pit No.	M09
Site Name	Foynes Port	Sample No.	
Soil Description	·		4.50
	Greyish brown sandy silty CLAY.	Depth Base (m)	
		Sample Type	U


Moisture Content (%)	58
. ,	1.68
Bulk Density (Mg/m³)	1.00
Dry Density (Mg/m ³)	1.06
Specimen Length (mm)	202
Specimen Diameter (mm)	102
Cell Pressure (kPa)	75
Deviator Stress (kPa)	28
Undrained Shear Strength (kPa)	14
Failure Strain (%)	6.93
Mode Of Failure	Plastic
Membrane Used/Thickness	Rubber/0.3mm
Rate of Strain (%/min)	1.00

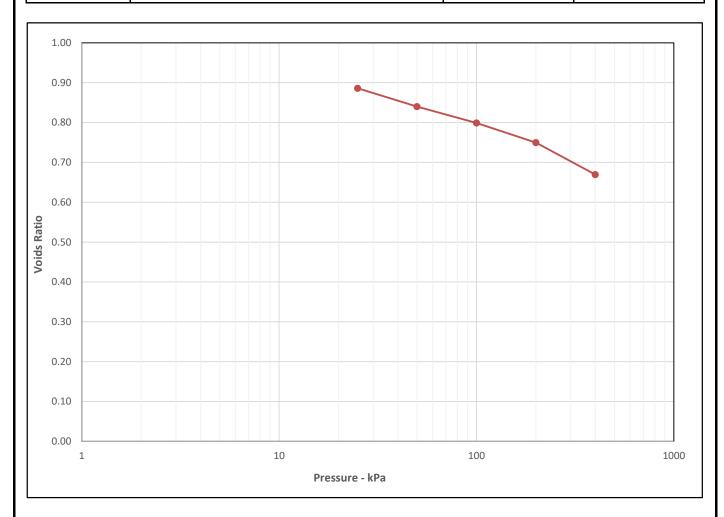
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	36330
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	L01
Site Name	Foynes Port	Sample No.	
Soil Description	Grey brown sandy silty CLAY.	Depth Top (m)	4.00
	Grey blown sandy sitty CLAT.	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Middle
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditi	ons	Pres	sure R	Range	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	26	0	-	25	0.17	20		-			
Bulk Density (Mg/m3)	1.98	25	-	50	0.13	22		-			
Dry Density (Mg/m3)	1.57	50	-	100	0.081	11		-			
Voids Ratio	0.6839	100	-	200	0.1	13		-			
Degree of saturation	99.9	200	-	400	0.0092	10		-			
Height (mm)	18.2		-					-			
Diameter (mm)	74.96		-					-			
Particle Density (Mg/m3)	2.65		-								_

Operators	Checked	18-09-17	Emma Sharp	
LG	Approved	19-09-17	Paul Evans	EP Grans

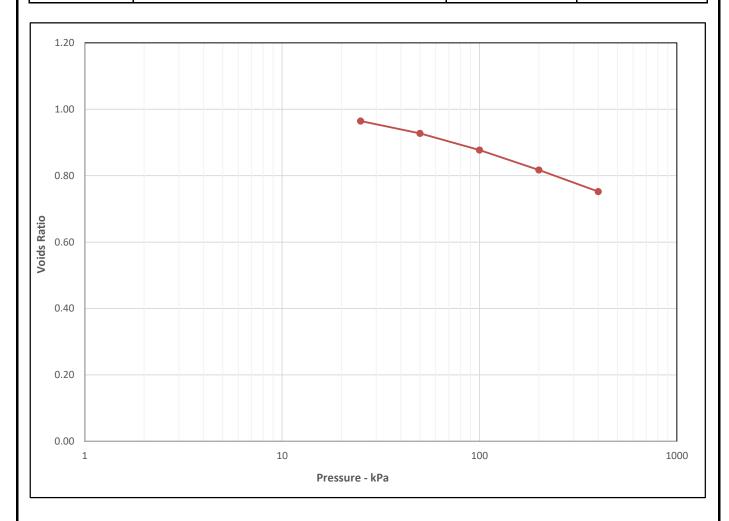
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	36330
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	L02
Site Name	Foynes Port	Sample No.	
Soil Description	Grey brown silty CLAY.	Depth Top (m)	10.50
	Grey brown silty CLAT.	Depth Base (m)	
Lab Temperature	20°c	Sample Location	Middle
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Condition	ons	Pres	sure F	Range	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	46	0	-	25	0.99	5.3		-			
Bulk Density (Mg/m3)	1.87	25	-	50	0.61	10					
Dry Density (Mg/m3)	1.28	50	-	100	0.55	12		-			
Voids Ratio	1.0707	100	-	200	0.8	7.2		-			
Degree of saturation	113.4	200	-	400	0.15	11		-			
Height (mm)	19.93		-					-			
Diameter (mm)	50.06		-					-			
Particle Density (Mg/m3)	2.65		-					-			_

Operators	Checked	18-09-17	Emma Sharp	
LG	Approved	19-09-17	Paul Evans	EP Grans

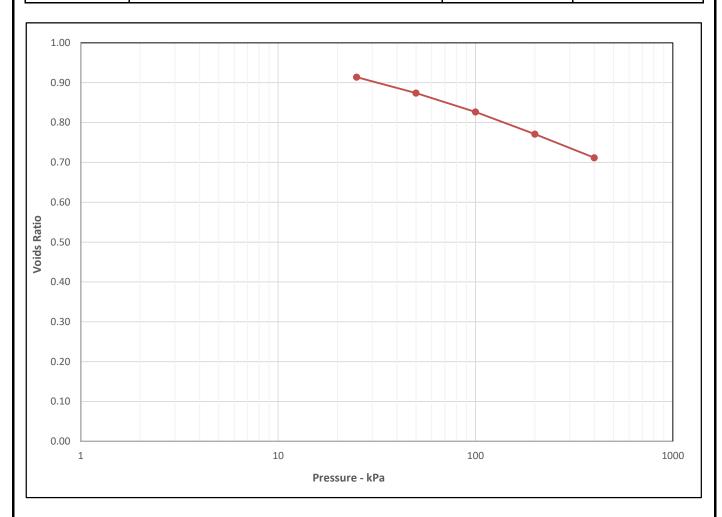
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	36330
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	L06
Site Name	Foynes Port	Sample No.	
Soil Description	Grey brown silty CLAY.	Depth Top (m)	13.00
	Grey blown silty GLAT.	Depth Base (m)	13.50
Lab Temperature	20°c	Sample Location	Middle
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditio	ns	Pres	sure R	ange	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	40	0	-	25	2.6	4.7		-			
Bulk Density (Mg/m3)	1.84	25	-	50	0.98	7.7		-			
Dry Density (Mg/m3)	1.31	50	-	100	0.45	7.3		-			
Voids Ratio	1.0183	100	-	200	0.3	9.1		-			
Degree of saturation	103.8	200	-	400	0.23	24		-			
Height (mm)	19.93		-					-			
Diameter (mm)	50.01							-			
Particle Density (Mg/m3)	2.65		•					-			

Operators	Checked	18-09-17	Emma Sharp	
LG	Approved	19-09-17	Paul Evans	DP Gas

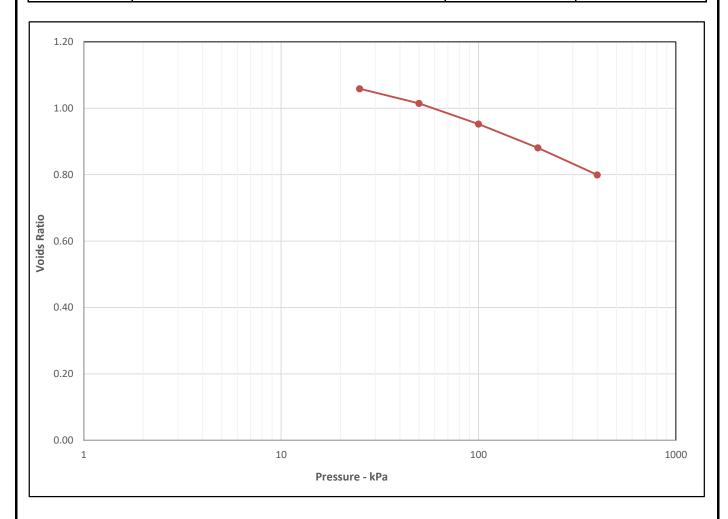
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	36330
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	L06
Site Name	Foynes Port	Sample No.	
Soil Description	Grey brown silty CLAY.	Depth Top (m)	17.00
	Grey blown silty GLAT.	Depth Base (m)	17.50
Lab Temperature	20°c	Sample Location	Middle
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Condition	ons	Pres	sure F	Range	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	40	0	-	25	1.2	3.3		-			
Bulk Density (Mg/m3)	1.83	25	-	50	0.76	1.5		-			
Dry Density (Mg/m3)	1.31	50	-	100	0.52	3.8		-			
Voids Ratio	1.0241	100	-	200	0.3	1.9		-			
Degree of saturation	102.8	200	-	400	0.18	2		-			
Height (mm)	19.95		-					-			
Diameter (mm)	49.91		-					-			
Particle Density (Mg/m3)	2.65		-					-			

Operators	Checked	18-09-17	Emma Sharp	35
LG	Approved	19-09-17	Paul Evans	DP GONS

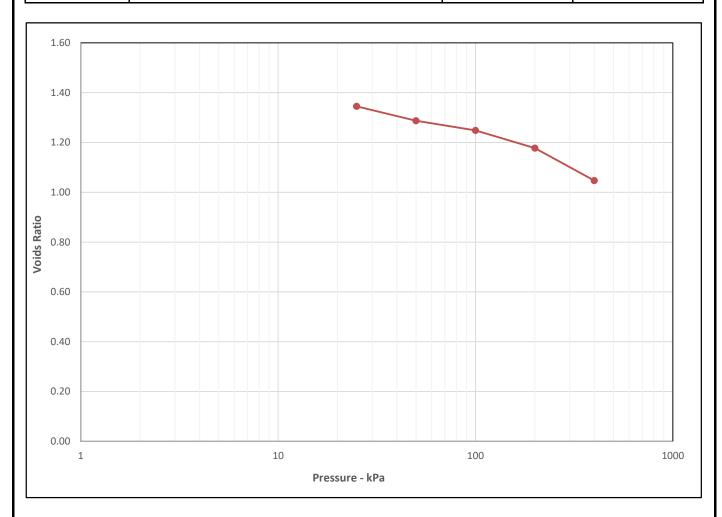
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	36330
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	L06
Site Name	Foynes Port	Sample No.	
Soil Description	Grey brown silty CLAY.	Depth Top (m)	20.00
	Grey brown silty CLAT.	Depth Base (m)	20.50
Lab Temperature	20°c	Sample Location	Middle
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Condition	ons	Pres	sure F	Range	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	38	0	-	25	1.4	4.3		-			
Bulk Density (Mg/m3)	1.84	25	-	50	0.83	2.5					
Dry Density (Mg/m3)	1.34	50	-	100	0.51	3.6		-			
Voids Ratio	0.9809	100	-	200	0.3	3.4		-			
Degree of saturation	102.1	200	-	400	0.17	3.9		-			
Height (mm)	19.65		-					-			
Diameter (mm)	74.99		-					-			
Particle Density (Mg/m3)	2.65		-					-			_

Operators	Checked	18-09-17	Emma Sharp	
LG	Approved	19-09-17	Paul Evans	DP Grans

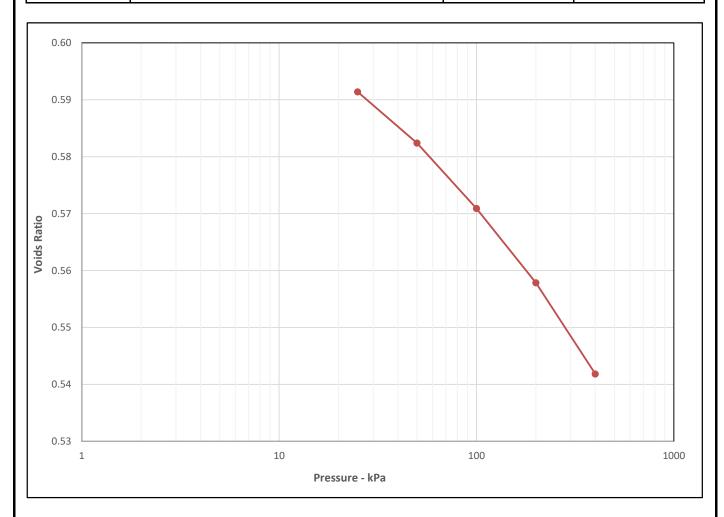
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	36330
GJIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	L07
Site Name	Foynes Port	Sample No.	
Soil Description	Grey brown silty CLAY.	Depth Top (m)	3.00
	Grey brown silty CLAT.	Depth Base (m)	4.00
Lab Temperature	20°c	Sample Location	Middle
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Condition	ons	Pres	sure F	Range	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	45	0	-	25	2.2	0.8		-			
Bulk Density (Mg/m3)	1.77	25	-	50	0.85	0.38					
Dry Density (Mg/m3)	1.22	50	-	100	0.62	0.44		-			
Voids Ratio	1.1778	100	-	200	0.4	1		-			
Degree of saturation	101.8	200	-	400	0.22	1.1		-			
Height (mm)	18.02		-					-			
Diameter (mm)	75.05		-					-			
Particle Density (Mg/m3)	2.65		-								

Operators	Checked	18-09-17	Emma Sharp	
LG	Approved	19-09-17	Paul Evans	EP Grans

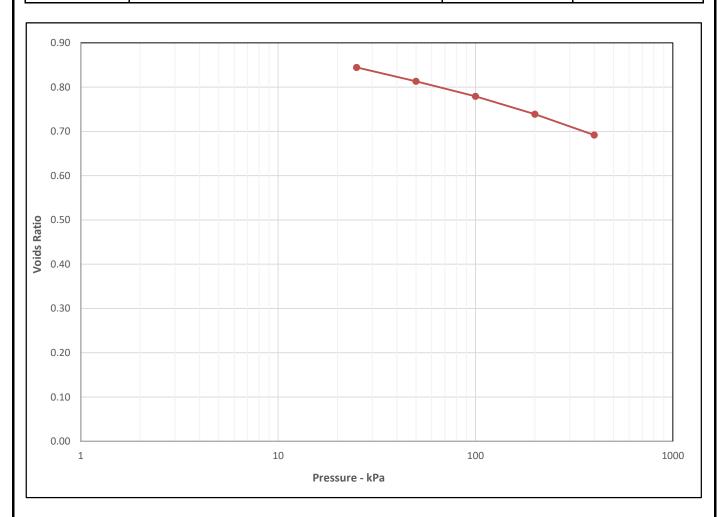
ONE DIMENSIONAL CONSOLIDATION TEST		Contract Number	36330
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	L07
Site Name	Foynes Port	Sample No.	
Soil Description	Grey brown silty CLAY.	Depth Top (m)	5.00
	Grey brown silty CLAT.	Depth Base (m)	5.50
Lab Temperature	20°c	Sample Location	Middle
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Condition	ons	Pres	sure F	Range	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	51	0	-	25	1.1	1.6		-			
Bulk Density (Mg/m3)	1.66	25	-	50	0.99	3.3		-			
Dry Density (Mg/m3)	1.10	50	-	100	0.33	8.4		-			
Voids Ratio	1.4117	100	-	200	0.3	6.3		-			
Degree of saturation	95.6	200	-	400	0.3	5		-			
Height (mm)	19.97		-					-			
Diameter (mm)	49.95		-					-			
Particle Density (Mg/m3)	2.65		-					-			_

Operators	Checked	18-09-17	Emma Sharp	
LG	Approved	19-09-17	Paul Evans	DP Grans

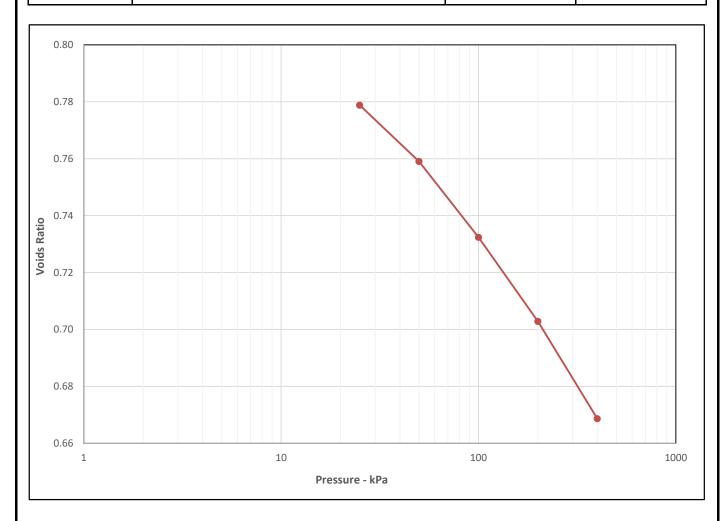
ONE DIMENSIONAL CONSOLIDATION TEST		Contract Number	36330
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	LD01
Site Name	Foynes Port	Sample No.	
Soil Description	Brown fine sandy silty CLAY.	Depth Top (m)	4.50
	BIOWITHINE SAINLY SHITY CLAT.	Depth Base (m)	5.00
Lab Temperature	20°c	Sample Location	Middle
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Condition	ns	Pres	sure R	Range	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	24	0	-	25	0.37	5.6		-			
Bulk Density (Mg/m3)	2.04	25	-	50	0.23	12		-			
Dry Density (Mg/m3)	1.65	50	-	100	0.15	14		-			
Voids Ratio	0.6064	100	-	200	0.1	15		-			
Degree of saturation	103.8	200	-	400	0.051	8.6		-			
Height (mm)	19.68		-					-			
Diameter (mm)	74.6							-			
Particle Density (Mg/m3)	2.65		•								

Operators	Checked	18-09-17	Emma Sharp	
LG	Approved	19-09-17	Paul Evans	EP Grans

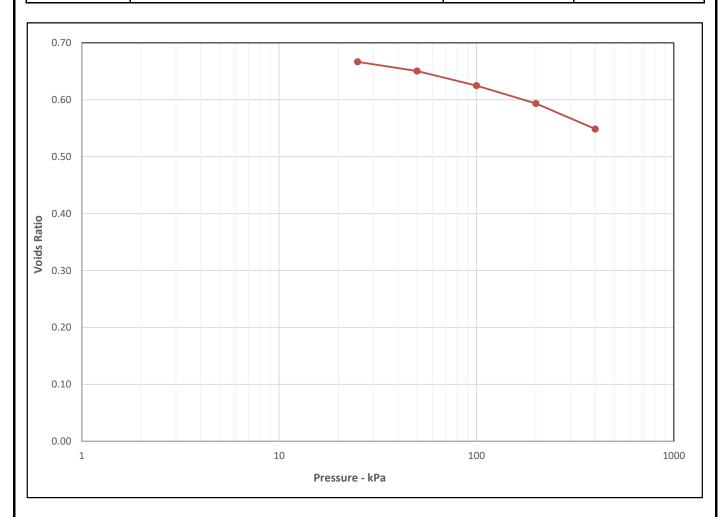
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST		36330
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	LD02
Site Name	Foynes Port	Sample No.	
Soil Description	Grey silty CLAY.	Depth Top (m)	8.50
	Grey Silty CLAT.	Depth Base (m)	9.00
Lab Temperature	20°c	Sample Location	Middle
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Condition	ons	Pres	sure F	Range	Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	38	0	-	25	2.7	0.21		-			
Bulk Density (Mg/m3)	1.85	25	-	50	0.68	0.36					
Dry Density (Mg/m3)	1.34	50	-	100	0.38	0.42		-			
Voids Ratio	0.9755	100	-	200	0.2	0.76		-			
Degree of saturation	102.3	200	-	400	0.14	1.4		-			
Height (mm)	18.07		-					-			
Diameter (mm)	74.97		-					-			
Particle Density (Mg/m3)	2.65		-					-			_

Operators	Checked	18-09-17	Emma Sharp	
LG	Approved	19-09-17	Paul Evans	EP Grans

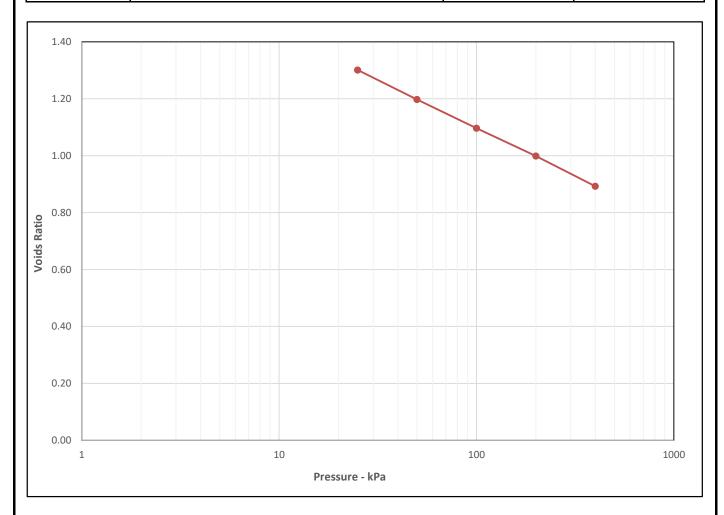
CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	36330
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	LD04
Site Name	Foynes Port	Sample No.	
Soil Description	Grey silty CLAY.	Depth Top (m)	3.00
	Grey Silty CLAT.	Depth Base (m)	3.50
Lab Temperature	20°c	Sample Location	Middle
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pressure Range			Mv m2/MN	Cv m2/yr	Pressure Range		Mv m2/MN	Cv m2/yr	
Moisture Content (%)	32	0	-	25	0.79	16		-			
Bulk Density (Mg/m3)	1.92	25	-	50	0.44	7.7		-			
Dry Density (Mg/m3)	1.46	50	-	100	0.3	6.5		-			
Voids Ratio	0.8147	100	-	200	0.2	9.9		-			
Degree of saturation	103.3	200	-	400	0.1	9.5		-			
Height (mm)	19.82		-					-			
Diameter (mm)	75.01		-					-			
Particle Density (Mg/m3)	2.65		-					•			

Operators	Checked	18-09-17	Emma Sharp	
LG	Approved	19-09-17	Paul Evans	EP Grans

CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	36330
GOIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	LD06
Site Name	Foynes Port	Sample No.	
Soil Description	Grey mottled brown silty CLAY.	Depth Top (m)	1.00
	Grey modiled brown silty CLAT.	Depth Base (m)	1.50
Lab Temperature	20°c	Sample Location	Middle
Remarks	Cv Calculated Using T90	Sample Type	U



Initial Sample Conditions		Pressure Range			Mv m2/MN	Cv m2/yr	Pressure Range			Mv m2/MN	Cv m2/yr
Moisture Content (%)	26	0	-	25	0.44	5.7		-			
Bulk Density (Mg/m3)	1.98	25	-	50	0.39	7.9		-			
Dry Density (Mg/m3)	1.57	50	-	100	0.31	8		-			
Voids Ratio	0.6851	100	-	200	0.2	10		-			
Degree of saturation	101.1	200	-	400	0.14	3.8		-			
Height (mm)	19.83		-					-			
Diameter (mm)	74.9		-					-			
Particle Density (Mg/m3)	2.65		-					-			

Operators	Checked	18-09-17	Emma Sharp	
LG	Approved	19-09-17	Paul Evans	EP Grans

CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	36330
GJIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	M09
Site Name	Foynes Port	Sample No.	
Soil Description	Grey brown silty CLAY.	Depth Top (m)	13.50
	Grey brown silty CLAT.	Depth Base (m)	14.50
Lab Temperature	20°c	Sample Location	Middle
Remarks	Cv Calculated Using T90	Sample Type	U

Initial Sample Conditions		Pressure Range			Mv m2/MN	Cv m2/yr	Pressure Range			Mv m2/MN	Cv m2/yr
Moisture Content (%)	59	0	-	25	3.5	1.3		-			
Bulk Density (Mg/m3)	1.67	25	-	50	1.8	1.3		-			
Dry Density (Mg/m3)	1.05	50	-	100	0.92	1.5		-			
Voids Ratio	1.5197	100	-	200	0.5	2.5		-			
Degree of saturation	102.2	200	-	400	0.27	3.5		-			
Height (mm)	19.96		-					-			
Diameter (mm)	50.05		-								
Particle Density (Mg/m3)	2.65		-					-			_

Operators	Checked	18-09-17	Emma Sharp	
LG	Approved	19-09-17	Paul Evans	EP Grans

GSTL	SUMMARY OF SOIL DENSITY TESTS (BS 1377 : PART 2 : 7/8 : 1990)	
Contract Number	36330	
Site Name	Foynes Port	

Hole Reference	Sample Number	Sample Type	D	epth (ı	n)	sture	Bulk Density	Dry Density	Compaction Method	Particle Density	Estimated Air Voids	Remarks
L01		В	1.00	-						2.57		
L01		В	2.00	-						2.62		
L01		В	3.00	-						2.63		
L01		В	6.00	-						2.66		
L01		В	8.00	-						2.65		
L01		В	10.00	-						2.67		
L01		В	12.00	-						2.66		
L02		В	0.50	-						2.64		
L02		В	2.00	-						2.66		
L02		В	3.00	-						2.67		
L02		В	4.00	-						2.66		
L02		В	6.00	-						2.64		
L02		В	8.00	-						2.63		
L02		В	10.00	-						2.67		
L02		В	13.00	-						2.69		
L02		В	15.00	-						2.66		
L03		В	1.00	-						2.65		
L03		В	3.00	-						2.62		
L03		В	4.00	-						2.57		
L03		В	7.00	-						2.66		
L03		В	9.00	-						2.65		
L03		В	11.00	-						2.66		
L03		В	13.00	-						2.68		
L03		В	15.00	-						2.71		
L03		В	17.00	-						2.66		
L06		В	10.00	-						2.65		
L06		В	12.00	•						2.66		
L06		В	14.00	•						2.66		
L06		В	16.00							2.64		
L06		В	18.00	-						2.65		
L06		В	20.00	-						2.66		
L07		В	0.00	-						2.56		
L07		В	1.50	-						2.63		
L07		В	4.50	-						2.63		

<u>Key</u>	Reported As
Moisture Content	%
Bulk Density	Mg/m ³
Dry Density	Mg/m ³
Particle Density	Mg/m ³
Air Voids	%

Operators	Checked	10/09/2017	Ben Sharp	
CA/JS	Approved	11/09/2017	Paul Evans	DP Grons

GSTL	SUMMARY OF SOIL DENSITY TESTS (BS 1377 : PART 2 : 7/8 : 1990)	
Contract Number	36330	
Site Name	Foynes Port	

Hole Reference	Sample Number	Sample Type	D	epth (ı	m)	Moisture Content	Bulk Density	Dry Density	Compaction Method	Particle Density	Estimated Air Voids	Remarks
L07		В	7.00	-						2.63		
L08		В	0.00	-						2.65		
L08		В	1.50	-						2.67		
L08		В	4.50	-						2.67		
L08		В	6.80	-						2.69		
LD01		В	1.00	-						2.62		
LD01		В	3.00	-						2.64		
LD01		В	8.00	-						2.60		
LD02		В	2.00	-						2.64		
LD02		В	4.00	-						2.65		
LD02		В	6.00	-						2.64		
LD02		В	8.00	-						2.61		
LD04		В	4.50	-						2.62		
LD06		В	1.50	-						2.62		
LD06		В	2.50	-						2.63		
M09		В	0.50	-						2.65		
M09		В	3.00	-						2.67		
M09		В	5.00	-						2.59		
M09		В	6.50	-						2.62		
M09		В	11.00	-						2.63		
M09		В	13.00	-						2.69		
M09		В	15.50	-						2.67		
M09		В	18.20	-						2.68		
M09		В	20.20	-						2.65		
M09		В	26.00	-						2.58		
L06		UT	17.00	-						2.65		
L07		UT	5.00	-						2.63		
M09		UT	4.50	-						2.61		
L01		UT	4.00	-						2.62		
L02		UT UT	10.50	-						2.67		
LD01 LD02		UT	4.50 8.50	-						2.64 2.62		
LD02 LD04		UT	3.00	-						2.62		
LD04		UT	1.00	-						2.60		

<u>Key</u>	Reported As
Moisture Content	%
Bulk Density	Mg/m ³
Dry Density	Mg/m ³
Particle Density	Mg/m ³
Air Voids	%

Operators	Checked	10/09/2017	Ben Sharp	35
CA/JS	Approved	11/09/2017	Paul Evans	DP Grons

GSTL	SUMMARY OF SHEAR STRENGTH TESTS (TOTAL STRESS) (BS 1377 : PART 7 : 3 : 1990)	
Contract Number	36330	
Site Name	Foynes Port	

ВН	Sample	Sample	D	epth (r	m)	Moisture	Location of Test	Diameter of Tube	Vane Size	Disturbed /		Vane
Borehole	Number	Type				Content	Horizon	(mm)		Undisturbed	Peak	Residual
BHL06		UT	13.00	-					19mm		18	3
BHL06		UT	17.00	ı					19mm		39	7
BHL06		UT	20.00	•					19mm		21	2
BHL07		Р	3.00	ı					19mm		34	9
BHL07		UT	5.00	-					19mm		33	9
BHM09		Р	4.50	-					19mm		21	4
BHL01		UT	4.00	-					19mm		36	10
BHL02		UT	10.50	-					19mm		26	4
BHLD01		UT	4.50	-					19mm		41	8
BHLD02		UT	8.50	-					19mm		27	4
BHLD04		UT	3.00	-					19mm		55	12
BHLD06		UT	1.00	-					19mm		113	20
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				•								
				-								
				-								
				-								
				-								
				-								igsquare
				-								<u> </u>
				-								\vdash
				-								

<u>Key</u>	Reported As
Moisture Content	%
Hand Vane	kPa

Operators	Checked	18-09-17	Ben Sharp	
C1/11	Approved	19-09-17	Paul Evans	DP Good

BS 1377: Part 8: 1990

Specimen Details

Borehole		LD01
Sample No.		UT
Depth	from(m)	4.50
Depth	to(m)	5.00
Date		14/09/2017
Disturbed / Undisturbed		Undisturbed

Description of Specimen

Grey slightly clayey silty firm SAND

Initial Specimen Conditions

The second secon						
Height	mm	204.00				
Diameter	mm	104.00				
Area	mm^2	8494.87				
Volume	cm^3	1732.95				
Mass	g	3342.60				
Dry Mass	g	2622.60				
Density	Mg/m ³	1.93				
Dry Density	Mg/m ³	1.51				
Moisture Content	%	27				
Specific Gravity	kN/m³	2.65				
(assumed/r	assumed					

Final Specimen Conditions

Moisture Content	%	24
Density	Mg/m ³	1.94
Dry Density	Mg/m ³	1.56

E P Gov S Checked and Approved By

14/09/17 Date

Client Ref 6552-02-17 Contract No

Foynes Port

GSTL

BS 1377 : Part 8 : 1990

Specimen Details

Borehole		LD01
Sample No.		UT
Depth Depth	from(m)	4.50
Depth	to(m)	5.00

Test Setup

Date started	04/09/2017
Date Finished	13/09/2017
Top Drain Used	у
Base Drain Used	у
Side Drains Used	у
Pressure System Number	P5
Cell Number	C5

Saturation

Cell Pressure Incr.	kPa	100.00
Back Pressure Incr.	kPa	95.00
Differential Pressure	kPa	5.00
Final Cell Pressure	kPa	200.00
Final Pore Pressure	kPa	199.00
Final B Value		1.00

Consolidation

Effective Pressure	kPa	45.00	70.00	95.00
Cell Pressure	kPa	200.00	200.00	200.00
Back Pressure	kPa	155.00	130.00	105.00
Excess Pore Pressure	kPa	44.00	60.00	64.00
Pore Pressure at End	kPa	155.00	130.00	105.00
Consolidated Volume	cm ³	1701.85	1682.53	1676.34
Consolidated Height	mm	202.78	198.07	187.95
Consolidated Area	mm^2	8393.23	8494.98	8919.26
Vol. Compressibility	m ² /MN	0.11578	0.08733	0.03504
Consolidation Coef.	m²/yr.	2.99088	2.97346	2.64027

DP Grows Checked and Approved By

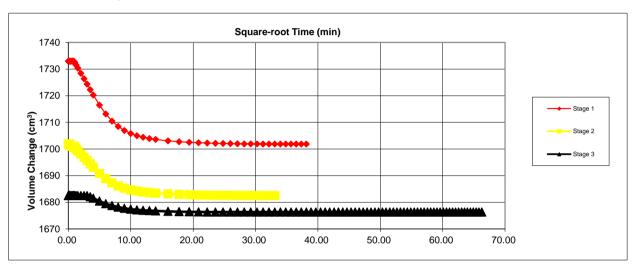
14/09/17 Date

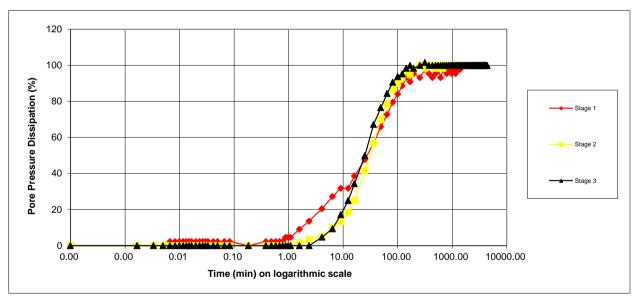
Client Ref

6552-02-17

Foynes Port

Contract No 36330




BS 1377: Part 8: 1990

Specimen Details

Borehole		LD01
Sample No.		UT
Depth	from(m)	4.50
Depth Depth	to(m)	5.00

Consolidation Stage

14/09/17 Date

> Client Ref 6552-02-17 Contract No

Foynes Port

BS 1377 : Part 8 : 1990

Specimen Details

Borehole		LD01
Sample No.		UT
Depth	from(m)	4.50
Depth	to(m)	5.00

Shearing

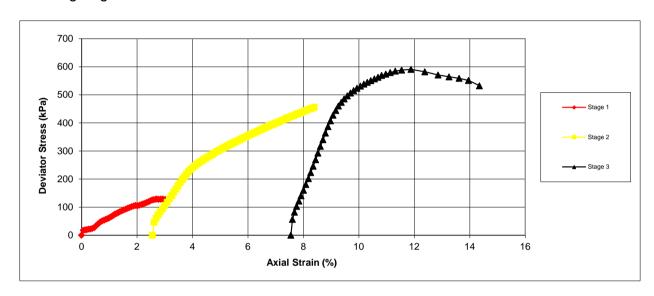
oneumg				
Initial Cell Pressure	kPa	200	200	200
Initial Pore Pressure	kPa	155	130	105
Rate of Strain	mm/min	0.0591	0.0574	0.0484
Max Deviator Stress				
Axial Strain		2.717	8.391	11.884
Axial Stress	kPa	132.662	460.12	595.16
Cor. Deviator stress	kPa	129.811	455.75	590.65
Effective Major Stress	kPa	170.811	603.75	779.65
Effective Minor Stress	kPa	42.000	148.00	189.00
Effective Stress Ratio		4.067	4.079	4.13
s'	kPa	106.406	375.87	484.32
t'	kPa	64.406	227.87	295.32
Max Effective Priciple	Stress F	Ratio		
Axial Strain		2.614	5.266	11.544
Axial Stress	kPa	130.819	322.388	592.649
Cor. Deviator stress	kPa	126.976	318.339	588.155
Effective Major Stress	kPa	168.976	419.339	776.155
Effective Minor Stress	kPa	42.000	101.000	188.000
Effective Stress Ratio		4.023	4.152	4.128
s'	kPa	105.488	260.170	482.078
t'	kPa	63.488	159.170	294.078
Shear Resistance Angle	degs			37.5
Cohesion c'	kPa			0

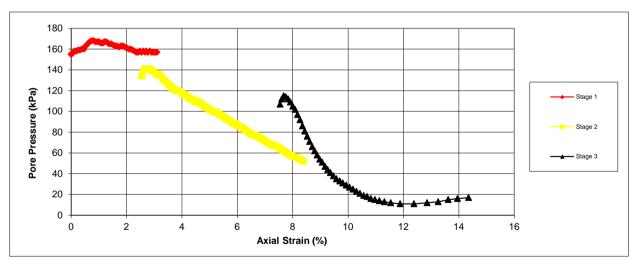
DP Gross Checked and Approved By

14/09/17 Date

> Client Ref 6552-02-17 Contract No

Foynes Port




BS 1377: Part 8: 1990

Specimen Details

Borehole		LD01
Sample No.		UT
Depth Depth	from(m)	4.50
Depth	to(m)	5.00

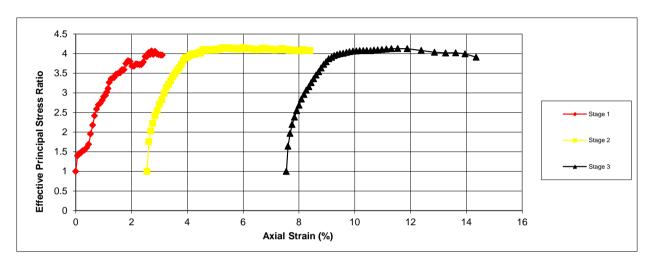
Shearing Stage

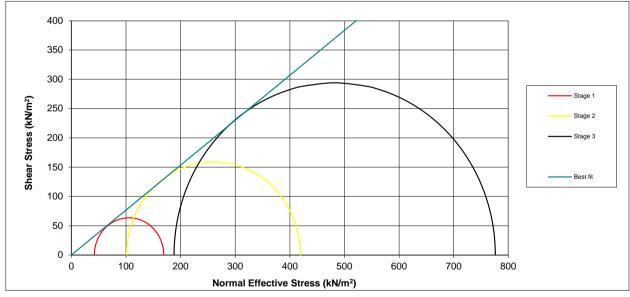
Checked and Approved By

14/09/17 Date

> Client Ref 6552-02-17 Contract No

Foynes Port




BS 1377: Part 8: 1990

Specimen Details

Borehole		LD01
Sample No.		UT
Depth	from(m)	4.50
Depth Depth	to(m)	5.00

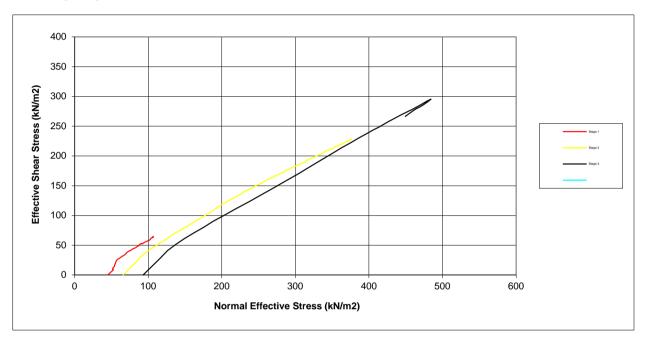
Shearing Stage

Checked and Approved By

14/09/17 Date

> Client Ref 6552-02-17 Contract No

Foynes Port



BS 1377: Part 8: 1990

Specimen Details

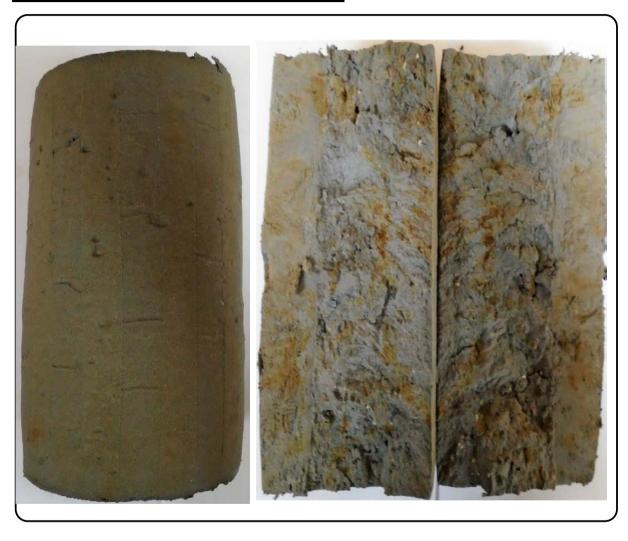
Borehole		LD01
Sample No.		UT
Depth Depth	from(m)	4.50
Depth	to(m)	5.00

Shearing Stage

Checked and Approved By

14/09/17 Date

> Client Ref 6552-02-17 Contract No


Foynes Port

Consolidated Undrained Triaxial Compression Test BS 1377: Part 8: 1990

Specimen Details

Borehole		LD01
Sample No.		UT
Depth	from(m)	4.50
Depth	to(m)	5.00

DP Glons Checked and Approved By

14/09/17 Date

Client Ref 6552-02-17 **Contract No**

Foynes Port

BS 1377: Part 8: 1990

Specimen Details

Borehole		LD06
Sample No.		UT
Depth	from(m)	1.00
Depth	to(m)	1.50
Date		14/09/2017
Disturbed / Undisturbed		Undisturbed

Description of Specimen

Brown silty firm CLAY

Initial Specimen Conditions

Height	mm	204.00	
Diameter	mm	104.00	
Area	mm ²	8494.87	
Volume	cm ³	1732.95	
Mass	g	3298.40	
Dry Mass	g	2571.00	
Density	Mg/m ³	1.90	
Dry Density	Mg/m ³	1.48	
Moisture Content	%	28	
Specific Gravity	kN/m ³	2.65	
(assumed/m	neasured)	assumed	

Final Specimen Conditions

Maiatawa Cambant	0/	27
Moisture Content	%	2/
Density	Mg/m³	1.95
Dry Density	Mg/m ³	1.53

E P Roys Checked and Approved By

14/09/17 Date

Client Ref 6552-02-17 Contract No

Foynes Port

BS 1377: Part 8: 1990

Specimen Details

Borehole		LD06
Sample No.		UT
Depth	from(m)	1.00
Depth Depth	to(m)	1.50

Test Setup

Date started	04/09/2017
Date Finished	13/09/2017
Top Drain Used	у
Base Drain Used	У
Side Drains Used	у
Pressure System Number	P6
Cell Number	C6

Saturation

Cell Pressure Incr.	kPa	100.00
Back Pressure Incr.	kPa	95.00
Differential Pressure	kPa	5.00
Final Cell Pressure	kPa	200.00
Final Pore Pressure	kPa	202.00
Final B Value		1.03

Consolidation

Effective Pressure	kPa	10.00	35.00	60.00
Cell Pressure	kPa	200.00	200.00	200.00
Back Pressure	kPa	190.00	165.00	140.00
Excess Pore Pressure	kPa	12.00	25.00	33.00
Pore Pressure at End	kPa	190.00	165.00	140.00
Consolidated Volume	cm ³	1720.65	1702.29	1675.00
Consolidated Height	mm	203.52	195.51	185.12
Consolidated Area	mm^2	8454.67	8707.06	9048.84
Vol. Compressibility	m ² /MN	0.03736	0.06467	0.11451
Consolidation Coef.	m²/yr.	1.62486	0.68621	0.23048

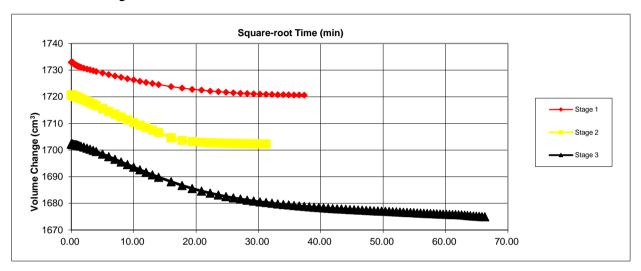
EP Grows Checked and Approved By

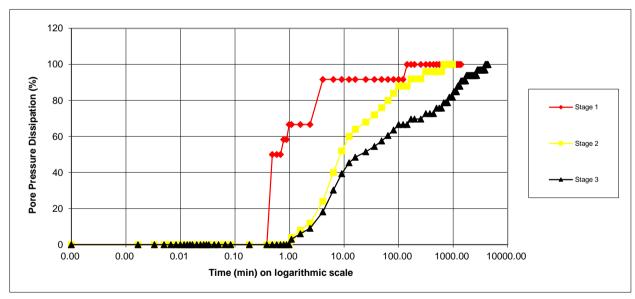
14/09/17 Date

Client Ref 6552-02-17

Foynes Port

Contract No




BS 1377: Part 8: 1990

Specimen Details

Borehole		LD06
Sample No.		UT
Depth	from(m)	1.00
Depth Depth	to(m)	1.50

Consolidation Stage

14/09/17 Date

> Client Ref 6552-02-17 Contract No

> > 36330

Foynes Port

•

BS 1377: Part 8: 1990

Specimen Details

Borehole		LD06
Sample No.		UT
Depth	from(m)	1.00
Depth	to(m)	1.50

Shearing

Silearing				
Initial Cell Pressure	kPa	200	200	200
Initial Pore Pressure	kPa	190	165	140
Rate of Strain	mm/min	0.0322	0.0131	0.0042
Max Deviator Stress				
Axial Strain		3.381	9.188	12.168
Axial Stress	kPa	63.311	106.25	128.04
Cor. Deviator stress	kPa	60.411	101.80	123.51
Effective Major Stress	kPa	66.411	130.80	162.51
Effective Minor Stress	kPa	7.000	29.00	39.00
Effective Stress Ratio		9. 4 87	4.510	4.17
s'	kPa	36.706	79.90	100.75
t'	kPa	29.706	50.90	61.75
Max Effective Priciple	Stress F	Ratio		
Axial Strain		3.381	6.968	12.168
Axial Stress	kPa	63.311	92.743	128.035
Cor. Deviator stress	kPa	59.411	88.517	123.505
Effective Major Stress	kPa	66.411	110.517	162.505
Effective Minor Stress	kPa	7.000	22.000	39.000
Effective Stress Ratio		9.487	5.024	4.167
s'	kPa	36.706	66.259	100.753
ť'	kPa	29.706	44.259	61.753
Shear Resistance Angle	degs			30.0
Cohesion c'	kPa			13

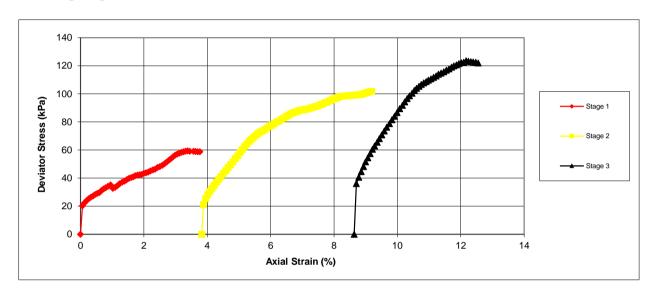
Shecked and Approved By

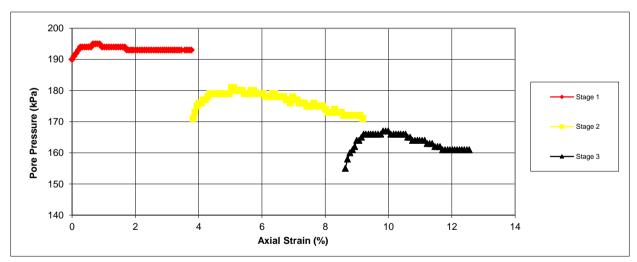
14/09/17 Date

> Client Ref 6552-02-17

Foynes Port

Contract No




BS 1377: Part 8: 1990

Specimen Details

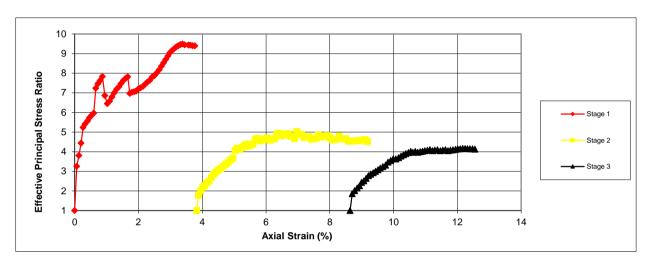
Borehole		LD06
Sample No.		UT
	from(m)	1.00
Depth Depth	to(m)	1.50

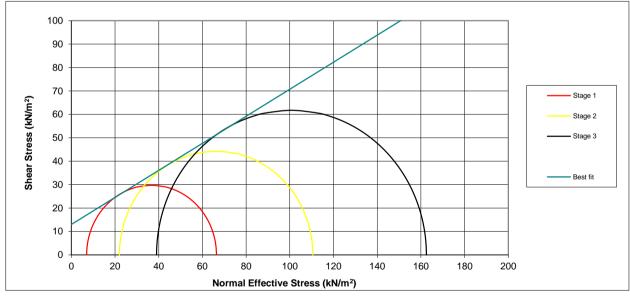
Shearing Stage

14/09/17 Date

> Client Ref 6552-02-17 Contract No

Foynes Port




BS 1377: Part 8: 1990

Specimen Details

Borehole		LD06
Sample No.		UT
Depth	from(m)	1.00
Depth Depth	to(m)	1.50

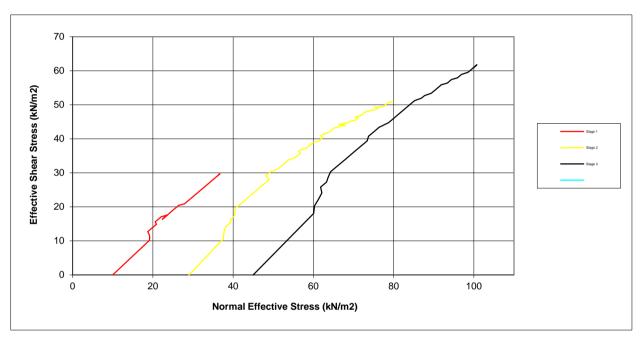
Shearing Stage

Checked and Approved By

14/09/17 Date

> Client Ref 6552-02-17 Contract No

Foynes Port



BS 1377: Part 8: 1990

Specimen Details

Borehole		LD06
Sample No.		UT
Depth Depth	from(m)	1.00
Depth	to(m)	1.50

Shearing Stage

DP Goos Checked and Approved By

14/09/17 Date

Client Ref 6552-02-17 Contract No

Foynes Port

Consolidated Undrained Triaxial Compression Test BS 1377 : Part 8 : 1990

Specimen Details

Borehole		LD06
Sample No.		UT
Depth	from(m)	1.00
Depth Depth	to(m)	1.50

DP Grons **Checked and Approved By**

14/09/17 Date

Client Ref 6552-02-17 **Contract No**

36330

Foynes Port

Contract Number: 36659

Client's Reference: Report Date: 28-09-2017

Client Ground Investigation Ireland
Catherinestown House
Hazelhatch Road
Newcastle
Co. Dublin

Contract Title: Shannon Foynes Port Company

For the attention of: Conor Finnerty

Date Received: 20-09-2017
Date Commenced: 20-09-2017
Date Completed: 28-09-2017

Test Description	Qty
Determination of Point Load Value Axial or Diametrical including WC ISRM Suggested Method for Point Load Strength 1974-2006 - * UKAS	27
Uniaxial Compressive Strength of Rock Materials with sample preparation for 170-250mm Diameter Cores.	5
Disposal of Samples on Project	1

Notes: Observations and Interpretations are outside the UKAS Accreditation

* - denotes test included in laboratory scope of accreditation

- denotes test carried out by approved contractor

@ - denotes non accredited tests

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved Signatories

Alex Wynn (Associate Director) - Ben Sharp (Contracts Manager) - Emma Sharp (Office Manager)
Paul Evans (Quality/Technical Manager) - Richard John (Advanced Testing Manager) - Sean Penn (Administrative Assistant)
Vaughan Edwards (Managing Director) - Wayne Honey (Administrative/Quality Assistant)

Tel: 01554 784040 Fax: 01554 784041 info@gstl.co.uk gstl.co.uk

GSTL	Determination of Unconfined Compressive Strength ISRM Suggested Methods Vol 16, No. 2, pp. 135-140 1979	
Contract Number	36659	
Site Name	Shannon Foynes Port Company	
Sample Preperation	Sawing and Grinding	
Date Tested	27-09-17	

Hole Reference	Depth (m)		Diameter	Length	Initial Mass	Moisture Content	Bulk Density	Dry Density	Load Failure	Maximum Strength	Type of Failure	
LD03	9.19		9.50	102.16	250.41	5451.8	0.40	2.66	2.65	102.0	12.4	Axial Splitting
LD04	5.29		5.47	102.01	167.18	3583.6	0.70	2.62	2.60	289.5	35.4	Axial Splitting
LD04	8.61		8.91	102.2	294.17	6383.7	0.50	2.65	2.63	213.8	26.1	Axial Splitting
LD06	4.90		5.17	101.45	263.88	5729.0	0.20	2.69	2.68	244.7	30.3	Axial Splitting
LD07	3.41		3.58	101.3	175.43	3790.2	0.40	2.68	2.67	162.9	20.2	Axial Splitting

<u>Key</u>	Reported As
Diameter	mm
Length	mm
Initial Mass	g
Moisture Content	%
Bulk Density	Mg/m ³
Dry Density	Mg/m ³
Load Failure	kN
Maximum Strength	mpa

Operators	Checked	27-09-17	Ben Sharp	
JD	Approved	28-09-17	Paul Evans	DP Grans

GSTL	Point Load Test Int. J. Rock Mech. Sci. & Geomech. Abstr. Vol. 22, No. 2, pp. 51 - 60, 1985.	
Contract Number	36659	
Site Name	Shannon Foynes Port Company	
Sample Type	Core	
Date Tested	26-09-17	

				1								Point	1	ı	Angle Between Plane	Type of Anisotropy
Hole	D	epth (m)		Туре	Width	Platen Seperation	Failure Load	Equivalent Diameter	Point Load	Size Factor	Load	Moisture Content	Description	of Anisotropy & Core	(Bedding or
Reference				d/a/b/i	1//				Diameter			Index			Axis	Cleavage)
LD01	12.01	-	12.10	D			106	38.62		3.44	1.40	4.82	0.3	LIMESTONE		
LD03	6.37 6.80	-	6.50 7.08	D D			104 102	29.49 22.89		2.73	1.39	3.79	1.0 0.7	LIMESTONE		
	9.19	-	9.50	D			102	10.47		1.01	1.38	1.39	1.6	LIMESTONE		
LD04	6.22	-	6.24	D			102	430.26		41.36	1.38	57.00	1.1	LIMESTONE		
L02	25.60	-	25.70	D			102	3.24		0.29	1.40	0.40	1.3	LIMESTONE		
L08	8.08		8.13	A		101	46	5.92	76.91	1.00	1.21	1.22	2.5	LIMESTONE		1
	10.31	-	10.90	A		103	45	4.57	76.82	0.78	1.21	0.94	1.5	LIMESTONE		
	10.87	-	10.90	А		101	29	5.30	61.07	1.42	1.09	1.55	1.7	LIMESTONE		
	11.40	-	11.43	D			102	1.44		0.14	1.38	0.19	2.3	LIMESTONE		
	11.47	-	11.50	А		103	35	6.36	67.75	1.39	1.15	1.59	1.9	LIMESTONE		
M01	23.60	-	23.79	D			103	6.91		0.65	1.38	0.90	1.5	LIMESTONE		
M09B	44.60	-	44.65	Α		105	56	21.49	86.53	2.87	1.28	3.67	2.4	LIMESTONE		
	44.63	-	44.67	Α		101	34	19.02	66.12	4.35	1.13	4.93	3.4	LIMESTONE		
M10	32.05	-	32.50	Α		63	43	16.78	58.73	4.86	1.08	5.23	2.2	LIMESTONE		
	32.87	-	32.92	D			64	13.31		3.25	1.12	3.63	1.7	LIMESTONE		
M12	28.28	-	28.32	D			100	5.12		0.51	1.37	0.70	0.4	LIMESTONE		
	32.94	-	32.96	А		101	14	7.48	42.43	4.16	0.93	3.86	3.5	LIMESTONE		
	33.71	-	33.95	Α		101	53	21.90	82.56	3.21	1.25	4.03	3.7	LIMESTONE		
	33.79	-	33.82	Α		101	43	23.30	74.36	4.21	1.20	5.04	3.2	LIMESTONE		
M14	23.50	-	23.59	D			102	21.86		2.10	1.38	2.90	0.1	LIMESTONE		
M15	26.50	-	26.53	A		104	33	8.64	66.10	1.98	1.13	2.24	7.0	LIMESTONE		
M15 M16	26.53 9.19	-	26.55 9.25	A D		99	25 101	10.16 41.98	56.14	3.22 4.11	1.05	3.40 5.65	5.8 0.2	LIMESTONE		
M16	9.19	-	6.75	D			101	11.34		1.11	1.37	1.53	0.2	LIMESTONE		
WTO	3.04	-	0.73	-			101	11.54		1.11	1.37	1.55	0.0	LIMESTONE		
		-														
		-														
		-														
		-														
		-														
		-														
		1														
		-														1
		-														
		-														
		-														
		-														
		-														
	1	-		 					<u> </u>				 			
	1	-		1				<u> </u>					1			
	1	-		1				l -					1			
	1	-														
		-														
		-														
	ļ	-														
	1	-		ļ				 	ļ				ļ	-		
	1	-		 	-		-	 	-		-		 			
	1	-		1				 	1				1			
	1	-														
		-														
		-														
		-														
	ļ	-														
		-						ļ								
-	1	-		 	-	-		 	!		-	-	 			
	1			<u> </u>	1	1	1	<u> </u>	<u> </u>		1	1	<u> </u>	<u> </u>	i	

<u>Key</u>	Reported As
Width	(W) mm
Platen Separation	(D) mm
Failure Load	(P) kN
Equivalent Diameter	(De) mm
Point Load	(Is) MPa
Size Factor	(F)
Point Load Index	(Is(50)) MPa
Moisture Content	%
Description	SC

Operators	Checked	27-09-17	Ben Sharp	
JD	Approved	28-09-17	Paul Evans	8 P Gas

TEST AMENDMENT NOTICE

GSTL Job Ref: 36659

Project Title: Shannon Foynes Port Company
Client: Ground Investigation Ireland
For the attention of: Connor Finnerty

Dear Sir/Madam,

The following samples listed have been scheduled for testing but are unsuitable for the specified test.

BH/TP no	Sample no	Depth	Testing required	Reason for unsuitability
LD03		6.80-7.08	UCS	Fractured upon inspection

From Clayton Jenkins Date 26/09/2017

Foynes Port – Ground Investigation Factual Report

APPENDIX 3

ENVIRONMENTAL TEST RESULTS

Exova Jones Environmental

Registered Address: Exova (UK) Ltd, Lochend Industrial Estate, Newbridge, Midlothian, EH28 8PL

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland

Attention : Conor Finnerty

Date: 27th September, 2017

Your reference: 17/02/6552

Our reference: Test Report 17/14043 Batch 1

Location : Foynes

Date samples received: 21st August, 2017

Status: Final report

Issue:

Six samples were received for analysis on 21st August, 2017 of which six were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Bruce Leslie

Project Co-ordinator

Exova Jones Environmental

Ground Investigations Ireland Client Name:

17/02/6552 Reference: Location: Foynes erty Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Contact:	Conor Finne
JE Job No.:	17/14043

	17714040		1			1	1				
J E Sample No.	1-2	3-4	5-6	7-8	9-10	11-12					
Sample ID	G01	G02	G03	G04	M06	M10					
Depth	0.00	0.00	0.00	0.00	2.00	2.00			Please se	e attached r	notes for all
COC No / misc										ations and a	
Containers	٧J	٧J	٧J	٧J	٧J	٧J					
Sample Date	14/06/2017		14/06/2017	14/06/2017		14/06/2017					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil					
Batch Number	1	1	1	1	1	1			LOD/LOR	Units	Method No.
Date of Receipt	21/08/2017	21/08/2017	21/08/2017	21/08/2017	21/08/2017	21/08/2017					140.
TPH CWG											
Aliphatics	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	malka	TM36/PM12
>C5-C6# >C6-C8#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	mg/kg mg/kg	TM36/PM12
>C8-C10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	mg/kg	TM36/PM12
>C10-C12 [#]	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			<0.2	mg/kg	TM5/PM16
>C12-C16 #	<4	<4	<4	<4	<4	<4			<4	mg/kg	TM5/PM16
>C16-C21#	<7	<7	<7	<7	<7	<7			<7	mg/kg	TM5/PM16
>C21-C35#	1980	450	295	909	116	94			<7	mg/kg	TM5/PM16
Total aliphatics C5-35	1980	450	295	909	116	94			<19	mg/kg	TM5/TM36/PM12/PM16
Aromatics											
>C5-EC7 #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	mg/kg	TM36/PM12
>EC7-EC8#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	mg/kg	TM36/PM12
>EC8-EC10#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	mg/kg	TM36/PM12
>EC10-EC12#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			<0.2	mg/kg	TM5/PM16
>EC12-EC16#	<4	<4	<4	<4	<4	<4			<4	mg/kg	TM5/PM16
>EC16-EC21# >EC21-EC35#	<7 96	<7 58	<7 42	<7 88	<7 25	<7 <7			<7 <7	mg/kg	TM5/PM16 TM5/PM16
Total aromatics C5-35 #	96	58	42	88	25	<19			<19	mg/kg mg/kg	TM5/TM36/PM12/PM16
Total aliphatics and aromatics(C5-35)	2076	508	337	997	141	94			<38	mg/kg	TM5/TM36/PM12/PM16
. , , ,										3 3	
MTBE#	<5	<5	<5	<5	<5	<5			<5	ug/kg	TM31/PM12
Benzene #	<5	<5	<5	<5	<5	<5			<5	ug/kg	TM31/PM12
Toluene #	<5	11	<5	18	<5	27			<5	ug/kg	TM31/PM12
Ethylbenzene #	<5	<5	<5	<5	<5	<5			<5	ug/kg	TM31/PM12
m/p-Xylene #	<5	<5	<5	<5	<5	<5			<5	ug/kg	TM31/PM12
o-Xylene #	<5	<5	<5	<5	<5	<5			<5	ug/kg	TM31/PM12
Natural Moisture Content	83.8	76.4	48.8	49.2	46.9	59.0			<0.1	%	PM4/PM0
Total Organic Carbon #	1.81	1.68	1.45	1.32	1.71	1.53			<0.02	%	TM21/PM24
Acid Soluble Carbonate Gravimetric	30.9	29.5	32.1	33.5	34.4	25.6			<0.1	%	TM98/PM56
Marine sediments	See attached	See attached	See attached	See attached	See attached	See attached					Sub-contracted

Exova Jones Environmental

Notification of Deviating Samples

Client Name: Ground Investigations Ireland Matrix : Solid

Reference: 17/02/6552 **Location:** Foynes

Contact: Conor Finnerty

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
17/14043	1	G01	0.00	1-2	EPH, GRO, TOC	Sample holding time exceeded prior to receipt
17/14043	1	G01	0.00	1-2	GRO	Solid Samples were received at a temperature above 9°C.
17/14043	1	G02	0.00	3-4	EPH, GRO, TOC	Sample holding time exceeded prior to receipt
17/14043	1	G02	0.00	3-4	GRO	Solid Samples were received at a temperature above 9°C.
17/14043	1	G03	0.00	5-6	EPH, GRO, TOC	Sample holding time exceeded prior to receipt
17/14043	1	G03	0.00	5-6	GRO	Solid Samples were received at a temperature above 9°C.
17/14043	1	G04	0.00	7-8	EPH, GRO, TOC	Sample holding time exceeded prior to receipt
17/14043	1	G04	0.00	7-8	GRO	Solid Samples were received at a temperature above 9°C.
17/14043	1	M06	2.00	9-10	EPH, GRO, TOC	Sample holding time exceeded prior to receipt
17/14043	1	M06	2.00	9-10	GRO	Solid Samples were received at a temperature above 9°C.
17/14043	1	M10	2.00	11-12	EPH, GRO, TOC	Sample holding time exceeded prior to receipt
17/14043	1	M10	2.00	11-12	GRO	Solid Samples were received at a temperature above 9°C.

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 17/14043

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS) accredited - UK.
SA	ISO17025 (SANAS) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

JE Job No: 17/14043

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.				
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5/TM36	Hydrocarbons (EPH) including column fractionation in the carbon range of C10-35 into aliphatic and aromatic fractions by GC-FID. TM036: Modified USEPA 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C5-10 by headspace GC-FID. Including determination of	PM12/PM16	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis./Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5/TM36	RMGVSาทใหม่โดยใช้จะครั้งใช้ค่าวิธีกรั้งเข้าที่กิลแบบ or solvent และเลขายา enuleum Hydrocarbons (EPH) including column fractionation in the carbon range of C10-35 into aliphatic and aromatic fractions by GC-FID. TM036: Modified USEPA 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C5-10 by headspace GC-FID. Including determination of	PM12/PM16	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis./Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM21	Modified USEPA 415.1. Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.			AD	Yes
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM98	Acid Soluble Carbonate Gravimetric	PM56	Preparation of sample for Acid Soluble Carbonate			AD	Yes

Tel: (01) 613 6003 Fax: (01) 613 6008

Email:

reports@cityanalysts.ie

www.cityanalysts.ie

Customer

James Lombard
Ground Investigations Ireland
Catherinestown House
Hazelhatch Road
Newcastle
Co Dublin

Certificate Of Analysis

Job Number: 17-33030

Issue Number: 2

Report Date: 6 September 2017

Reason for re-issuing report: Error with first issue

Site: Foynes

PO Number: Not Supplied

Date Samples Received: 30/08/2017

Please find attached the results for the samples received at our laboratory on 30/08/2017.

Should you have any queries regarding the report or require any further services, we would be happy to discuss your requirements. For additional information about the company please log-on to our website at the above address.

Thank you for choosing City Analysts Limited. We look forward to assisting you again.

Authorised By:

Caitlin Quinn

Deputy Quality Manager

Sent By: 6 September 2017

Caitlin Quinn

Deputy Quality Manager

Notes:

Results relate only to the items tested.

Information on methods of analysis and performance characteristics is available on request. Any opinions or interpretations indicated are outside the scope of our INAB accreditation.

This test report shall not be reproduced except in full or with written approval of City Analysts Limited.

Tel: (01) 613 6003 Fax: (01) 613 6008

Email:

reports@cityanalysts.ie

www.cityanalysts.ie

Certificate Of Analysis

James Lombard Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle

Customer

Co Dublin

Report Reference: 17-33030

Report Version: 2

Site: Foynes

Date of Sampling: Sample Description: G01 @0.00m 30/05/2017 Sample Type: Soil Date Sample Received: 30/08/2017

Lab Reference Number: 370562

Site / Method Ref.	Analysis Start Date	Parameter	Result	Units		
S/S3239	04/09/2017	Inhibitory effect to Vibrio fischeri	>45% giving <2.2 Toxic Units	%vol/vol		
Toxicity Chemistry Suite						
S/S3011	04/09/2017	Conductivity @ 20 ℃	1941.0	uS/cm @20℃		
S/S1003	04/09/2017	Dissolved Oxygen	7.20	mg/l O2		
S/S1041	04/09/2017	PH	7.47	pH Unit		
S/S3011	04/09/2017	Salinity	1.0	ppt		

Test Parameter	Concentration % vol. / vol.	Toxic Units	95% Confidence Limits % vol./vol.	Method of Calculation
Marine Bacterium	>45	<2.2		

Comments

Marine Bacterium 30 min EC50 to Vibrio fischeri 13 % light inhibition occurred at 45 % vol./vol. 17 % light inhibition occurred at 22.5 % vol./vol. - compared to the control.

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored indefinitely.

NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count

Site D = Analysed at City Analysts Dublin. Site S = Analysed at City Analysts Shannon

Tel: (01) 613 6003 Fax: (01) 613 6008

Email:

30/05/2017

30/08/2017

Report Reference: 17-33030

Report Version: 2

Date of Sampling:

Date Sample Received:

reports@cityanalysts.ie

www.cityanalysts.ie

Certificate Of Analysis

Customer

James Lombard Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co Dublin

Site: Foynes

Sample Description: G01 @0.00m

Sample Type: Soil

Lab Reference Number: 370562

Test Method(s): (see Appendix 1)

Method 2: Marine Bacterium

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

Note:
PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored

NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count

Site D = Analysed at City Analysts Dublin. Site S = Analysed at City Analysts Shannon

Tel: (01) 613 6003 Fax: (01) 613 6008

Email:

reports@cityanalysts.ie

www.cityanalysts.ie

Certificate Of Analysis

Customer

James Lombard Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co Dublin

Report Reference: 17-33030

Report Version: 2

Site: Foynes

Date of Sampling: Sample Description: G02 @0.00m 24/05/2017 Sample Type: Soil Date Sample Received: 30/08/2017

Lab Reference Number: 370563

Site / Method Ref.	Analysis Start Date	Parameter	Result	Units	
S/S3239	04/09/2017	Inhibitory effect to Vibrio fischeri	>45% giving <2.2 Toxic Units	%vol/vol	
Toxicity Chemistry Suite					
S/S3011	04/09/2017	Conductivity @ 20 ℃	201.0	uS/cm @20℃	
S/S1003	04/09/2017	Dissolved Oxygen	6.90	mg/l O2	
S/S1041	04/09/2017	PH	7.30	pH Unit	
S/S3011	04/09/2017	Salinity	0.1	ppt	

Test Parameter	Concentration % vol. / vol.	Toxic Units	95% Confidence Limits % vol./vol.	Method of Calculation
Marine Bacterium	>45	<2.2		

Comments

Marine Bacterium 30 min EC50 to Vibrio fischeri 3 % light inhibition occurred at 45 % vol./vol. 3 % light inhibition occurred at 22.5 % vol./vol.

- compared to the control.

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored indefinitely.

NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count

Site D = Analysed at City Analysts Dublin. Site S = Analysed at City Analysts Shannon

Tel: (01) 613 6003 Fax: (01) 613 6008

Email:

reports@cityanalysts.ie

www.cityanalysts.ie

Certificate Of Analysis

James Lombard

Customer

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co Dublin

Report Reference: 17-33030

Report Version: 2

Site: Foynes

Date of Sampling: Sample Description: G02 @0.00m 24/05/2017 Sample Type: Soil Date Sample Received: 30/08/2017

Lab Reference Number: 370563

Test Method(s): (see Appendix 1)

Method 2: Marine Bacterium

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

Note:
PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored

NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count

Tel: (01) 613 6003 Fax: (01) 613 6008

Email:

reports@cityanalysts.ie

www.cityanalysts.ie

Certificate Of Analysis

Customer

James Lombard Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co Dublin

Report Reference: 17-33030

Report Version: 2

Site: Foynes

Date of Sampling: Sample Description: G03 @0.00m 29/05/2017 Sample Type: Soil Date Sample Received: 30/08/2017

Lab Reference Number: 370564

Site / Method Ref.	Analysis Start Date	Parameter	Result	Units
S/S3239	04/09/2017	Inhibitory effect to Vibrio fischeri	>45% giving <2.2 Toxic Units	%vol/vol
Toxicity Chem	istry Suite			
S/S3011	04/09/2017	Conductivity @ 20 ℃	1962.0	uS/cm @20℃
S/S1003	04/09/2017	Dissolved Oxygen	7.50	mg/l O2
S/S1041	04/09/2017	РН	7.24	pH Unit
S/S3011	04/09/2017	Salinity	1.0	ppt

Test Parameter	Concentration % vol. / vol.	Toxic Units	95% Confidence Limits % vol./vol.	
Marine Bacterium	>45	<2.2		

Comments

Marine Bacterium

30 min EC50 to Vibrio fischeri

25 % light inhibition occurred at 45 % vol./vol.

24 % light inhibition occurred at 22.5 % vol./vol.

23 % light inhibition occurred at 11.25 % vol./vol.

10 % light inhibition occurred at 5.63 % vol./vol.

- compared to the control.

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

Note:

PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored indefinitely.

NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count

Tel: (01) 613 6003 Fax: (01) 613 6008

Email:

reports@cityanalysts.ie

www.cityanalysts.ie

Certificate Of Analysis

James Lombard

Customer

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co Dublin

Report Reference: 17-33030

Report Version: 2

Site: Foynes

G03 @0.00m Date of Sampling: Sample Description: 29/05/2017 Sample Type: Soil Date Sample Received: 30/08/2017

Lab Reference Number: 370564

Test Method(s): (see Appendix 1)

Method 2: Marine Bacterium

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

Note:
PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored

NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count

Dublin 4.

Tel: (01) 613 6003 Fax: (01) 613 6008

Email:

reports@cityanalysts.ie

www.cityanalysts.ie

Certificate Of Analysis

James Lombard

Customer

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co Dublin

Report Reference: 17-33030

Report Version: 2

Site: Foynes

Date of Sampling: Sample Description: G04 @0.00m 29/05/2017 Sample Type: Soil Date Sample Received: 30/08/2017

Lab Reference Number: 370565

Site / Method Ref.	Analysis Start Date	Parameter	Result	Units
S/S3239	04/09/2017	Inhibitory effect to Vibrio fischeri	>45% giving <2.2 Toxic Units	%vol/vol
Toxicity Chem	istry Suite			
S/S3011	04/09/2017	Conductivity @ 20 ℃	1844.0	uS/cm @20℃
S/S1003	04/09/2017	Dissolved Oxygen	6.10	mg/l O2
S/S1041	04/09/2017	РН	7.20	pH Unit
S/S3011	04/09/2017	Salinity	0.9	ppt

Test Parameter	Concentration % vol. / vol.	Toxic Units	95% Confidence Limits % vol./vol.	
Marine Bacterium	>45	>2.2		

Comments

Marine Bacterium

30 min EC50 to Vibrio fischeri

25 % light inhibition occurred at 45 % vol./vol.

25 % light inhibition occurred at 22.5 % vol./vol.

22 % light inhibition occurred at 11.25 % vol./vol.

18 % light inhibition occurred at 5.63 % vol./vol.

- compared to the control.

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

Note:

PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored indefinitely.

NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count

Tel: (01) 613 6003 Fax: (01) 613 6008

Email:

Report Reference: 17-33030

Report Version: 2

reports@cityanalysts.ie

www.cityanalysts.ie

Certificate Of Analysis

James Lombard Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle

Customer

Co Dublin

Site: Foynes

Date of Sampling: Sample Description: G04 @0.00m 29/05/2017 Sample Type: Soil Date Sample Received: 30/08/2017

Lab Reference Number: 370565

Test Method(s): (see Appendix 1)

Method 2: Marine Bacterium

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

Note:
PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored

NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count

Dublin 4.

Tel: (01) 613 6003 Fax: (01) 613 6008

Email:

reports@cityanalysts.ie

www.cityanalysts.ie

Certificate Of Analysis

James Lombard

Customer

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co Dublin

Report Reference: 17-33030

Report Version: 2

Site: Foynes

Date of Sampling: Sample Description: M10/G05 @2.00m 14/06/2017 Sample Type: Date Sample Received: 30/08/2017 Soil

Lab Reference Number: 370566

Site / Method Ref.	Analysis Start Date	Parameter	Result	Units
S/S3239	04/09/2017	Inhibitory effect to Vibrio fischeri	18.32% giving 5.45 Toxic Units	%vol/vol
Toxicity Chem	istry Suite			
S/S3011	04/09/2017	Conductivity @ 20 ℃	1713.0	uS/cm @20℃
S/S1003	04/09/2017	Dissolved Oxygen	8.66	mg/l O2
S/S1041	04/09/2017	РН	7.18	pH Unit
S/S3011	04/09/2017	Salinity	0.9	ppt

Test Parameter	Concentration % vol. / vol.	Toxic Units	95% Confidence Limits % vol./vol.	Method of Calculation
Marine Bacterium	18.32	5.45	0.36-921	Microtox

Comments

Marine Bacterium

30 min EC50 to Vibrio fischeri

18 % light inhibition occurred at 45 % vol./vol.

18 % light inhibition occurred at 22.5 % vol./vol.

24 % light inhibition occurred at 11.25 % vol./vol.

14 % light inhibition occurred at 5.63 % vol./vol.

- compared to the control.

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

Note:

PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored indefinitely.

NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count

Tel: (01) 613 6003 Fax: (01) 613 6008

Email:

Report Reference: 17-33030

Report Version: 2

reports@cityanalysts.ie

www.cityanalysts.ie

Certificate Of Analysis

Customer James Lombard

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co Dublin

Site: Foynes

Date of Sampling: Sample Description: M10/G05 @2.00m 14/06/2017 Sample Type: Soil Date Sample Received: 30/08/2017

Lab Reference Number: 370566

Test Method(s): (see Appendix 1)

Method 2: Marine Bacterium

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

Note:
PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored

NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count

Tel: (01) 613 6003

Email:

reports@cityanalysts.ie

Fax: (01) 613 6008

www.cityanalysts.ie

Certificate Of Analysis

James Lombard Ground Investigations Ireland

Customer

Catherinestown House Hazelhatch Road Newcastle Co Dublin

Report Reference: 17-33030

Report Version: 2

Site: Foynes

Date of Sampling: Sample Description: M06/G08 @2.00m 06/05/2017 Sample Type: Soil Date Sample Received: 30/08/2017

Lab Reference Number: 370567

Site / Method Ref.	Analysis Start Date	Parameter	Result	Units
S/S3239	04/09/2017	Inhibitory effect to Vibrio fischeri	>45% giving <2.2 Toxic Units	%vol/vol
Toxicity Chem	istry Suite			
S/S3011	04/09/2017	Conductivity @ 20 ℃	212.0	uS/cm @20°C
S/S1003	04/09/2017	Dissolved Oxygen	8.50	mg/l O2
S/S1041	04/09/2017	PH	7.00	pH Unit
S/S3011	04/09/2017	Salinity	0.1	ppt

Test Parameter	Concentration % vol. / vol.	Toxic Units	95% Confidence Limits % vol./vol.	Method of Calculation
Marine Bacterium	>45	<2.2		

Comments

Marine Bacterium 30 min EC50 to Vibrio fischeri

10 % light inhibition occurred at 45 % vol./vol.

11 % light inhibition occurred at 22.5 % vol./vol.

10 % light inhibition occurred at 11.25 % vol./vol.

- compared to the control.

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored indefinitely.

NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count

Tel: (01) 613 6003 Fax: (01) 613 6008

Email:

reports@cityanalysts.ie

www.cityanalysts.ie

Certificate Of Analysis

James Lombard

Customer

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co Dublin

Report Reference: 17-33030

Report Version: 2

Site: Foynes

M06/G08 @2.00m Date of Sampling: Sample Description: 06/05/2017 Sample Type: Soil Date Sample Received: 30/08/2017

Lab Reference Number: 370567

Test Method(s): (see Appendix 1) Method 2: Marine Bacterium

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

Note:
PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored

NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count

Report Reference: 17-33030

Report Version: 2

Appendix 1

Toxicity Test Methods and Procedures

1. Freshwater Crustacean

Method 3235 based on ISO 6341:2012: 'Water quality – Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea)

3. Marine Copepod

Method 3238 based on ISO 14669:1999: 'Water quality – Determination of acute lethal toxicity to marine copepods (Copepoda, Crustacea)'

2. Marine Bacterium

Method 3239 based on ISO 11348-3:2007: 'Water quality - Determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test) – Part 3: Method using freeze-dried bacteria'

4. Marine Algae

Method 3237 based on ISO 10253:2006: 'Water quality - Marine algal growth inhibition test with Skeletonema costatum and Phaeodactylum tricornutum'

5. Freshwater Algae

Method 3236 based on ISO 8692:2012: 'Water quality – Freshwater algal growth inhibition test with unicellular green algae'

6. Freshwater Plant

Based on ISO 20079:2005: 'Water quality – Determination of the toxic effect of water constituents and waste water to duckweed (Lemna minor) – Duckweed growth inhibition test'

7. Marine Fish

Method based on OECD 1992: Guideline 203: - 'Fish, acute toxicity test'

8. Freshwater Fish

Based on OECD 1992: Guideline 203: - 'Fish, acute toxicity test'

9. Estuarine Crustacean

Based on MAFF SOP No. BEG/030:1996: 'Brown Shrimp (Crangon crangon) 96 h acute toxicity for liquid effluents and wastes'

10. Sampling

Based on ISO 5667-16:1998: 'Water quality - Sampling - Part 16: Guidance on biotesting of samples'

11. Eluate Generation

Based on DIN 38 414 part 4, 1984: – 'Sludge and Sediments (Group S) – Determination of leachability by water (S4)

Registered Address: Exova (UK) Ltd, Lochend Industrial Estate, Newbridge, Midlothian, EH28 8PL

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland

Attention : Conor Finnerty

Date: 23rd August, 2017

Your reference :

Our reference: Test Report 17/10097 Batch 1

Location : Foynes Port

Date samples received: 9th June, 2017

Status: Final report

Issue:

Thirty samples were received for analysis on 9th June, 2017 of which three were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Bruce Leslie

Project Co-ordinator

Client Name:

Ground Investigations Ireland

Report : Solid

Reference:

Location: Foynes Port
Contact: Conor Finnerty

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

JE Job No.:	17/10097						-		
J E Sample No.	67-69	70-72	76-78						
Sample ID	BHL01	BHL01	BHL01						
Depth	1.0	3.0	7.0						
COC No / misc								e attached r ations and a	
Containers	VJT	VJT	VJT						
Sample Date	25/05/2017	25/05/2017	25/05/2017						
Sample Type	Soil	Soil	Soil						
Batch Number	1	1	1				100/100	11.20	Method
Date of Receipt	09/06/2017	09/06/2017	09/06/2017				LOD/LOR	Units	No.
Aluminium	1975	2233	6128				<50	mg/kg	TM30/PM15
Arsenic#	5.6	3.5	6.0				<0.5	mg/kg	TM30/PM15
Barium #	297	39	17				<1	mg/kg	TM30/PM15
Beryllium	<0.5	<0.5	<0.5				<0.5	mg/kg	TM30/PM15
Cadmium#	0.8	0.3	0.2				<0.1	mg/kg	TM30/PM15
Chromium #	17.7	19.2	30.7				<0.5	mg/kg	TM30/PM15
Copper#	8	5	5				<1	mg/kg	TM30/PM15
Iron	5246	4702	14600				<20	mg/kg	TM30/PM15
Lead [#]	19	9	7				<5	mg/kg	TM30/PM15
Mercury#	<0.1	<0.1	<0.1				<0.1	mg/kg	TM30/PM15
Nickel #	11.1	6.6	14.0				<0.7	mg/kg	TM30/PM15
Selenium #	<1	<1	<1				<1	mg/kg	TM30/PM15
Sulphur as S	0.06	0.07	0.71				<0.01	%	TM30/PM15
Total Sulphate as SO4 #	508	538	2645				<50	mg/kg	TM50/PM29
Vanadium	7 1.4	6 2.0	18				<1	mg/kg	TM30/PM15
Water Soluble Boron # Zinc #	56	2.0	7.0 35				<0.1 <5	mg/kg mg/kg	TM74/PM32 TM30/PM15
ZIIIC	30	23	33				ν,	mg/kg	11000/11010
PAH MS									
Naphthalene #	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03				<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05	<0.05				<0.05	mg/kg	TM4/PM8
Fluorene#	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Phenanthrene #	<0.03	<0.03	<0.03				<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Fluoranthene #	<0.03	<0.03	<0.03				<0.03	mg/kg	TM4/PM8
Pyrene #	<0.03	<0.03	<0.03				<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene#	<0.06	<0.06	<0.06				<0.06	mg/kg	TM4/PM8
Chrysene#	<0.02	<0.02	<0.02				<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	<0.07	<0.07	<0.07				<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene#	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8 TM4/PM8
Coronene PAH 17 Total	<0.04 <0.64	<0.04 <0.64	<0.04 <0.64				<0.04 <0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	<0.64	<0.64	<0.64				<0.64	mg/kg mg/kg	TM4/PM8
Benzo(k)fluoranthene	<0.03	<0.03	<0.03				<0.03	mg/kg	TM4/PM8
PAH Surrogate % Recovery	89	94	92				<0.02	%	TM4/PM8
Canagata /artocovery	33	34	32				.0	,,,	//1 1410
Methyl Tertiary Butyl Ether #	<2	<2	<2				<2	ug/kg	TM15/PM10
Benzene #	<3	<3	<3				<3	ug/kg	TM15/PM10
Toluene #	<3	<3	<3				<3	ug/kg	TM15/PM10
Ethylbenzene #	<3	<3	<3				<3	ug/kg	TM15/PM10

Client Name:

Ground Investigations Ireland

Report : Solid

Reference:

Location: Foynes Port
Contact: Conor Finnerty

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

JE JOD NO.:	17/10097						_		
J E Sample No.	67-69	70-72	76-78						
Sample ID	BHL01	BHL01	BHL01						
Depth	1.0	3.0	7.0						
COC No / misc								e attached rations and a	
Containers	_	VJT	VJT						
Sample Date	25/05/2017	25/05/2017	25/05/2017						
Sample Type	Soil	Soil	Soil						
Batch Number	1	1	1				LOD/LOR	Units	Method
Date of Receipt	09/06/2017	09/06/2017	09/06/2017				LOD/LOR	Offics	No.
p/m-Xylene #	<5	<5	<5				<5	ug/kg	TM15/PM10
o-Xylene #	<3	<3	<3				<3	ug/kg	TM15/PM10
Surrogate Recovery Toluene D8	100	100	102				<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	96	100	103				<0	%	TM15/PM10
TPH CWG									
Aliphatics >C5-C6#	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>C6-C8#	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>C10-C12#	<0.2	<0.2	<0.2				<0.2	mg/kg	TM5/PM16
>C12-C16#	<4	<4	<4				<4	mg/kg	TM5/PM16
>C16-C21#	<7	<7	<7				<7	mg/kg	TM5/PM16
>C21-C35#	62	64	<7				<7	mg/kg	TM5/PM16
Total aliphatics C5-35	62	64	<19				<19	mg/kg	TM5/TM36/PM12/PM16
Aromatics									
>C5-EC7#	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>EC7-EC8#	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>EC8-EC10# >EC10-EC12#	<0.1 <0.2	<0.1	<0.1 <0.2				<0.1 <0.2	mg/kg mg/kg	TM36/PM12 TM5/PM16
>EC10-EC12 >EC12-EC16#	<4	<4	<4				<4	mg/kg	TM5/PM16
>EC16-EC21 #	<7	<7	<7				<7	mg/kg	TM5/PM16
>EC21-EC35#	33	31	<7				<7	mg/kg	TM5/PM16
Total aromatics C5-35#	33	31	<19				<19	mg/kg	TM5/TM36/PM12/PM16
Total aliphatics and aromatics(C5-35)	95	95	<38				<38	mg/kg	TM5/TM36/PM12/PM16
DOD 77									TM4.C/DM0
PCB 77 PCB 81	<5 <5	-	-				<5 <5	ug/kg ug/kg	TM16/PM8 TM16/PM8
PCB 105	<5	-	-				<5	ug/kg	TM16/PM8
PCB 114	<5	-	-				<5	ug/kg	TM16/PM8
PCB 118	<5	-	-				<5	ug/kg	TM16/PM8
PCB 123	<5	-	-				<5	ug/kg	TM16/PM8
PCB 126	<5	-	-				<5	ug/kg	TM16/PM8
PCB 156	<5	-	-				<5	ug/kg	TM16/PM8
PCB 157	<5	-	-				<5	ug/kg	TM16/PM8
PCB 167	<5	-	-				<5	ug/kg	TM16/PM8
PCB 169 PCB 189	<5 <5	-	-				<5 <5	ug/kg	TM16/PM8 TM16/PM8
Total 12 PCBs	<5 <60	-	-				<5 <60	ug/kg ug/kg	TM16/PM8
10.01 12 1 000	\00	-	-				~30	ug/kg	TIVITO/FIVIO
Resorcinol	<0.01	<0.01	<0.01				<0.01	mg/kg	TM26/PM21
Catechol	<0.01	<0.01	<0.01				<0.01	mg/kg	TM26/PM21
Phenol [#]	0.01	<0.01	<0.01				<0.01	mg/kg	TM26/PM21
m/p-cresol#	<0.02	<0.02	<0.02				<0.02	mg/kg	TM26/PM21

Client Name:

Ground Investigations Ireland

Report : Solid

Reference:

Location: Foynes Port
Contact: Conor Finnerty

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Contact: Conor Final JE Job No.: 17/10097

JE Job No.:	17/10097			 		 			
J E Sample No.	67-69	70-72	76-78						
Sample ID	BHL01	BHL01	BHL01						
Depth	1.0	3.0	7.0				Please se	e attached n	otes for all
COC No / misc								ations and a	
Containers	VJT	VJT	VJT						
Sample Date	25/05/2017	25/05/2017	25/05/2017						
Sample Type	Soil	Soil	Soil						
Batch Number	1	1	1						
Date of Receipt			09/06/2017				LOD/LOR	Units	Method No.
o-cresol	<0.01	<0.01	<0.01				<0.01	mg/kg	TM26/PM21
Total cresols	<0.03	<0.03	<0.03				<0.03	mg/kg	TM26/PM21
Xylenols#	<0.06	<0.06	<0.06				<0.06	mg/kg	TM26/PM21
1-naphthol	<0.01	<0.01	<0.01				<0.01	mg/kg	TM26/PM21
2,3,5-trimethyl phenol #	<0.01	<0.01	<0.01				<0.01	mg/kg	TM26/PM21
2-isopropylphenol #	<0.01	<0.01	<0.01				<0.01	mg/kg	TM26/PM21
Total Speciated Phenols HPLC	<0.15	<0.15	<0.15				<0.15	mg/kg	TM26/PM21
Natural Moisture Content	10.6	11.8	34.3				<0.1	%	PM4/PM0
Hexavalent Chromium #	<0.3	<0.3	<0.3				<0.3	mg/kg	TM38/PM20
Sulphate as SO4 (2:1 Ext) #	0.0779	0.1282	0.3813				<0.0015	g/l	TM38/PM20
Total Cyanide #	<0.5	<0.5	<0.5				<0.5	mg/kg	TM89/PM45
Organic Matter	0.5	0.3	1.1				<0.2	%	TM21/PM24
Dibutyltin	<100	-	-				<100	ug/kg	TM94/PM48
Tributyltin	<100	-	-				<100	ug/kg	TM94/PM48
Triphenyltin	<100	-	-				<100	ug/kg	TM94/PM48
pH#	7.91	8.20	8.21				<0.01	pH units	TM73/PM11

Client Name: Ground Investigations Ireland

Reference:

Location: Foynes Port
Contact: Conor Finnerty
JE Job No.: 17/10097

SVOC Report : Solid

JE Job No.:	17/10097									
J E Sample No.	67-69	70-72	76-78							
Sample ID	BHL01	BHL01	BHL01							
Depth COC No / misc	1.0	3.0	7.0						e attached nations and a	
Containers	VJT	VJT	VJT							,
Sample Date	25/05/2017	25/05/2017								
Sample Type	Soil	Soil	Soil							
Batch Number	1	1	1					1.00/1.00	Llaita	Method
Date of Receipt	09/06/2017	09/06/2017	09/06/2017					LOD/LOR	Units	No.
SVOC MS										
Phenois										
2-Chlorophenol#	<10	<10	<10					<10	ug/kg	TM16/PM8
2-Methylphenol	<10	<10	<10					<10	ug/kg	TM16/PM8
2-Nitrophenol	<10	<10	<10					<10	ug/kg	TM16/PM8
2,4-Dichlorophenol #	<10	<10	<10					<10	ug/kg	TM16/PM8
2,4-Dimethylphenol 2,4,5-Trichlorophenol	<10 <10	<10 <10	<10 <10					<10 <10	ug/kg	TM16/PM8 TM16/PM8
2,4,6-Trichlorophenol	<10	<10	<10					<10	ug/kg ug/kg	TM16/PM8
4-Chloro-3-methylphenol	<10	<10	<10					<10	ug/kg	TM16/PM8
4-Methylphenol	<10	<10	<10					<10	ug/kg	TM16/PM8
4-Nitrophenol	<10	<10	<10					<10	ug/kg	TM16/PM8
Pentachlorophenol	<10	<10	<10					<10	ug/kg	TM16/PM8
Phenol#	<10	<10	<10					<10	ug/kg	TM16/PM8
PAHs										
2-Chloronaphthalene # 2-Methylnaphthalene # Phthalates	<10 <10	<10 <10	<10 <10					<10 <10	ug/kg ug/kg	TM16/PM8 TM16/PM8
Bis(2-ethylhexyl) phthalate	<100	<100	<100					<100	ug/kg	TM16/PM8
Butylbenzyl phthalate	<100	<100	<100					<100	ug/kg	TM16/PM8
Di-n-butyl phthalate	<100	<100	<100					<100	ug/kg	TM16/PM8
Di-n-Octyl phthalate	<100	<100	<100					<100	ug/kg	TM16/PM8
Diethyl phthalate	<100	<100	<100					<100	ug/kg	TM16/PM8
Dimethyl phthalate * Other SVOCs	<100	<100	<100					<100	ug/kg	TM16/PM8
1,2-Dichlorobenzene	<10	<10	<10					<10	ug/kg	TM16/PM8
1,2,4-Trichlorobenzene * 1,3-Dichlorobenzene	<10 <10	<10 <10	<10 <10					<10 <10	ug/kg ug/kg	TM16/PM8 TM16/PM8
1,4-Dichlorobenzene	<10	<10	<10					<10	ug/kg ug/kg	TM16/PM8
2-Nitroaniline	<10	<10	<10					<10	ug/kg	TM16/PM8
2,4-Dinitrotoluene	<10	<10	<10					<10	ug/kg	TM16/PM8
2,6-Dinitrotoluene	<10	<10	<10					<10	ug/kg	TM16/PM8
3-Nitroaniline	<10	<10	<10					<10	ug/kg	TM16/PM8
4-Bromophenylphenylether #	<10	<10	<10					<10	ug/kg	TM16/PM8
4-Chloroaniline	<10	<10	<10					<10	ug/kg	TM16/PM8
4-Chlorophenylphenylether	<10	<10	<10					<10	ug/kg	TM16/PM8
4-Nitroaniline	<10	<10	<10					<10	ug/kg	TM16/PM8
Azobenzene	<10	<10	<10 <10					<10	ug/kg	TM16/PM8 TM16/PM8
Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether	<10 <10	<10 <10	<10					<10 <10	ug/kg ug/kg	TM16/PM8
Carbazole	<10	<10	<10					<10	ug/kg ug/kg	TM16/PM8
Dibenzofuran #	<10	<10	<10					<10	ug/kg	TM16/PM8
Hexachlorobenzene	<10	<10	<10					<10	ug/kg	TM16/PM8
Hexachlorobutadiene#	<10	<10	<10					<10	ug/kg	TM16/PM8
Hexachlorocyclopentadiene	<10	<10	<10					<10	ug/kg	TM16/PM8
Hexachloroethane	<10	<10	<10					<10	ug/kg	TM16/PM8
Isophorone #	<10	<10	<10					<10	ug/kg	TM16/PM8
N-nitrosodi-n-propylamine #	<10	<10	<10					<10	ug/kg	TM16/PM8
Nitrobenzene #	<10	<10	<10 sv					<10	ug/kg	TM16/PM8
Surrogate Recovery 2-Fluorobiphenyl Surrogate Recovery p-Terphenyl-d14	91 102	87 99	68 ^{sv} 95					<0 <0	%	TM16/PM8 TM16/PM8
Surrogate Necovery p-1 elphenyl-u14	102	99	93					ν.	/0	TIVITO/FIVIO
										ļ
										ļ
										
										1
	l	l	l	l		<u> </u>	<u> </u>	Ī		l

Client Name: Ground Investigations Ireland

Reference:

Location: Foynes Port
Contact: Conor Finnerty
JE Job No.: 17/10097

VOC Report : Solid

JE JOD NO.:	17/10097											
J E Sample No.	67-69	70-72	76-78									
Sample ID	BHL01	BHL01	BHL01									
Depth	1.0	3.0	7.0							Please se	e attached n	notes for all
COC No / misc										abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT									
Sample Date Sample Type	25/05/2017 Soil	25/05/2017 Soil	25/05/2017 Soil									
Batch Number	1	1	1									Method
Date of Receipt	09/06/2017	09/06/2017								LOD/LOR	Units	No.
VOC MS												
Dichlorodifluoromethane	<2	<2	<2							<2	ug/kg	TM15/PM10
Methyl Tertiary Butyl Ether # Chloromethane #	<2 <3	<2 <3	<2 <3							<2 <3	ug/kg ug/kg	TM15/PM10 TM15/PM10
Vinyl Chloride	<2	<2	<2							<2	ug/kg	TM15_A/PM10
Bromomethane	<1	<1	<1							<1	ug/kg	TM15/PM10
Chloroethane #	<2	<2	<2							<2	ug/kg	TM15/PM10
Trichlorofluoromethane #	<2	<2	<2							<2	ug/kg	TM15/PM10
1,1-Dichloroethene (1,1 DCE) * Dichloromethane (DCM) *	<6 <30	<6 <30	<6 <30							<6 <30	ug/kg ug/kg	TM15/PM10 TM15/PM10
trans-1-2-Dichloroethene #	<3	<3	<3							<3	ug/kg ug/kg	TM15/PM10
1,1-Dichloroethane#	<3	<3	<3							<3	ug/kg	TM15/PM10
cis-1-2-Dichloroethene #	<3	<3	<3							<3	ug/kg	TM15/PM10
2,2-Dichloropropane	<4	<4	<4							<4	ug/kg	TM15/PM10 TM15/PM10
Bromochloromethane # Chloroform #	<3 <3	<3 <3	<3 <3							<3 <3	ug/kg ug/kg	TM15/PM10 TM15/PM10
1,1,1-Trichloroethane#	<3	<3	<3							<3	ug/kg	TM15/PM10
1,1-Dichloropropene #	<3	<3	<3							<3	ug/kg	TM15/PM10
Carbon tetrachloride #	<4	<4	<4							<4	ug/kg	TM15/PM10
1,2-Dichloroethane#	<4	<4	<4							<4	ug/kg	TM15/PM10
Benzene # Trichloroethene (TCE) #	<3 <3	<3 <3	<3 <3							<3 <3	ug/kg ug/kg	TM15/PM10 TM15/PM10
1,2-Dichloropropane #	<6	<6	<6							<6	ug/kg	TM15/PM10
Dibromomethane #	<3	<3	<3							<3	ug/kg	TM15/PM10
Bromodichloromethane #	<3	<3	<3							<3	ug/kg	TM15/PM10
cis-1-3-Dichloropropene	<4	<4	<4							<4	ug/kg	TM15/PM10 TM15/PM10
Toluene # trans-1-3-Dichloropropene	<3 <3	<3 <3	<3 <3							<3 <3	ug/kg ug/kg	TM15/PM10
1,1,2-Trichloroethane #	<3	<3	<3							<3	ug/kg	TM15/PM10
Tetrachloroethene (PCE)#	<3	<3	<3							<3	ug/kg	TM15/PM10
1,3-Dichloropropane #	<3	<3	<3							<3	ug/kg	TM15/PM10
Dibromochloromethane #	<3 <3	<3	<3							<3	ug/kg	TM15/PM10 TM15/PM10
1,2-Dibromoethane # Chlorobenzene #	<3 <3	<3 <3	<3 <3							<3 <3	ug/kg ug/kg	TM15/PM10
1,1,1,2-Tetrachloroethane	<3	<3	<3							<3	ug/kg	TM15/PM10
Ethylbenzene #	<3	<3	<3							<3	ug/kg	TM15/PM10
p/m-Xylene #	<5	<5	<5							<5	ug/kg	TM15/PM10
o-Xylene [#] Styrene	<3 <3	<3 <3	<3 <3							<3 <3	ug/kg ug/kg	TM15/PM10 TM15_A/PM10
Bromoform	<3	<3	<3							<3	ug/kg	TM15/PM10
Isopropylbenzene #	<3	<3	<3							<3	ug/kg	TM15/PM10
1,1,2,2-Tetrachloroethane #	<3	<3	<3							<3	ug/kg	TM15/PM10
Bromobenzene #	<2	<2	<2							<2	ug/kg	TM15/PM10
1,2,3-Trichloropropane [#] Propylbenzene [#]	<4 <4	<4 <4	<4 <4							<4 <4	ug/kg ug/kg	TM15/PM10 TM15/PM10
2-Chlorotoluene	<3	<3	<3							<3	ug/kg ug/kg	TM15/PM10
1,3,5-Trimethylbenzene #	<3	<3	<3							<3	ug/kg	TM15/PM10
4-Chlorotoluene	<3	<3	<3							<3	ug/kg	TM15/PM10
tert-Butylbenzene#	<5	<5	<5							<5	ug/kg	TM15/PM10
1,2,4-Trimethylbenzene * sec-Butylbenzene *	<6 <4	<6 <4	<6 <4							<6 <4	ug/kg ug/kg	TM15/PM10 TM15/PM10
4-Isopropyltoluene #	<4	<4	<4							<4	ug/kg ug/kg	TM15/PM10
1,3-Dichlorobenzene #	<4	<4	<4							<4	ug/kg	TM15/PM10
1,4-Dichlorobenzene #	<4	<4	<4							<4	ug/kg	TM15/PM10
n-Butylbenzene#	<4	<4	<4							<4	ug/kg	TM15/PM10
1,2-Dichlorobenzene # 1,2-Dibromo-3-chloropropane #	<4 <4	<4 <4	<4 <4							<4 <4	ug/kg ug/kg	TM15/PM10 TM15/PM10
1,2-Dibromo-3-chioropropane ** 1,2,4-Trichlorobenzene **	<4 <7	<7	<4 <7							<4 <7	ug/kg ug/kg	TM15/PM10
Hexachlorobutadiene	<4	<4	<4							<4	ug/kg	TM15/PM10
Naphthalene	<27	<27	<27							<27	ug/kg	TM15/PM10
1,2,3-Trichlorobenzene #	<7	<7	<7							<7	ug/kg	TM15/PM10
Surrogate Recovery Toluene D8 Surrogate Recovery 4-Bromofluorobenzene	100 96	100 100	102 103							<0 <0	%	TM15/PM10 TM15/PM10
	30	100	103	l	L	l .	l		l	\ 0	/0	/ WITO/I WITO

Exova Jones Environmental Asbestos Analysis

Client Name: Ground Investigations Ireland

Reference:

Location: Foynes Port **Contact:** Conor Finnerty

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Jones Environmental Laboratory consultant, Jones Environmental Laboratory cannot be responsible for inaccurate or unrepresentative sampling.

Signed on behalf of Jones Environmental Laboratory:

Ryan Butterworth Asbestos Team Leader

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
17/10097	1	BHL01	1.0	68	17/08/2017	General Description (Bulk Analysis)	soil/stones
					17/08/2017	Asbestos Fibres	NAD
					17/08/2017	Asbestos Fibres (2)	NAD
					17/08/2017	Asbestos ACM	NAD
					17/08/2017	Asbestos ACM (2)	NAD
					17/08/2017	Asbestos Type	NAD
					17/08/2017	Asbestos Type (2)	NAD
					17/08/2017	Asbestos Level Screen	NAD
17/10097	1	BHL01	3.0	71	17/08/2017	General Description (Bulk Analysis)	soil/stones
					17/08/2017	Asbestos Fibres	NAD
					17/08/2017	Asbestos Fibres (2)	NAD
					17/08/2017	Asbestos ACM	NAD
					17/08/2017	Asbestos ACM (2)	NAD
					17/08/2017	Asbestos Type	NAD
					17/08/2017	Asbestos Type (2)	NAD
					17/08/2017	Asbestos Level Screen	NAD
17/10097	1	BHL01	7.0	77	17/08/2017	General Description (Bulk Analysis)	Soil/stones
					17/08/2017	Asbestos Fibres	NAD
					17/08/2017	Asbestos Fibres (2)	NAD
					17/08/2017	Asbestos ACM	NAD
					17/08/2017	Asbestos ACM (2)	NAD
					17/08/2017	Asbestos Type	NAD
					17/08/2017	Asbestos Type (2)	NAD
					17/08/2017	Asbestos Level Screen	NAD

Notification of Deviating Samples

Client Name: Ground Investigations Ireland Matrix : Solid

Reference:

Location: Foynes Port **Contact:** Conor Finnerty

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
17/10097	1	BHL01	1.0	67-69	Cyanide, EPH, GRO, PAH, Phenols, SVOC, VOC	Sample holding time exceeded prior to receipt
17/10097	1	BHL01	1.0	67-69	GRO, VOC	Solid Samples were received at a temperature above 9°C.
17/10097	1	BHL01	1.0	67-69	pH, Sulphate, Tot SO4	Sample holding time exceeded
17/10097	1	BHL01	3.0	70-72	Cyanide, EPH, GRO, PAH, Phenols, SVOC, VOC	Sample holding time exceeded prior to receipt
17/10097	1	BHL01	3.0	70-72	GRO, VOC	Solid Samples were received at a temperature above 9°C.
17/10097	1	BHL01	3.0	70-72	pH, Sulphate, Tot SO4	Sample holding time exceeded
17/10097	1	BHL01	7.0	76-78	Cyanide, EPH, GRO, PAH, Phenols, SVOC, VOC	Sample holding time exceeded prior to receipt
17/10097	1	BHL01	7.0	76-78	GRO, VOC	Solid Samples were received at a temperature above 9°C.
17/10097	1	BHL01	7.0	76-78	pH, Sulphate, Tot SO4	Sample holding time exceeded

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 17/10097

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS) accredited - UK.
SA	ISO17025 (SANAS) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.				
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	Hydrocarbons (EPH) including column fractionation in the carbon range of C10-35 into aliphatic and aromatic fractions by GC-FID. TM036: Modified USEPA 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C5-10 by headspace GC-FID. Including determination of DETEX and solvateins of Mithest fractions.	PM12/PM16	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis./Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5/TM36	PTEX.cn/kc/ladd/doc_Pf-Mohd5- Sediminiauor or solvent extracacione requierri Hydrocarbons (EPH) including column fractionation in the carbon range of C10-35 into aliphatic and aromatic fractions by GC-FID. TM036: Modified USEPA 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C5-10 by headspace GC-FID. Including determination of	PM12/PM16	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis./Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM15	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM15	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM16	Modified USEPA 8270. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM16	Modified USEPA 8270. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM21	Modified USEPA 415.1. Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.			AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM21	As received solid or water samples are extracted in Methanol: Sodium Hydroxide (0.1M NaOH) (60:40) by orbital shaker.			AR	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM21	As received solid or water samples are extracted in Methanol: Sodium Hydroxide (0.1M NaOH) (60:40) by orbital shaker.	Yes		AR	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM50	Acid soluble sulphate (Total Sulphate) analysed by ICP-OES	PM29	Dried and ground solid sample is boiled with dilute hydrochloric acid, the resulting liquor is then analysed.	Yes		AD	Yes

Exova Jones Environmental

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM74	Analysis of water soluble boron (20:1 extract) by ICP-OES.	PM32	Hot water soluble boron is extracted from dried and ground samples using a 20:1 ratio.	Yes		AD	Yes
TM89	Modified USEPA method OIA-1667. Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM45	As received solid samples are extracted with 1M NaOH by orbital shaker for Cyanide and Thiocyanate analysis.	Yes		AR	Yes
TM94	Derivatisation and extraction of Organotins. Analysis by GC-MS	PM48	Samples are pretreated and derivatised. The derviatised organotins are then extracted using hexane.			AR	Yes
TM15_A	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds, Vinyl Chloride & Styrene by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes

Registered Address: Exova (UK) Ltd, Lochend Industrial Estate, Newbridge, Midlothian, EH28 8PL

Unit 3 Deeside Point Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland

Attention : Conor Finnerty

Date: 2nd June, 2017

Your reference :

Our reference: Test Report 17/7223 Batch 1

Location: Foynes Port

Date samples received: 19th April, 2017

Status: Final report

Issue:

Nine samples were received for analysis on 19th April, 2017 of which two were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Phil Sommerton BSc Project Manager

Client Name:

Ground Investigations Ireland

Report : Solid

Reference: Location:

Foynes Port Conor Finnerty Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Contact: Conor Fin JE Job No.: 17/7223

JE JOD NO.:	17/7223								
J E Sample No.	10-12	13-15							
Sample ID	L05	L05							
Depth	1.00	3.00						e attached n	
COC No / misc							abbrevi	ations and a	cronyms
Containers	VJT	VJT							
Sample Date	10/04/2017	10/04/2017							
Sample Type	Soil	Soil							
Batch Number	1	1							
							LOD/LOR	Units	Method No.
Date of Receipt									
Aluminium	11270	10610					<50	mg/kg	TM30/PM15
Arsenic# Barium#	10.1 40	10.1 38					<0.5 <1	mg/kg mg/kg	TM30/PM15 TM30/PM15
Beryllium	0.9	0.8					<0.5	mg/kg	TM30/PM15
Cadmium [#]	0.2	0.2					<0.1	mg/kg	TM30/PM15
Chromium#	38.5	33.6					<0.5	mg/kg	TM30/PM15
Copper#	10	8					<1	mg/kg	TM30/PM15
Iron	24700	20930					<20	mg/kg	TM30/PM15
Lead [#]	24	19					<5	mg/kg	TM30/PM15
Mercury [#]	<0.1	<0.1					<0.1	mg/kg	TM30/PM15
Nickel [#]	22.6	19.9					<0.7	mg/kg	TM30/PM15
Selenium #	2	1					<1	mg/kg	TM30/PM15
Sulphur as S	0.23	0.23					<0.01	%	TM30/PM15
Total Sulphate as SO4#	2327	1692					<50	mg/kg	TM50/PM29
Vanadium	33	26					<1	mg/kg	TM30/PM15
Water Soluble Boron #	11.0	10.4					<0.1	mg/kg	TM74/PM32
Zinc#	85	73					<5	mg/kg	TM30/PM15
PAH MS									
Naphthalene #	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03					<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05					<0.05	mg/kg	TM4/PM8
Fluorene #	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Phenanthrene #	<0.03	<0.03					<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Fluoranthene #	<0.03	<0.03					<0.03	mg/kg	TM4/PM8
Pyrene #	<0.03	<0.03					<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	<0.06	<0.06					<0.06	mg/kg	TM4/PM8
Chrysene #	<0.02	<0.02					<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	<0.07	<0.07					<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene#	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene * Benzo(ghi)perylene *	<0.04	<0.04 <0.04					<0.04 <0.04	mg/kg mg/kg	TM4/PM8 TM4/PM8
Coronene	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
PAH 17 Total	<0.64	<0.64					<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	<0.05	<0.05					<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	<0.02	<0.02					<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	99	104					<0	%	TM4/PM8
Methyl Tertiary Butyl Ether #	<2	<2					<2	ug/kg	TM15/PM10
Benzene #	<3	<3					<3	ug/kg	TM15/PM10
Toluene #	<3	<3					<3	ug/kg	TM15/PM10
Ethylbenzene #	<3	<3					<3	ug/kg	TM15/PM10

Client Name:

Ground Investigations Ireland

Report: Solid

Reference: Location:

Foynes Port

Conor Finnerty

Solids: V=60q VOC jar, J=250q glass jar, T=plastic tub

Contact: JE Job No.:

17/7223 J E Sample No 10-12 13-15 Sample ID L05 L05 1.00 3.00 Depth Please see attached notes for all abbreviations and acronyms COC No / miss Containers V.IT V.IT Sample Date 10/04/2017 10/04/2017 Sample Type Batch Number Method LOD/LOR Units No. Date of Receipt 19/04/2017 19/04/201 TM15/PM10 p/m-Xylene [‡] <5 ug/kg TM15/PM1 o-Xylene # <3 <3 <3 ug/kg TM15/PM1 97 Surrogate Recovery Toluene D8 96 <0 TM15/PM10 ogate Recovery 4-Bromofluorobenze 98 97 <0 % TPH CWG Aliphatics TM36/PM12 >C5-C6# <0.1 <0.1 <0.1 mg/kg TM36/PM12 >C6-C8# <0.1 <0.1 <0.1 mg/kg >C8-C10 TM36/PM12 <0.1 <0.1 <0.1 ma/ka >C10-C12# TM5/PM16 <0.2 <0.2 <0.2 mg/kg >C12-C16# TM5/PM16 mg/kg <4 <4 <4 >C16-C21# TM5/PM16 <7 <7 ma/ka <7 >C21-C35# TM5/PM16 <7 <7 <7 ma/ka Total aliphatics C5-35 <19 <19 <19 mg/kg Aromatics >C5-EC7# TM36/PM12 <0.1 <0.1 <0.1 mg/kg TM36/PM1: >EC7-EC8# <0.1 <0.1 <0.1 mg/kg TM36/PM12 >EC8-EC10# <0.1 <0.1 <0.1 mg/kg TM5/PM16 >EC10-EC12# <0.2 <0.2 <0.2 mg/kg TM5/PM16 >EC12-EC16# mg/kg <4 >EC16-EC21# TM5/PM16 16 <7 mg/kg >EC21-EC35# TM5/PM16 79 <7 mg/kg 95 <19 <19 Total aromatics C5-35# mg/kg Total aliphatics and aromatics(C5-35) <38 <38 mg/kg <0.01 <0.01 <0.01 TM26/PM2 mg/kg Catechol <0.01 <0.01 <0.01 mg/kg TM26/PM2 <0.01 <0.01 <0.01 TM26/PM2 Phenol# mg/kg <0.02 <0.02 <0.02 mg/kg TM26/PM2 m/p-cresol# o-cresol <0.01 0.06 <0.01 mg/kg TM26/PM2 Total cresols <0.03 0.06 <0.03 mg/kg TM26/PM2 Xylenols # <0.06 <0.06 <0.06 mg/kg TM26/PM2 1-naphthol <0.01 <0.01 <0.01 mg/kg TM26/PM2 2,3,5-trimethyl phenol # <0.01 <0.01 <0.01 mg/kg TM26/PM2 2-isopropylphenol # <0.01 <0.01 <0.01 mg/kg TM26/PM2 Total Speciated Phenols HPLC <0.15 <0.15 <0.15 mg/kg TM26/PM2 Natural Moisture Content 66.8 42.5 <0.1 % PM4/PM0 Hexavalent Chromium # <0.3 <0.3 <0.3 mg/kg TM38/PM2 TM38/PM2 Sulphate as SO4 (2:1 Ext)# 0.6183 0.3366 <0.0015 g/l TM89/PM4 Total Cyanide # <0.5 <0.5 <0.5 mg/kg

Client Name:

Ground Investigations Ireland

Report : Solid

Reference:

Location: Foynes Port
Contact: Conor Finnerty

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

JE Job No.:	17/7223							_		
J E Sample No.	10-12	13-15								
Sample ID	L05	L05								
Depth	1.00	3.00								
COC No / misc		3.00						Please se abbrevi	e attached n ations and a	otes for all cronyms
Containers		VJT								
Sample Date										
Sample Type	Soil	Soil								
Batch Number	1	1						LOD/LOR	Units	Method No.
Date of Receipt										
Organic Matter	0.5	0.4						<0.2	%	TM21/PM24
Dibutyltin	<100	-						<100	ug/kg	TM94/PM48
Tributyltin	<100	-						<100	ug/kg	TM94/PM48
Triphenyltin	<100	-						<100	ug/kg	TM94/PM48
рН <i>*</i>	8.35	8.31						<0.01	pH units	TM73/PM11
P1.1	3.50	5.01						10.01	p aimo	371 1011 1
		I.	I.	1	I.		1	I		

Client Name: Ground Investigations Ireland

Reference:

Location: Foynes Port
Contact: Conor Finnerty
JE Job No.: 17/7223

SVOC Report : Solid

JE Job No.:	17/7223								
J E Sample No.	10-12	13-15							
Sample ID	L05	L05							
Depth	1.00	3.00						e attached n	
COC No / misc							abbrevi	ations and ac	cronyms
Containers	VJT	VJT							
Sample Date	10/04/2017	10/04/2017							
Sample Type	Soil	Soil							
Batch Number	1	1					LOD/LOR	Units	Method
Date of Receipt	19/04/2017	19/04/2017							No.
SVOC MS									
PhenoIs									
2-Chlorophenol#	<10	<10					<10	ug/kg	TM16/PM8
2-Methylphenol	<10	<10					<10	ug/kg	TM16/PM8
2-Nitrophenol	<10	<10					<10	ug/kg	TM16/PM8
2,4-Dichlorophenol #	<10	<10					<10	ug/kg	TM16/PM8
2,4-Dimethylphenol	<10	<10					<10	ug/kg	TM16/PM8
2,4,5-Trichlorophenol	<10	<10					<10	ug/kg	TM16/PM8
2,4,6-Trichlorophenol	<10	<10					<10	ug/kg	TM16/PM8
4-Chloro-3-methylphenol	<10	<10					<10	ug/kg	TM16/PM8
4-Methylphenol	<10	<10					<10	ug/kg	TM16/PM8
4-Nitrophenol	<10	<10					<10	ug/kg	TM16/PM8
Pentachlorophenol	<10	<10					<10	ug/kg	TM16/PM8
Phenol*	<10	<10					<10	ug/kg	TM16/PM8
PAHs								0 0	
2-Chloronaphthalene#	<10	<10					<10	ug/kg	TM16/PM8
2-Methylnaphthalene #	<10	<10					<10	ug/kg	TM16/PM8
Phthalates								-55	
Bis(2-ethylhexyl) phthalate	<100	<100					<100	ug/kg	TM16/PM8
Butylbenzyl phthalate	<100	<100					<100	ug/kg	TM16/PM8
Di-n-butyl phthalate	<100	<100					<100	ug/kg	TM16/PM8
Di-n-Octyl phthalate	<100	<100					<100	ug/kg	TM16/PM8
Diethyl phthalate	<100	<100					<100	ug/kg	TM16/PM8
Dimethyl phthalate #	<100	<100					<100	ug/kg	TM16/PM8
Other SVOCs	<100	<100					<100	ug/kg	TIVITO/FIVIO
1,2-Dichlorobenzene	<10	<10					<10	ug/kg	TM16/PM8
1,2,4-Trichlorobenzene #	<10	<10					<10	ug/kg ug/kg	TM16/PM8
1,3-Dichlorobenzene	<10	<10					<10	ug/kg ug/kg	TM16/PM8
1,4-Dichlorobenzene	<10	<10							TM16/PM8
2-Nitroaniline	<10	<10					<10	ug/kg	TM16/PM8
2,4-Dinitrotoluene	<10	<10					<10	ug/kg	TM16/PM8
							<10	ug/kg	
2,6-Dinitrotoluene	<10	<10					<10	ug/kg	TM16/PM8
3-Nitroaniline	<10	<10					<10	ug/kg	TM16/PM8
4-Bromophenylphenylether #	<10	<10					<10	ug/kg	TM16/PM8
4-Chloroaniline	<10	<10					<10	ug/kg	TM16/PM8
4-Chlorophenylphenylether	<10	<10					<10	ug/kg	TM16/PM8
4-Nitroaniline	<10	<10					<10	ug/kg	TM16/PM8
Azobenzene	<10	<10					<10	ug/kg	TM16/PM8
Bis(2-chloroethoxy)methane	<10	<10					<10	ug/kg	TM16/PM8
Bis(2-chloroethyl)ether	<10	<10					<10	ug/kg	TM16/PM8
Carbazole	<10	<10					<10	ug/kg	TM16/PM8
Dibenzofuran #	<10	<10					<10	ug/kg	TM16/PM8
Hexachlorobenzene	<10	<10					<10	ug/kg	TM16/PM8
Hexachlorobutadiene #	<10	<10					<10	ug/kg	TM16/PM8
Hexachlorocyclopentadiene	<10	<10					<10	ug/kg	TM16/PM8
Hexachloroethane	<10	<10					<10	ug/kg	TM16/PM8
Isophorone #	<10	<10					<10	ug/kg	TM16/PM8
N-nitrosodi-n-propylamine #	<10	<10					<10	ug/kg	TM16/PM8
Nitrobenzene #	<10	<10					<10	ug/kg	TM16/PM8
Surrogate Recovery 2-Fluorobiphenyl	71	56					<0	%	TM16/PM8
Surrogate Recovery p-Terphenyl-d14	105	104					<0	%	TM16/PM8
				•					

Client Name: Ground Investigations Ireland

Reference:

Location: Foynes Port
Contact: Conor Finnerty
JE Job No.: 17/7223

VOC Report : Solid

JE Job No.:	17/7223											
J E Sample No.	10-12	13-15										
Sample ID	L05	L05										
Depth	1.00	3.00								Please se	e attached n	notes for all
COC No / misc	1.00	0.00									ations and a	
Containers	VJT	VJT										
Sample Date	10/04/2017	10/04/2017										
Sample Type	Soil	Soil								ļ		
Batch Number	1	1 19/04/2017								LOD/LOR	Units	Method No.
VOC MS	19/04/2017	19/04/2017										140.
Dichlorodifluoromethane	<2	<2								<2	ug/kg	TM15/PM10
Methyl Tertiary Butyl Ether #	<2	<2								<2	ug/kg	TM15/PM10
Chloromethane #	<3	<3								<3	ug/kg	TM15/PM10
Vinyl Chloride	<2	<2								<2	ug/kg	TM15_A/PM10
Bromomethane	<1	<1								<1	ug/kg	TM15/PM10
Chloroethane # Trichlorofluoromethane #	<2 <2	<2 <2								<2 <2	ug/kg ug/kg	TM15/PM10 TM15/PM10
1,1-Dichloroethene (1,1 DCE)#	<6	<6								<6	ug/kg	TM15/PM10
Dichloromethane (DCM)#	67	<30								<30	ug/kg	TM15/PM10
trans-1-2-Dichloroethene #	<3	<3						1		<3	ug/kg	TM15/PM10
1,1-Dichloroethane#	<3	<3								<3	ug/kg	TM15/PM10
cis-1-2-Dichloroethene #	<3	<3								<3	ug/kg	TM15/PM10
2,2-Dichloropropane	<4	<4								<4	ug/kg	TM15/PM10
Bromochloromethane # Chloroform #	<3 <3	<3 <3]		<3 <3	ug/kg	TM15/PM10 TM15/PM10
Chloroform" 1,1,1-Trichloroethane#	<3 <3	<3 <3]		<3 <3	ug/kg ug/kg	TM15/PM10
1,1-Dichloropropene #	<3	<3								<3	ug/kg	TM15/PM10
Carbon tetrachloride #	<4	<4								<4	ug/kg	TM15/PM10
1,2-Dichloroethane#	<4	<4								<4	ug/kg	TM15/PM10
Benzene #	<3	<3								<3	ug/kg	TM15/PM10
Trichloroethene (TCE)#	<3	<3								<3	ug/kg	TM15/PM10
1,2-Dichloropropane #	<6	<6								<6	ug/kg	TM15/PM10
Dibromomethane # Bromodichloromethane #	<3 <3	<3 <3								<3 <3	ug/kg ug/kg	TM15/PM10 TM15/PM10
cis-1-3-Dichloropropene	<4	<4								<4	ug/kg	TM15/PM10
Toluene #	<3	<3								<3	ug/kg	TM15/PM10
trans-1-3-Dichloropropene	<3	<3								<3	ug/kg	TM15/PM10
1,1,2-Trichloroethane#	<3	<3								<3	ug/kg	TM15/PM10
Tetrachloroethene (PCE) #	<3	<3								<3	ug/kg	TM15/PM10
1,3-Dichloropropane #	<3	<3								<3	ug/kg	TM15/PM10
Dibromochloromethane # 1,2-Dibromoethane #	<3 <3	<3 <3								<3 <3	ug/kg ug/kg	TM15/PM10 TM15/PM10
Chlorobenzene #	<3	<3								<3	ug/kg	TM15/PM10
1,1,1,2-Tetrachloroethane	<3	<3								<3	ug/kg	TM15/PM10
Ethylbenzene #	<3	<3								<3	ug/kg	TM15/PM10
p/m-Xylene #	<5	<5								<5	ug/kg	TM15/PM10
o-Xylene #	<3	<3								<3	ug/kg	TM15/PM10
Styrene	<3	<3								<3	ug/kg	TM15_A/PM10
Bromoform Isopropylbenzene#	<3 <3	<3 <3]		<3 <3	ug/kg ug/kg	TM15/PM10 TM15/PM10
1,1,2,2-Tetrachloroethane #	<3 <3	<3 <3								<3 <3	ug/kg ug/kg	TM15/PM10
Bromobenzene	<2	<2								<2	ug/kg	TM15/PM10
1,2,3-Trichloropropane #	<4	<4						1		<4	ug/kg	TM15/PM10
Propylbenzene #	<4	<4								<4	ug/kg	TM15/PM10
2-Chlorotoluene	<3	<3								<3	ug/kg	TM15/PM10
1,3,5-Trimethylbenzene #	<3	<3								<3	ug/kg	TM15/PM10
4-Chlorotoluene tert-Butylbenzene #	<3 <5	<3 <5]		<3 <5	ug/kg	TM15/PM10 TM15/PM10
tert-Butylbenzene " 1,2,4-Trimethylbenzene #	<5 <6	<5 <6]		<5 <6	ug/kg ug/kg	TM15/PM10
sec-Butylbenzene#	<4	<4								<4	ug/kg	TM15/PM10
4-Isopropyltoluene #	<4	<4				1				<4	ug/kg	TM15/PM10
1,3-Dichlorobenzene #	<4	<4								<4	ug/kg	TM15/PM10
1,4-Dichlorobenzene #	<4	<4								<4	ug/kg	TM15/PM10
n-Butylbenzene#	<4	<4								<4	ug/kg	TM15/PM10
1,2-Dichlorobenzene #	<4 <4	<4								<4	ug/kg	TM15/PM10 TM15/PM10
1,2-Dibromo-3-chloropropane # 1,2,4-Trichlorobenzene #	<4 <7	<4 <7]		<4 <7	ug/kg ug/kg	TM15/PM10
Hexachlorobutadiene	<4	<4								<4	ug/kg ug/kg	TM15/PM10
Naphthalene	<27	<27						1		<27	ug/kg	TM15/PM10
1,2,3-Trichlorobenzene #	<7	<7								<7	ug/kg	TM15/PM10
Surrogate Recovery Toluene D8			1	1	1		1		1			1
Surrogate Recovery 4-Bromofluorobenzene	97 98	96 97						ļ .	l i	<0 <0	%	TM15/PM10 TM15/PM10

Exova Jones Environmental Asbestos Analysis

Client Name: Ground Investigations Ireland

Reference:

Location: Foynes Port **Contact:** Conor Finnerty

Note:

Analysis was carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Jones Environmental Laboratory consultant, Jones Environmental Laboratory cannot be responsible for inaccurate or unrepresentative sampling.

Signed on behalf of Jones Environmental Laboratory:

Ryan Butterworth Asbestos Team Leader

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
17/7223	1	L05	1.00	11	27/05/2017	General Description (Bulk Analysis)	Soil/Stones
					27/05/2017	Asbestos Fibres	NAD
					27/05/2017	Asbestos Fibres (2)	NAD
					27/05/2017	Asbestos ACM	NAD
					27/05/2017	Asbestos ACM (2)	NAD
					27/05/2017	Asbestos Type	NAD
					27/05/2017	Asbestos Type (2)	NAD
					27/05/2017	Asbestos Level Screen	NAD
17/7223	1	L05	3.00	14	27/05/2017	General Description (Bulk Analysis)	Soil/Stones
					27/05/2017	Asbestos Fibres	NAD
					27/05/2017	Asbestos Fibres (2)	NAD
					27/05/2017	Asbestos ACM	NAD
					27/05/2017	Asbestos ACM (2)	NAD
					27/05/2017	Asbestos Type	NAD
					27/05/2017	Asbestos Type (2)	NAD
					27/05/2017	Asbestos Level Screen	NAD

Client Name: Ground Investigations Ireland Matrix : Solid

Reference:

Location: Foynes Port **Contact:** Conor Finnerty

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
17/7223	1	L05	1.00	10-12	Cyanide, EPH, GRO, PAH, pH, Phenols, Sulphate, SVOC, Tot SO4, VOC	Sample holding time exceeded
17/7223	1	L05	3.00	13-15	Cyanide, EPH, GRO, PAH, pH, Phenols, Sulphate, SVOC, Tot SO4, VOC	Sample holding time exceeded

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 17/7223

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS) accredited - UK.
SA	ISO17025 (SANAS) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
CO	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.				
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	TM005: Modified USEPA 8015B. Determination of solvent Extractable Petroleum Hydrocarbons (EPH) including column fractionation in the carbon range of C10-35 into aliphatic and aromatic fractions by GC-FID. TM036: Modified USEPA 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C5-10 by headspace GC-FID. Including determination of	PM12/PM16	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis./Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5/TM36	TM005: Modified USEPA 8015B. Determination of solvent Extractable Petroleum Hydrocarbons (EPH) including column fractionation in the carbon range of C10-35 into aliphatic and aromatic fractions by GC-FID. TM036: Modified USEPA 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C5-10 by headspace GC-FID. Including determination of	PM12/PM16	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis./Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM15	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM15	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM16	Modified USEPA 8270. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM16	Modified USEPA 8270. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM21	Modified USEPA 415.1. Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.			AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM21	As received solid or water samples are extracted in Methanol: Sodium Hydroxide (0.1M NaOH) (60:40) by orbital shaker.			AR	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM21	As received solid or water samples are extracted in Methanol: Sodium Hydroxide (0.1M NaOH) (60:40) by orbital shaker.	Yes		AR	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM50	Acid soluble sulphate (Total Sulphate) analysed by ICP-OES	PM29	Dried and ground solid sample is boiled with dilute hydrochloric acid, the resulting liquor is then analysed.	Yes		AD	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.			AR	
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM74	Analysis of water soluble boron (20:1 extract) by ICP-OES.	PM32	Hot water soluble boron is extracted from dried and ground samples using a 20:1 ratio.	Yes		AD	Yes
TM89	Modified USEPA method OIA-1667. Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM45	As received solid samples are extracted with 1M NaOH by orbital shaker for Cyanide and Thiocyanate analysis.	Yes		AR	Yes
TM94	Derivatisation and extraction of Organotins. Analysis by GC-MS	PM48	Samples are pretreated and derivatised. The derviatised organotins are then extracted using hexane.			AR	Yes
TM15_A	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds, Vinyl Chloride & Styrene by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes

Registered Address: Exova (UK) Ltd, Lochend Industrial Estate, Newbridge, Midlothian, EH28 8PL

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland

Attention : Conor Finnerty

Date: 13th June, 2017

Your reference :

Our reference: Test Report 17/7158 Batch 1

Location : Durnish Lands

Date samples received: 18th April, 2017

Status: Final report

Issue: 2

Eighteen samples were received for analysis on 18th April, 2017 of which eight were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Bruce Leslie

Project Co-ordinator

Client Name:

Ground Investigations Ireland Report: Solid

Reference:

Location: Durnish Lands
Contact: Conor Finnerty

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

JE JOD NO.:	17/7158								 	_		
J E Sample No.	1-3	4-6	7-9	10-12	16-18	22-24	34-36	52-54				
Sample ID	LD01	LD01	LD01	LD01	LD05	LD05	LD05	LD01				
Depth	0.50	1.00	2.00	3.00	0.50	2.00	6.00	8.00		Diana		-t fII
COC No / misc											e attached n ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT				
Sample Date					10/04/2017	10/04/2017		12/04/2017				
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil				
Batch Number	1	1	1	1	1	1	1	1		LOD/LOR	Units	Method
Date of Receipt	18/04/2017	18/04/2017	18/04/2017	18/04/2017	18/04/2017	18/04/2017	18/04/2017	18/04/2017				No.
Aluminium	21170	-	16400	-	9822	-	-	1492		<50	mg/kg	TM30/PM15
Arsenic#	13.0	-	21.9	-	9.1	-	-	5.7		<0.5	mg/kg	TM30/PM15
Barium #	161	-	213	-	95	-	-	10		<1	mg/kg	TM30/PM15
Beryllium	1.5 0.3	-	1.4	-	0.8	-	-	<0.5 0.2		<0.5	mg/kg	TM30/PM15 TM30/PM15
Cadmium # Chromium #	51.3	-	<0.1 52.2	-	0.7 50.1	-	-	18.3		<0.1 <0.5	mg/kg mg/kg	TM30/PM15
Copper#	59	-	2	-	10	-	-	3		<1	mg/kg	TM30/PM15
Iron	38140	-	37360	-	19050	-	-	4404		<20	mg/kg	TM30/PM15
Lead#	21	-	19	-	34	-	-	9		<5	mg/kg	TM30/PM15
Mercury#	<0.1	-	<0.1	-	<0.1	-	-	<0.1		<0.1	mg/kg	TM30/PM15
Nickel [#]	37.9	-	32.6	-	31.6	-	-	6.8		<0.7	mg/kg	TM30/PM15
Selenium #	3	-	2	-	2	-	-	<1		<1	mg/kg	TM30/PM15
Sulphur as S	0.28	-	<0.01	-	0.02	-	-	0.09		<0.01	%	TM30/PM15
Total Sulphate as SO4#	426	-	385	-	1144	-	-	592		<50	mg/kg	TM50/PM29
Vanadium Water Soluble Boron#	52 0.6	-	60 2.3	-	31	-	-	1.3		<1 <0.1	mg/kg mg/kg	TM30/PM15 TM74/PM32
Zinc#	87	-	65	-	137	_	-	15		<5	mg/kg	TM30/PM15
											99	
PAH MS												
Naphthalene #	<0.04	-	<0.04	-	<0.04	-	-	<0.04		<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	-	<0.03	-	<0.03	-	-	<0.03		<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	-	<0.05	-	<0.05	-	-	<0.05		<0.05	mg/kg	TM4/PM8
Fluorene #	<0.04	-	<0.04	-	<0.04	-	-	<0.04		<0.04	mg/kg	TM4/PM8
Phenanthrene #	<0.03 <0.04	-	<0.03 <0.04	-	<0.03	-	-	<0.03		<0.03	mg/kg	TM4/PM8 TM4/PM8
Anthracene # Fluoranthene #	<0.04	-	<0.04	-	<0.04	-	_	<0.04		<0.04	mg/kg mg/kg	TM4/PM8
Pyrene #	<0.03	-	<0.03	-	<0.03	_	-	<0.03		<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	<0.06	-	<0.06	-	<0.06	-	-	<0.06		<0.06	mg/kg	TM4/PM8
Chrysene #	<0.02	-	<0.02	-	<0.02	-	-	<0.02		<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	<0.07	-	<0.07	-	<0.07	-	-	<0.07		<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	<0.04	-	<0.04	-	<0.04	-	-	<0.04		<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene #	<0.04	-	<0.04	-	<0.04	-	-	<0.04		<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	<0.04	-	<0.04	-	<0.04	-	-	<0.04		<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	<0.04	-	<0.04	-	<0.04	-	-	<0.04		<0.04	mg/kg	TM4/PM8
Coronene	<0.04	-	<0.04	-	<0.04	-	-	<0.04		<0.04	mg/kg	TM4/PM8
PAH 17 Total Benzo(b)fluoranthene	<0.64 <0.05	-	<0.64 <0.05	-	<0.64 <0.05	-	-	<0.64 <0.05		<0.64 <0.05	mg/kg mg/kg	TM4/PM8 TM4/PM8
Benzo(k)fluoranthene	<0.03	-	<0.03	-	<0.03	-	-	<0.03		<0.03	mg/kg	TM4/PM8
PAH Surrogate % Recovery	103	-	115	-	90	-	-	113		<0	%	TM4/PM8
,,			-		-					-		
Methyl Tertiary Butyl Ether #	<2	-	<2	-	<2	-	-	<2		<2	ug/kg	TM15/PM10
Benzene #	<3	-	<3	-	<3	-	-	<3		<3	ug/kg	TM15/PM10
Toluene #	<3	-	<3	-	<3	-	-	12		<3	ug/kg	TM15/PM10
Ethylbenzene #	<3	-	<3	-	<3	-	-	<3		<3	ug/kg	TM15/PM10

Client Name:

Ground Investigations Ireland

Report : Solid

Reference:

Durnish Lands Location: Contact:

Conor Finnerty

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

JE JOD NO.:	17//158											
J E Sample No.	1-3	4-6	7-9	10-12	16-18	22-24	34-36	52-54				
Sample ID	LD01	LD01	LD01	LD01	LD05	LD05	LD05	LD01				
Depth	0.50	1.00	2.00	3.00	0.50	2.00	6.00	8.00		Division		
COC No / misc											e attached rations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT				
	-											
Sample Date					10/04/2017			12/04/2017				
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			1	
Batch Number	1	1	1	1	1	1	1	1		LOD/LOR	Units	Method
Date of Receipt	18/04/2017	18/04/2017	18/04/2017	18/04/2017	18/04/2017	18/04/2017	18/04/2017	18/04/2017				No.
p/m-Xylene [#]	<5	-	<5	-	<5	-	-	<5		<5	ug/kg	TM15/PM10
o-Xylene #	<3	-	<3	-	<3	-	-	<3		<3	ug/kg	TM15/PM10
Surrogate Recovery Toluene D8 Surrogate Recovery 4-Bromofluorobenzene	100 105	-	101	-	91 83	-	-	86 66		<0 <0	%	TM15/PM10 TM15/PM10
Surrogate Recovery 4-Bromondoberizene	105	-	100	-	03	-	-	00		<0	70	TWITS/FIVITO
TPH CWG												
Aliphatics												
>C5-C6#	<0.1	-	<0.1	-	<0.1	-	-	<0.1 sv		<0.1	mg/kg	TM36/PM12
>C6-C8#	<0.1	-	<0.1	-	<0.1	-	-	<0.1 ^{SV}		<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1	-	<0.1	-	<0.1	-	-	<0.1 sv		<0.1	mg/kg	TM36/PM12
>C10-C12#	<0.2	-	<0.2	-	<0.2	-	-	<0.2		<0.2	mg/kg	TM5/PM16
>C12-C16 [#] >C16-C21 [#]	<4 <7	-	<4 <7	-	<4 <7	-	-	<4 <7		<4 <7	mg/kg	TM5/PM16 TM5/PM16
>C16-C21 >C21-C35#	13	-	<7	-	37	-	-	<7		<7	mg/kg mg/kg	TM5/PM16
Total aliphatics C5-35	<19	-	<19	-	37	-	-	<19		<19	mg/kg	TM5/TM36/PM12/PM16
Aromatics	-		-							-	3 3	
>C5-EC7#	<0.1	-	<0.1	-	<0.1	-	-	<0.1 sv		<0.1	mg/kg	TM36/PM12
>EC7-EC8#	<0.1	-	<0.1	-	<0.1	-	-	<0.1 sv		<0.1	mg/kg	TM36/PM12
>EC8-EC10#	<0.1	-	<0.1	-	<0.1	-	-	<0.1 ^{sv}		<0.1	mg/kg	TM36/PM12
>EC10-EC12#	<0.2	-	<0.2	-	<0.2	-	-	<0.2		<0.2	mg/kg	TM5/PM16
>EC12-EC16#	<4	-	<4	-	<4	-	-	<4		<4	mg/kg	TM5/PM16
>EC16-EC21# >EC21-EC35#	<7 <7	-	<7 <7	-	<7 75	-	-	<7 <7		<7 <7	mg/kg mg/kg	TM5/PM16 TM5/PM16
Total aromatics C5-35 #	<19	-	<19	-	75	-	-	<19		<19	mg/kg	TM5/TM36/PM12/PM16
Total aliphatics and aromatics(C5-35)	<38	-	<38	-	112	-	-	<38		<38	mg/kg	TM5/TM36/PM12/PM16
PCB 28#	<50 _{AA}	-	-	-	<50 _{AA}	-	-	-		<5	ug/kg	TM17/PM8
PCB 52 #	<50 _{AA}	-	-	-	<50 _{AA}	-	-	-		<5	ug/kg	TM17/PM8
PCB 101 #	<50 _{AA}	-	-	-	<50 _{AA}	-	-	-		<5	ug/kg	TM17/PM8
PCB 118 #	<50 _{AA}	-	-	-	<50 _{AA}	-	-	-		<5	ug/kg	TM17/PM8
PCB 138 [#] PCB 153 [#]	<50 _{AA}	-	-	-	<50 _{AA}	-	-	-		<5 <5	ug/kg ug/kg	TM17/PM8 TM17/PM8
PCB 153	<50AA	-	-	-	<50AA	-	-	-		<5	ug/kg ug/kg	TM17/PM8
Total 7 PCBs#	<350 _{AA}	-	-	-	<350 _{AA}	-	-	-		<35	ug/kg	TM17/PM8
Resorcinol	<0.01	-	<0.01	-	<0.01	-	-	<0.01		<0.01	mg/kg	TM26/PM21
Catechol	<0.01	-	<0.01	-	<0.01	-	-	<0.01		<0.01	mg/kg	TM26/PM21
Phenol#	<0.01	-	<0.01	-	<0.01	-	-	<0.01		<0.01	mg/kg	TM26/PM21
m/p-cresol#	<0.02	-	<0.02	-	<0.02	-	-	<0.02		<0.02	mg/kg	TM26/PM21
o-cresol Total cresols	<0.01 <0.03	-	<0.01	-	<0.01	-	-	0.02 <0.03		<0.01 <0.03	mg/kg mg/kg	TM26/PM21 TM26/PM21
Xylenols #	<0.03	-	<0.03	-	<0.03	-	-	<0.03		<0.03	mg/kg	TM26/PM21
1-naphthol	<0.01	-	<0.01	-	<0.01	-	-	<0.01		<0.01	mg/kg	TM26/PM21
2,3,5-trimethyl phenol #	<0.01	-	<0.01	-	<0.01	-	-	<0.01		<0.01	mg/kg	TM26/PM21
=,=,5 amoun, priorior	.5.01	l	.5.0	<u>I</u>	.5.01		I	.5.01	<u> </u>	10.0		

Client Name:

Ground Investigations Ireland

Report : Solid

Reference:

Location: Durnish Lands
Contact: Conor Finnerty

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

JE Job No.:	17/7158									_		
J E Sample No.	1-3	4-6	7-9	10-12	16-18	22-24	34-36	52-54				
Sample ID	LD01	LD01	LD01	LD01	LD05	LD05	LD05	LD01				
Depth	0.50	1.00	2.00	3.00	0.50	2.00	6.00	8.00		Diagon	e attached n	otoo for all
COC No / misc											e attached nations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT				
Sample Date							11/04/2017					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil				
Batch Number	1	1	1	1	1	1	1	1				
										LOD/LOR	Units	Method No.
Date of Receipt 2-isopropylphenol #	<0.01	18/04/2017	<0.01	-	18/04/2017 <0.01	-	18/04/2017	<0.01		<0.01	mg/kg	TM26/PM21
Total Speciated Phenols HPLC	<0.15	-	<0.15	-	<0.15	-	-	<0.15		<0.15	mg/kg	TM26/PM21
											3 3	1
Natural Moisture Content	17.2	-	28.1	-	41.3	-	-	10.4		<0.1	%	PM4/PM0
Chloride #	-	84	-	57	-	34	67	-		<2	mg/kg	TM38/PM20
Hexavalent Chromium#	<0.3	- 0.4070	<0.3	-	<0.3	-	-	<0.3		<0.3	mg/kg	TM38/PM20
Sulphate as SO4 (2:1 Ext) #	0.1143	0.1970	0.0473	0.0037	0.0912	0.0203	0.0210	0.1775		<0.0015	g/l	TM38/PM20
Total Cyanide #	<0.5	-	<0.5	-	1.0	-	-	<0.5		<0.5	mg/kg	TM89/PM45
Organic Matter	0.8	-	1.1	-	7.5	-	-	0.9		<0.2	%	TM21/PM24
Dibutyltin	<100	-	-	-	-	-	-	-		<100	ug/kg	TM94/PM48
Tributyltin	<100	-	-	-	-	-	-	-		<100	ug/kg	TM94/PM48
Triphenyltin	<100	-	-	-	-	-	-	-		<100	ug/kg	TM94/PM48
pH#	7.96	7.92	8.10	8.10	7.81	8.56	8.64	8.06		<0.01	pH units	TM73/PM11
		-			-						•	1
												<u> </u>
				I.	l .	I.		l .		l .	1	

Client Name: Ground Investigations Ireland

Reference:

Location: Durnish Lands
Contact: Conor Finnerty
JE Job No.: 17/7158

SVOC Report : Solid

JE Job No.:	17/7158									
J E Sample No.	1-3	7-9	16-18	52-54						
Sample ID	LD01	LD01	LD05	LD01						
Depth	0.50	2.00	0.50	8.00					e attached n	
COC No / misc								abbrevia	ations and ad	ronyms
Containers	VJT	VJT	VJT	VJT						
Sample Date	11/04/2017	11/04/2017	10/04/2017	12/04/2017						
Sample Type	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1				LOD/LOR	Units	Method
Date of Receipt	18/04/2017	18/04/2017	18/04/2017	18/04/2017						No.
SVOC MS										
Phenois										
2-Chlorophenol #	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
2-Methylphenol	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
2-Nitrophenol	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
2,4-Dichlorophenol #	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
2,4-Dimethylphenol	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
2,4,5-Trichlorophenol	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
2,4,6-Trichlorophenol	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
4-Chloro-3-methylphenol	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
4-Methylphenol	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
4-Nitrophenol	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
Pentachlorophenol	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
Phenol#	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
PAHs										
2-Chloronaphthalene #	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
2-Methylnaphthalene #	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
Phthalates										
Bis(2-ethylhexyl) phthalate	<100	<100	<100	<100				<100	ug/kg	TM16/PM8
Butylbenzyl phthalate	<100	<100	<100	<100				<100	ug/kg	TM16/PM8
Di-n-butyl phthalate	<100	<100	<100	<100				<100	ug/kg	TM16/PM8
Di-n-Octyl phthalate	<100	<100	<100	<100				<100	ug/kg	TM16/PM8
Diethyl phthalate	<100	<100	<100	<100				<100	ug/kg	TM16/PM8
Dimethyl phthalate #	<100	<100	<100	<100				<100	ug/kg	TM16/PM8
Other SVOCs									-55	
1,2-Dichlorobenzene	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
1,2,4-Trichlorobenzene #	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
1,3-Dichlorobenzene	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
1,4-Dichlorobenzene	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
2-Nitroaniline	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
2,4-Dinitrotoluene	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
2,6-Dinitrotoluene	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
3-Nitroaniline	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
4-Bromophenylphenylether #	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
4-Chloroaniline	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
4-Chlorophenylphenylether	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
4-Nitroaniline	<10	<10	<10	<10				<10	ug/kg ug/kg	TM16/PM8
										TM16/PM8
Azobenzene Bis/2-chloroethoxy/methane	<10 <10	<10 <10	<10 <10	<10 <10				<10	ug/kg	TM16/PM8
Bis(2-chloroethoxy)methane								<10	ug/kg	
Bis(2-chloroethyl)ether	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
Carbazole	<10	<10	<10	<10				<10	ug/kg	TM16/PM8 TM16/PM8
Dibenzofuran #	<10	<10	<10	<10				<10	ug/kg	
Hexachlorobenzene	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
Hexachlorobutadiene#	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
Hexachlorocyclopentadiene	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
Hexachloroethane	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
Isophorone #	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
N-nitrosodi-n-propylamine #	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
Nitrobenzene #	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
Surrogate Recovery 2-Fluorobiphenyl	86	82	76	101				<0	%	TM16/PM8
Surrogate Recovery p-Terphenyl-d14	98	125	104	113				<0	%	TM16/PM8
•					_					

Client Name: Ground Investigations Ireland

Reference:

Location:Durnish LandsContact:Conor FinnertyJE Job No.:17/7158

VOC Report : Solid

J E Sample No.	1-3	7-9	16-18	52-54						
Sample ID	LD01	LD01	LD05	LD01						
			0.50							
Depth COC No / misc	0.50	2.00	0.50	8.00					e attached n ations and a	
Containers	VJT	VJT	VJT	VJT						,
Sample Date	11/04/2017	11/04/2017	10/04/2017	12/04/2017						
Sample Type	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1				LOD/LOR	Units	Method No.
VOC MS	18/04/2017	18/04/2017	18/04/2017	18/04/2017						INO.
Dichlorodifluoromethane	<2	<2	<2	<2				<2	ug/kg	TM15/PM10
Methyl Tertiary Butyl Ether #	<2	<2	<2	<2				<2	ug/kg	TM15/PM10
Chloromethane #	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
Vinyl Chloride	<2	<2	<2	<2				<2	ug/kg	TM15_A/PM10
Bromomethane	<1	<1	<1	<1				<1	ug/kg	TM15/PM10
Chloroethane #	<2 <2	<2 <2	<2 <2	<2 <2				<2 <2	ug/kg ug/kg	TM15/PM10 TM15/PM10
Trichlorofluoromethane # 1,1-Dichloroethene (1,1 DCE) #	<6	<6	<6	<6				<2 <6	ug/kg ug/kg	TM15/PM10
Dichloromethane (DCM)#	<30	<30	<30	<30				<30	ug/kg	TM15/PM10
trans-1-2-Dichloroethene #	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
1,1-Dichloroethane #	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
cis-1-2-Dichloroethene #	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
2,2-Dichloropropane	<4 <3	<4 <3	<4 <3	<4 <3				<4 <3	ug/kg	TM15/PM10 TM15/PM10
Bromochloromethane * Chloroform *	<3 <3	<3 <3	<3 <3	<3 <3				<3 <3	ug/kg ug/kg	TM15/PM10
1,1,1-Trichloroethane#	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
1,1-Dichloropropene #	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
Carbon tetrachloride #	<4	<4	<4	<4				<4	ug/kg	TM15/PM10
1,2-Dichloroethane#	<4	<4	<4	<4				<4	ug/kg	TM15/PM10
Benzene#	<3 <3	<3	<3	<3 <3				<3	ug/kg	TM15/PM10 TM15/PM10
Trichloroethene (TCE) # 1,2-Dichloropropane #	<3 <6	<3 <6	<3 <6	<3 <6				<3 <6	ug/kg ug/kg	TM15/PM10
Dibromomethane #	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
Bromodichloromethane #	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
cis-1-3-Dichloropropene	<4	<4	<4	<4				<4	ug/kg	TM15/PM10
Toluene #	<3	5	<3	9				<3	ug/kg	TM15/PM10
trans-1-3-Dichloropropene	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
1,1,2-Trichloroethane * Tetrachloroethene (PCE) *	<3 <3	<3 <3	<3 <3	<3 <3				<3 <3	ug/kg ug/kg	TM15/PM10 TM15/PM10
1,3-Dichloropropane #	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
Dibromochloromethane #	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
1,2-Dibromoethane#	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
Chlorobenzene#	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
1,1,1,2-Tetrachloroethane	<3 <3	<3 <3	<3 <3	<3 <3				<3 <3	ug/kg ug/kg	TM15/PM10 TM15/PM10
Ethylbenzene # p/m-Xylene #	<5	<5 <5	<5 <5	<5				<5 <5	ug/kg ug/kg	TM15/PM10
o-Xylene #	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
Styrene	<3	<3	<3	<3				<3	ug/kg	TM15_A/PM10
Bromoform	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
Isopropylbenzene#	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
1,1,2,2-Tetrachloroethane **	<3	<3	<3	<3				<3	ug/kg	TM15/PM10 TM15/PM10
Bromobenzene 1,2,3-Trichloropropane #	<2 <4	<2 <4	<2 <4	<2 <4				<2 <4	ug/kg ug/kg	TM15/PM10
Propylbenzene #	<4	<4	<4	<4				<4	ug/kg	TM15/PM10
2-Chlorotoluene	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
1,3,5-Trimethylbenzene #	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
4-Chlorotoluene	<3	<3	<3	<3				<3	ug/kg	TM15/PM10
tert-Butylbenzene #	<5	<5	<5 <6	<5				<5 <6	ug/kg	TM15/PM10 TM15/PM10
1,2,4-Trimethylbenzene * sec-Butylbenzene *	<6 <4	<6 <4	<6 <4	<6 <4				<6 <4	ug/kg ug/kg	TM15/PM10
4-Isopropyltoluene #	<4	<4	<4	<4				<4	ug/kg	TM15/PM10
1,3-Dichlorobenzene #	<4	<4	<4	<4				<4	ug/kg	TM15/PM10
1,4-Dichlorobenzene #	<4	<4	<4	<4				<4	ug/kg	TM15/PM10
n-Butylbenzene#	<4	<4	<4	<4				<4	ug/kg	TM15/PM10
1,2-Dichlorobenzene #	<4	<4	<4	<4				<4	ug/kg	TM15/PM10 TM15/PM10
1,2-Dibromo-3-chloropropane # 1,2,4-Trichlorobenzene #	<4 <7	<4 <7	<4 <7	<4 <7				<4 <7	ug/kg ug/kg	TM15/PM10
Hexachlorobutadiene	<4	<4	<4	<4				<4	ug/kg ug/kg	TM15/PM10
Naphthalene	<27	<27	<27	<27				<27	ug/kg	TM15/PM10
1,2,3-Trichlorobenzene #	<7	<7	<7	<7				<7	ug/kg	TM15/PM10
Surrogate Recovery Toluene D8	98	99	93	89				<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	103	106	92	74				<0	%	TM15/PM10

Exova Jones Environmental Asbestos Analysis

Client Name: Ground Investigations Ireland

Reference:

Location:Durnish LandsContact:Conor Finnerty

Note:

Analysis was carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Jones Environmental Laboratory consultant, Jones Environmental Laboratory cannot be responsible for inaccurate or unrepresentative sampling.

Signed on behalf of Jones Environmental Laboratory:

Ryan Butterworth Asbestos Team Leader

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
17/7158	1	LD01	0.50	2	26/05/2017	General Description (Bulk Analysis)	Soil/Stones
					26/05/2017	Asbestos Fibres	NAD
					26/05/2017	Asbestos Fibres (2)	NAD
					26/05/2017	Asbestos ACM	NAD
					26/05/2017	Asbestos ACM (2)	NAD
					26/05/2017	Asbestos Type	NAD
					26/05/2017	Asbestos Type (2)	NAD
					26/05/2017	Asbestos Level Screen	NAD
17/7158	1	LD01	2.00	8	26/05/2017	General Description (Bulk Analysis)	Clay/Stones
					26/05/2017	Asbestos Fibres	NAD
					26/05/2017	Asbestos Fibres (2)	NAD
					26/05/2017	Asbestos ACM	NAD
					26/05/2017	Asbestos ACM (2)	NAD
					26/05/2017	Asbestos Type	NAD
					26/05/2017	Asbestos Type (2)	NAD
					26/05/2017	Asbestos Level Screen	NAD
17/7158	1	LD05	0.50	17	26/05/2017	General Description (Bulk Analysis)	Soil/Stones
					26/05/2017	Asbestos Fibres	NAD
					26/05/2017	Asbestos Fibres (2)	NAD
					26/05/2017	Asbestos ACM	NAD
					26/05/2017	Asbestos ACM (2)	NAD
					26/05/2017	Asbestos Type	NAD
					26/05/2017	Asbestos Type (2)	NAD
					26/05/2017	Asbestos Level Screen	NAD
17/7158	1	LD01	8.00	53	26/05/2017	General Description (Bulk Analysis)	Soil/Stones
					26/05/2017	Asbestos Fibres	NAD
					26/05/2017	Asbestos Fibres (2)	NAD
					26/05/2017	Asbestos ACM	NAD
					26/05/2017	Asbestos ACM (2)	NAD
					26/05/2017	Asbestos Type	NAD
					26/05/2017	Asbestos Type (2)	NAD
					26/05/2017	Asbestos Level Screen	NAD

Notification of Deviating Samples

Client Name: Ground Investigations Ireland Matrix : Solid

Reference:

Location: Durnish Lands
Contact: Conor Finnerty

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
17/7158	1	LD01	0.50	1-3	Cyanide, EPH, GRO, PAH, PCB, pH, Phenols, Sulphate, SVOC, Tot SO4, VOC	Sample holding time exceeded
17/7158	1	LD01	1.00	4-6	Chloride, pH, Sulphate	Sample holding time exceeded
17/7158	1	LD01	2.00	7-9	Cyanide, EPH, GRO, PAH, pH, Phenols, Sulphate, SVOC, Tot SO4, VOC	Sample holding time exceeded
17/7158	1	LD01	3.00	10-12	Chloride, pH, Sulphate	Sample holding time exceeded
17/7158	1	LD05	0.50	16-18	Cyanide, EPH, GRO, PAH, PCB, pH, Phenols, Sulphate, SVOC, Tot SO4, VOC	Sample holding time exceeded
17/7158	1	LD05	2.00	22-24	Chloride, pH, Sulphate	Sample holding time exceeded
17/7158	1	LD05	6.00	34-36	Chloride, pH, Sulphate	Sample holding time exceeded
17/7158	1	LD01	8.00	52-54	Cyanide, EPH, GRO, PAH, pH, Phenols, Sulphate, SVOC, Tot SO4, VOC	Sample holding time exceeded

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 17/7158

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS) accredited - UK.
SA	ISO17025 (SANAS) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
TB	Trip Blank Sample
ОС	Outside Calibration Range
AA	x10 Dilution

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.				
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	TM005: Modified USEPA 8015B. Determination of solvent Extractable Petroleum Hydrocarbons (EPH) including column fractionation in the carbon range of C10-35 into aliphatic and aromatic fractions by GC-FID. TM036: Modified USEPA 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C5-10 by headspace GC-FID. Including determination of	PM12/PM16	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis./Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5/TM36	TM005: Modified USEPA 8015B. Determination of solvent Extractable Petroleum Hydrocarbons (EPH) including column fractionation in the carbon range of C10-35 into aliphatic and successful fractions by GC-FID. TM036: Modified USEPA 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C5-10 by headspace GC-FID. Including determination of	PM12/PM16	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis./Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM15	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM15	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM16	Modified USEPA 8270. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM16	Modified USEPA 8270. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM17	Modified US EPA method 8270. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM21	Modified USEPA 415.1. Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.			AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM21	As received solid or water samples are extracted in Methanol: Sodium Hydroxide (0.1M NaOH) (60:40) by orbital shaker.			AR	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM21	As received solid or water samples are extracted in Methanol: Sodium Hydroxide (0.1M NaOH) (60:40) by orbital shaker.	Yes		AR	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM50	Acid soluble sulphate (Total Sulphate) analysed by ICP-OES	PM29	Dried and ground solid sample is boiled with dilute hydrochloric acid, the resulting liquor is then analysed.	Yes		AD	Yes
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.			AR	
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM74	Analysis of water soluble boron (20:1 extract) by ICP-OES.	PM32	Hot water soluble boron is extracted from dried and ground samples using a 20:1 ratio.	Yes		AD	Yes
TM89	Modified USEPA method OIA-1667. Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM45	As received solid samples are extracted with 1M NaOH by orbital shaker for Cyanide and Thiocyanate analysis.	Yes		AR	Yes
TM94	Derivatisation and extraction of Organotins. Analysis by GC-MS	PM48	Samples are pretreated and derivatised. The derviatised organotins are then extracted using hexane.			AR	Yes
TM15_A	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds, Vinyl Chloride & Styrene by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes

Unit 3 Deeside Point Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Fergal McNamara Attention:

Date: 13th June, 2017

Your reference :

Ground Investigations Ireland Catherinestown House

Hazelhatch Road

Newcastle Co. Dublin Ireland

Test Report 17/7031 Batch 1 Our reference:

Location: Foynes Port

Date samples received : 13th April, 2017

Status: Final report

Issue: 2

Twenty one samples were received for analysis on 13th April, 2017 of which twelve were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Bruce Leslie

Project Co-ordinator

Client Name: Reference:

Ground Investigations Ireland

Report : Solid

Foynes Port Location: Fergal McNamara Contact:

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

JE Job No.:	17/7031										_		
J E Sample No.	1-3	4-6	10-12	13-16	38-40	41-43	46-47	48	49-51	52-54			
Sample ID	LD02	LD02	LD02	LD02	LD04	LD04	LD04	LD04	LD06	LD06			
Depth	0.5	1.0	3.0	4.0	0.5	1.0	3.0	4.0	0.5	1.0		e attached r	
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VT	Т	VJT	VJT			
Sample Date	<>	<>	<>	<>	<>	<>	<>	<>	<>	<>			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1	1			Made at
Date of Receipt			13/04/2017		13/04/2017	13/04/2017	13/04/2017	13/04/2017		13/04/2017	LOD/LOR	Units	Method No.
Aluminium	-	11710	-	7045	-	10440	-	10260	19800	-	<50	mg/kg	TM30/PM15
Arsenic#	_	21.3	-	4.8	-	8.4	_	9.3	17.8	-	<0.5	mg/kg	TM30/PM15
Barium #	-	25	-	17	-	23	-	24	40	-	<1	mg/kg	TM30/PM15
Beryllium	-	0.8	-	0.5	-	0.8	-	0.9	1.6	-	<0.5	mg/kg	TM30/PM15
Cadmium #	-	0.2	-	0.2	-	0.2	-	0.3	<0.1	-	<0.1	mg/kg	TM30/PM15
Chromium #	-	32.9	-	26.1	-	36.9	-	28.8	52.9	-	<0.5	mg/kg	TM30/PM15
Copper#	-	<1	-	1	-	2	-	6	<1	-	<1	mg/kg	TM30/PM15
Iron #	-	22590	-	17420	-	24360	-	21800	44840	-	<20	mg/kg	TM30/PM15
Lead#	-	13	-	9	-	13	-	13	22	-	<5	mg/kg	TM30/PM15
Mercury #	-	<0.1 22.9	-	<0.1 14.9	-	<0.1 22.5	-	<0.1 27.1	<0.1 33.5	-	<0.1 <0.7	mg/kg mg/kg	TM30/PM15 TM30/PM15
Nickel [#] Selenium [#]		<1	-	<1		<1	_	<1	1	-	<1	mg/kg	TM30/PM15
Sulphur as S	_	0.01	-	0.38	-	0.49	_	0.48	0.01	-	<0.01	g/kg	TM30/PM15
Total Sulphate as SO4#	-	195	-	1522	-	1481	-	1324	309	-	<50	mg/kg	TM50/PM29
Vanadium	-	39	-	20	-	31	-	26	64	-	<1	mg/kg	TM30/PM15
Water Soluble Boron #	-	1.1	-	3.5	-	7.4	-	6.6	1.6	-	<0.1	mg/kg	TM74/PM32
Zinc#	-	54	-	37	-	55	-	62	83	-	<5	mg/kg	TM30/PM15
PAH MS													
Naphthalene #	-	<0.04	-	<0.04	-	<0.04	-	<0.04	<0.04	-	<0.04	mg/kg	TM4/PM8
Acenaphthylene #	-	<0.03	-	<0.03	-	<0.03	-	<0.03	<0.03	-	<0.03	mg/kg	TM4/PM8
Acenaphthene # Fluorene #	-	<0.05 <0.04	-	<0.05 <0.04	-	<0.05 <0.04	-	<0.05 <0.04	<0.05 <0.04	-	<0.05 <0.04	mg/kg mg/kg	TM4/PM8 TM4/PM8
Phenanthrene #	-	<0.03	-	<0.03	-	<0.04	-	<0.03	<0.03	-	<0.03	mg/kg	TM4/PM8
Anthracene #	-	<0.04	-	<0.04	-	<0.04	-	<0.04	<0.04	-	<0.04	mg/kg	TM4/PM8
Fluoranthene#	-	<0.03	-	<0.03	-	<0.03	-	<0.03	<0.03	-	<0.03	mg/kg	TM4/PM8
Pyrene #	-	<0.03	-	<0.03	-	<0.03	-	<0.03	<0.03	-	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene#	-	<0.06	-	<0.06	-	<0.06	-	<0.06	<0.06	-	<0.06	mg/kg	TM4/PM8
Chrysene #	-	<0.02	-	<0.02	-	<0.02	-	<0.02	<0.02	-	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene#	-	<0.07	-	<0.07	-	<0.07	-	<0.07	<0.07	-	<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	-	<0.04	-	<0.04	-	<0.04	-	<0.04	<0.04	-	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene#	-	<0.04	-	<0.04	-	<0.04	-	<0.04	<0.04	-	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	-	<0.04	-	<0.04	-	<0.04	-	<0.04	<0.04	-	<0.04	mg/kg	TM4/PM8 TM4/PM8
Benzo(ghi)perylene * PAH 16 Total	-	<0.04 <0.6	-	<0.04	-	<0.04	-	<0.6	<0.04 <0.6	-	<0.04 <0.6	mg/kg mg/kg	TM4/PM8
Benzo(b)fluoranthene	-	<0.05	-	<0.05	-	<0.05	-	<0.05	<0.05	-	<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	-	<0.02	-	<0.02	-	<0.02	-	<0.02	<0.02	-	<0.02	mg/kg	TM4/PM8
Benzo(j)fluoranthene	-	<1	-	<1	-	<1	-	<1	<1	-	<1	mg/kg	TM4/PM8
PAH Surrogate % Recovery	-	114	-	122	-	122	-	121	113	-	<0	%	TM4/PM8
								_	_		_		
Methyl Tertiary Butyl Ether #	-	<2	-	<2	-	<2	-	<2	<2	-	<2	ug/kg	TM15/PM10
Benzene #	-	<3	-	<3 <3	-	<3	-	<3	<3	-	<3	ug/kg	TM15/PM10 TM15/PM10
Toluene #	-	<3				<3		<3	<3	_	<3	ug/kg	
Ethylbenzene #	-	<3	-	<3	-	<3	-	<3	<3	-	<3	ug/kg	TM15/PM10

Client Name:

Ground Investigations Ireland

Report : Solid

Reference: Contact:

Foynes Port Location: Fergal McNamara Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

JE Job No.:	17/7031												
J E Sample No.	1-3	4-6	10-12	13-16	38-40	41-43	46-47	48	49-51	52-54			
Sample ID	LD02	LD02	LD02	LD02	LD04	LD04	LD04	LD04	LD06	LD06			
Depth	0.5	1.0	3.0	4.0	0.5	1.0	3.0	4.0	0.5	1.0		e attached r	
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VT	Т	VJT	VJT			
Sample Date	<>	<>	<>	<>	<>	<>	<>	<>	<>	<>			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	LOD/LOR	Offics	No.
p/m-Xylene #	-	<5	-	<5	-	<5	-	<5	<5	-	<5	ug/kg	TM15/PM10
o-Xylene #	-	<3	-	<3	-	<3	-	<3	<3	-	<3	ug/kg	TM15/PM10
Surrogate Recovery Toluene D8	-	98	-	98	-	95	-	103	97	-	<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	-	97	-	98	-	87	-	113	97	-	<0	%	TM15/PM10
TPH CWG													
Aliphatics													
>C5-C6#	-	<0.1	-	<0.1	-	<0.1	-	<0.1	<0.1	-	<0.1	mg/kg	TM36/PM12
>C6-C8#	-	<0.1	-	<0.1	-	<0.1	-	<0.1	<0.1	-	<0.1	mg/kg	TM36/PM12
>C8-C10	-	<0.1	-	<0.1	-	<0.1	-	<0.1	<0.1	-	<0.1	mg/kg	TM36/PM12
>C10-C12#	-	<0.2	-	<0.2	-	<0.2	-	<0.2	<0.2	-	<0.2	mg/kg	TM5/PM16
>C12-C16#	-	<4	-	<4	-	<4	-	<4	<4	-	<4	mg/kg	TM5/PM16
>C16-C21#	-	<7	-	<7	-	<7	-	<7	<7	-	<7	mg/kg	TM5/PM16
>C21-C35#	-	<7	-	34	-	10	-	<7	<7	-	<7	mg/kg	TM5/PM16
Total aliphatics C5-35	-	<19	-	34	-	<19	-	<19	<19	-	<19	mg/kg	TM5/TM36/PM12/PM16
Aromatics													
>C5-EC7#	-	<0.1	-	<0.1	-	<0.1	-	<0.1	<0.1	-	<0.1	mg/kg	TM36/PM12
>EC7-EC8#	-	<0.1	-	<0.1	-	<0.1	-	<0.1	<0.1	-	<0.1	mg/kg	TM36/PM12
>EC8-EC10#	-	<0.1	-	<0.1	-	<0.1	-	<0.1	<0.1	-	<0.1	mg/kg	TM36/PM12
>EC10-EC12#	-	<0.2	-	<0.2	-	<0.2	-	<0.2	<0.2	-	<0.2	mg/kg	TM5/PM16 TM5/PM16
>EC12-EC16# >EC16-EC21#	-	<4 <7	-	<4 <7	-	<4 <7	-	<4 <7	<4 <7	-	<4 <7	mg/kg	TM5/PM16
>EC16-EC21 >EC21-EC35 #	-	<7	-	30	-	24	-	<7	<7	-	<7	mg/kg mg/kg	TM5/PM16
Total aromatics C5-35 #	-	<19	-	30	-	24	-	<19	<19	-	<19	mg/kg	TM5/TM36/PM12/PM16
Total aliphatics and aromatics(C5-35)		<38	-	64	-	<38	_	<38	<38	_	<38	mg/kg	TM5/TM36/PM12/PM16
		100		0.		400		400	100		100	9,9	
PCB 77	-	<5	-	-	-	<5	-	-	<5	-	<5	ug/kg	TM16/PM8
PCB 81	-	<5	-	-	-	<5	-	-	<5	-	<5	ug/kg	TM16/PM8
PCB 105	-	<5	-	-	-	<5	-	-	<5	-	<5	ug/kg	TM16/PM8
PCB 114	-	<5	-	-	-	<5	-	-	<5	-	<5	ug/kg	TM16/PM8
PCB 118	-	<5	-	-	-	<5	-	-	<5	-	<5	ug/kg	TM16/PM8
PCB 123	-	<5	-	-	-	<5	-	-	<5	-	<5	ug/kg	TM16/PM8
PCB 126	-	<5	-	-	-	<5	-	-	<5	-	<5	ug/kg	TM16/PM8
PCB 156	-	<5	-	-	-	<5	-	-	<5	-	<5	ug/kg	TM16/PM8
PCB 157	-	<5	-	-	-	<5	-	-	<5	-	<5	ug/kg	TM16/PM8
PCB 167	-	<5	-	-	-	<5	-	-	<5	-	<5	ug/kg	TM16/PM8
PCB 169	-	<5	-	-	-	<5	-	-	<5	-	<5	ug/kg	TM16/PM8
PCB 189	-	<5	-	-	-	<5	-	-	<5	-	<5	ug/kg	TM16/PM8
Total 12 PCBs	-	<60	-	-	-	<60	-	-	<60	-	<60	ug/kg	TM16/PM8
Resorcinol	-	<0.01	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01	mg/kg	TM26/PM21
Catechol	-	<0.01	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01	mg/kg	TM26/PM21
Phenol#	-	<0.01	-	0.01	-	<0.01	-	<0.01	<0.01	-	<0.01	mg/kg	TM26/PM21
m/p-cresol#	-	<0.02	-	<0.02	-	<0.02	-	<0.02	<0.02	-	<0.02	mg/kg	TM26/PM21

Client Name:

Ground Investigations Ireland

Report : Solid

Reference: Location: Contact:

Foynes Port

Fergal McNamara

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Contact: JE Job No.:	Fergal Mo 17/7031	Namara											
J E Sample No.	1-3	4-6	10-12	13-16	38-40	41-43	46-47	48	49-51	52-54			
Sample ID	LD02	LD02	LD02	LD02	LD04	LD04	LD04	LD04	LD06	LD06			
Depth	0.5	1.0	3.0	4.0	0.5	1.0	3.0	4.0	0.5	1.0	Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VT	Т	VJT	VJT			
Sample Date	<>	<>		<>	<>	<>	<>	<>	<>	<>			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	LOD/LOR	Units	No.
o-cresol	-	<0.01	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01	mg/kg	TM26/PM21
Total cresols	-	<0.03	-	<0.03	-	<0.03	-	<0.03	<0.03	-	<0.03	mg/kg	TM26/PM21
Xylenols #	-	<0.06	-	<0.06	-	<0.06	-	<0.06	<0.06	-	<0.06	mg/kg	TM26/PM21
1-naphthol	-	<0.01	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01	mg/kg	TM26/PM21
2,3,5-trimethyl phenol [#] 2-isopropylphenol [#]	-	<0.01 <0.01	-	<0.01 <0.01	-	<0.01	-	<0.01 <0.01	<0.01 <0.01	-	<0.01 <0.01	mg/kg mg/kg	TM26/PM21 TM26/PM21
Total Speciated Phenols HPLC	-	<0.01	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01	mg/kg	TM26/PM21
Natural Moisture Content	-	30.6	-	39.1	-	30.8	-	29.1	28.0	-	<0.1	%	PM4/PM0
Chloride #	12	-	147	-	160	-	341	-	-	14	<2	mg/kg	TM38/PM20
Hexavalent Chromium#	-	<0.3	-	<0.3	-	<0.3	-	<0.3	<0.3	-	<0.3	mg/kg	TM38/PM20
Sulphate as SO4 (2:1 Ext) #	0.0241	0.0070	0.1849	0.1918	0.7385	0.3670	1.4657	0.3941	0.0082	0.0167	<0.0015	g/l	TM38/PM20
Total Cyanide #	-	<0.5	-	<0.5	-	<0.5	-	<0.5	<0.5	-	<0.5	mg/kg	TM89/PM45
Organic Matter	-	0.9	-	0.9	-	0.5	-	0.8	0.9	-	<0.2	%	TM21/PM24
Dibutyltin	-	<100	-	-	-	<100	-	-	<100	-	<100	ug/kg	TM94/PM48
Tributyltin	-	<100	-	-	-	<100	-	-	<100	-	<100	ug/kg	TM94/PM48
Triphenyltin	-	<100	-	-	-	<100	-	-	<100	-	<100	ug/kg	TM94/PM48
рН#	8.19	8.39	8.14	8.25	7.99	8.27	7.89	8.30	7.20	8.11	<0.01	pH units	TM73/PM11
													İ

Client Name: Reference:

Ground Investigations Ireland

Report : Solid

Location: Contact:

Foynes Port Fergal McNamara Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

02 005 No.:	1777 00 1											
J E Sample No.	55-57	58-60										
Sample ID	LD06	LD06										
Depth	2.0	3.0								Diagon	e attached n	otoo for all
COC No / misc											e attached nations and a	
Containers	VJT	VJT										
Sample Date	♦											
-		<>										
Sample Type	Soil	Soil										
Batch Number	1	1								LOD/LOR	Units	Method No.
Date of Receipt	13/04/2017											
Aluminium #	-	1342								<50	mg/kg	TM30/PM15
Arsenic#	-	2.1								<0.5	mg/kg	TM30/PM15
Barium #	-	6								<1	mg/kg	TM30/PM15
Beryllium	-	<0.5								<0.5	mg/kg	TM30/PM15 TM30/PM15
Cadmium # Chromium #	-	0.2 9.6								<0.1 <0.5	mg/kg mg/kg	TM30/PM15
Copper#	-	3.0								<1	mg/kg	TM30/PM15
Iron	-	2931								<20	mg/kg	TM30/PM15
Lead#	-	7								<5	mg/kg	TM30/PM15
Mercury #	-	<0.1								<0.1	mg/kg	TM30/PM15
Nickel [#]	-	7.8								<0.7	mg/kg	TM30/PM15
Selenium #	-	<1								<1	mg/kg	TM30/PM15
Sulphur as S	-	0.03								<0.01	%	TM30/PM15
Total Sulphate as SO4#	-	205								<50	mg/kg	TM50/PM29
Vanadium	-	6								<1	mg/kg	TM30/PM15
Water Soluble Boron #	-	0.4								<0.1	mg/kg	TM74/PM32
Zinc#	-	14								<5	mg/kg	TM30/PM15
PAH MS												
Naphthalene #	-	<0.04								<0.04	mg/kg	TM4/PM8
Acenaphthylene #	-	<0.03								<0.03	mg/kg	TM4/PM8
Acenaphthene # Fluorene #	-	<0.05 <0.04								<0.05 <0.04	mg/kg	TM4/PM8 TM4/PM8
Phenanthrene #	-	<0.04								<0.04	mg/kg mg/kg	TM4/PM8
Anthracene #	-	<0.04								<0.04	mg/kg	TM4/PM8
Fluoranthene #	-	<0.03								<0.03	mg/kg	TM4/PM8
Pyrene #	-	<0.03								<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	-	<0.06								<0.06	mg/kg	TM4/PM8
Chrysene #	-	<0.02								<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene#	-	<0.07								<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	-	<0.04								<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene#	-	<0.04								<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	-	<0.04								<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	-	<0.04								<0.04	mg/kg	TM4/PM8
PAH 16 Total	-	<0.6								<0.6	mg/kg	TM4/PM8
Benzo(b)fluoranthene	-	<0.05								<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	-	<0.02								<0.02	mg/kg	TM4/PM8
Benzo(j)fluoranthene	-	<1								<1	mg/kg	TM4/PM8
PAH Surrogate % Recovery	-	125								<0	%	TM4/PM8
Methyl Tertiary Butyl Ether #	-	<2								<2	ug/kg	TM15/PM10
Benzene #	-	<3								<3	ug/kg	TM15/PM10
Toluene #	-	<3								<3	ug/kg	TM15/PM10
Ethylbenzene #	-	<3								<3	ug/kg	TM15/PM10
,			I	I.	1	I	I	I.	1		~ ~	

Client Name:

Ground Investigations Ireland

Report : Solid

Reference: Location: Contact:

Foynes Port Fergal McNamara Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

J E Sample No. 55-57 Sample ID LD06 Depth 2.0 COC No / misc Containers V J T Sample Date Sample Type Soil	58-60 LD06 3.0 VJT Soil 1							
Depth 2.0 COC No / misc Containers V J T Sample Date <> Sample Type Soil	3.0 VJT <> Soil 1							
COC No / misc Containers V J T Sample Date Sample Type Soil	VJT <> Soil							
COC No / misc Containers V J T Sample Date Sample Type Soil	VJT <> Soil							
Containers V J T Sample Date Sample Type Soil	<> Soil						attached n	
Sample Date <> Sample Type Soil	<> Soil					apprevia	ations and a	cronyms
Sample Type Soil	Soil							
	1							
	1							
Batch Number 1								
						LOD/LOR	Units	Method No.
Date of Receipt 13/04/201								
p/m-Xylene # -	<5					<5	ug/kg	TM15/PM10
o-Xylene * - Surrogate Recovery Toluene D8 -	<3 92					<3 <0	ug/kg %	TM15/PM10 TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene -	70					<0	%	TM15/PM10
	70					ν,	70	
TPH CWG								
Aliphatics								
>C5-C6# -	<0.1					<0.1	mg/kg	TM36/PM12
>C6-C8# -	<0.1					<0.1	mg/kg	TM36/PM12
>C8-C10 -	<0.1					<0.1	mg/kg	TM36/PM12
>C10-C12# -	<0.2					<0.2	mg/kg	TM5/PM16
>C12-C16# -	<4					<4	mg/kg	TM5/PM16
>C16-C21# -	<7					<7	mg/kg	TM5/PM16
>C21-C35# -	<7					<7	mg/kg	TM5/PM16 TM5/TM36/PM12/PM16
Total aliphatics C5-35 - Aromatics	<19					<19	mg/kg	TMS/TMS6/PM12/PM16
>C5-EC7# -	<0.1					<0.1	mg/kg	TM36/PM12
>EC7-EC8# -	<0.1					<0.1	mg/kg	TM36/PM12
>EC8-EC10# -	<0.1					<0.1	mg/kg	TM36/PM12
>EC10-EC12# -	<0.2					<0.2	mg/kg	TM5/PM16
>EC12-EC16# -	<4					<4	mg/kg	TM5/PM16
>EC16-EC21# -	<7					<7	mg/kg	TM5/PM16
>EC21-EC35 # -	<7					<7	mg/kg	TM5/PM16
Total aromatics C5-35 # -	<19					<19	mg/kg	TM5/TM36/PM12/PM16
Total aliphatics and aromatics(C5-35)	<38					<38	mg/kg	TM5/TM36/PM12/PM16
PCB 77 -	-					<5	ug/kg	TM16/PM8
PCB 81 -	-					<5	ug/kg	TM16/PM8
PCB 105 -	-					<5	ug/kg	TM16/PM8
PCB 114 -	-					<5	ug/kg	TM16/PM8
PCB 118 -	-					<5	ug/kg	TM16/PM8
PCB 123 -	-					<5	ug/kg	TM16/PM8
PCB 126 -	-					<5	ug/kg	TM16/PM8
PCB 156 -	-					<5	ug/kg	TM16/PM8
PCB 157 -	-					<5 -5	ug/kg	TM16/PM8 TM16/PM8
PCB 167 - PCB 169 -	-					<5 <5	ug/kg ug/kg	TM16/PM8
PCB 189 -	-					<5 <5	ug/kg	TM16/PM8
Total 12 PCBs -	-					<60	ug/kg	TM16/PM8
							0 0	
Resorcinol -	<0.01					<0.01	mg/kg	TM26/PM21
Catechol -	<0.01					<0.01	mg/kg	TM26/PM21
Phenol# -	<0.01					<0.01	mg/kg	TM26/PM21
m/p-cresol# -	<0.02					<0.02	mg/kg	TM26/PM21

Client Name:

Ground Investigations Ireland

Report : Solid

Reference: Contact:

Foynes Port Location: Fergal McNamara Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

JE Job No.:	17/7031								
J E Sample No.	55-57	58-60							
Sample ID	LD06	LD06							
Depth	2.0	3.0							
COC No / misc	2.0	0.0						e attached no ations and ac	
Containers	VJT	VJT							
Sample Date									
-	<>	<>							
Sample Type	Soil	Soil							
Batch Number	1	1					LOD/LOR	Units	Method No.
Date of Receipt	13/04/2017	13/04/2017							
o-cresol	-	<0.01					<0.01	mg/kg	TM26/PM21
Total cresols	-	<0.03					<0.03	mg/kg	TM26/PM21
Xylenols#	-	<0.06					<0.06	mg/kg	TM26/PM21
1-naphthol	-	<0.01					<0.01	mg/kg	TM26/PM21
2,3,5-trimethyl phenol #	-	<0.01					<0.01	mg/kg	TM26/PM21
2-isopropylphenol #	-	<0.01					<0.01	mg/kg	TM26/PM21
Total Speciated Phenols HPLC	-	<0.15					<0.15	mg/kg	TM26/PM21
Natural Moisture Content	-	6.7					<0.1	%	PM4/PM0
Chloride#	43	-					<2	mg/kg	TM38/PM20
Hexavalent Chromium #	-	<0.3					<0.3	mg/kg	TM38/PM20
Sulphate as SO4 (2:1 Ext)#	0.0192	0.0113					<0.0015	g/l	TM38/PM20
Total Cyanide #	-	<0.5					<0.5	mg/kg	TM89/PM45
Organic Matter	-	1.1					<0.2	%	TM21/PM24
Dibutyltin	-	-					<100	ug/kg	TM94/PM48
Tributyltin	-	-					<100	ug/kg	TM94/PM48
Triphenyltin	-	-					<100	ug/kg	TM94/PM48
pH#	8.59	8.69					<0.01	pH units	TM73/PM11
		<u> </u>	l						

Client Name: Ground Investigations Ireland

Reference:

Location:Foynes PortContact:Fergal McNamara

JE Job No.:	17/7031										
J E Sample No.	4-6	13-16	41-43	48	49-51	58-60					
Sample ID	LD02	LD02	LD04	LD04	LD06	LD06					
Depth COC No / misc	1.0	4.0	1.0	4.0	0.5	3.0				e attached n	
Containers	VJT	VJT	VJT	Т	VJT	VJT					
Sample Date	<>	<>	<>	<>	<>	<>					
Sample Type Batch Number	Soil 1	Soil 1	Soil 1	Soil 1	Soil 1	Soil 1					Method
Date of Receipt	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017			LOD/LOR	Units	No.
SVOC MS											
Phenols 2-Chlorophenol#	<10	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
2-Methylphenol	<10	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
2-Nitrophenol	<10	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
2,4-Dichlorophenol#	<10	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
2,4-Dimethylphenol	<10 <10	<10	<10 <10	<10 <10	<10	<10 <10			<10	ug/kg	TM16/PM8 TM16/PM8
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	<10	<10 <10	<10	<10	<10 <10	<10			<10 <10	ug/kg ug/kg	TM16/PM8
4-Chloro-3-methylphenol	<10	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
4-Methylphenol	<10	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
4-Nitrophenol	<10	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
Pentachlorophenol Phenol #	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10			<10 <10	ug/kg ug/kg	TM16/PM8 TM16/PM8
PAHs	110	110	110	110	110	110			V10	ug/kg	TIVITO/T IVIO
2-Chloronaphthalene #	<10	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
2-Methylnaphthalene#	<10	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
Phthalates	-100	-100	-100	-100	-100	<100			-100	110/100	TM16/PM8
Bis(2-ethylhexyl) phthalate Butylbenzyl phthalate	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	<100			<100 <100	ug/kg ug/kg	TM16/PM8
Di-n-butyl phthalate	<100	<100	<100	<100	<100	<100			<100	ug/kg	TM16/PM8
Di-n-Octyl phthalate	<100	<100	<100	<100	<100	<100			<100	ug/kg	TM16/PM8
Diethyl phthalate	<100	<100	<100	<100	<100	<100			<100	ug/kg	TM16/PM8
Dimethyl phthalate # Other SVOCs	<100	<100	<100	<100	<100	<100			<100	ug/kg	TM16/PM8
1,2-Dichlorobenzene	<10	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
1,2,4-Trichlorobenzene #	<10	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
1,3-Dichlorobenzene	<10	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
1,4-Dichlorobenzene 2-Nitroaniline	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10			<10 <10	ug/kg ug/kg	TM16/PM8 TM16/PM8
2,4-Dinitrotoluene	<10	<10	<10	<10	<10	<10			<10	ug/kg ug/kg	TM16/PM8
2,6-Dinitrotoluene	<10	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
3-Nitroaniline	<10	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
4-Bromophenylphenylether # 4-Chloroaniline	<10 <10	<10	<10	<10	<10	<10 <10			<10	ug/kg	TM16/PM8 TM16/PM8
4-Chlorophenylphenylether	<10	<10 <10	<10 <10	<10 <10	<10 <10	<10			<10 <10	ug/kg ug/kg	TM16/PM8
4-Nitroaniline	<10	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
Azobenzene	<10	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
Bis(2-chloroethoxy)methane	<10	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
Bis(2-chloroethyl)ether Carbazole	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10			<10 <10	ug/kg ug/kg	TM16/PM8 TM16/PM8
Dibenzofuran #	<10	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
Hexachlorobenzene	<10	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
Hexachlorobutadiene #	<10	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
Hexachlorocyclopentadiene Hexachloroethane	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10			<10 <10	ug/kg ug/kg	TM16/PM8 TM16/PM8
Isophorone #	<10	<10	<10	<10	<10	<10			<10	ug/kg ug/kg	TM16/PM8
N-nitrosodi-n-propylamine #	<10	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
Nitrobenzene #	<10	<10	<10	<10	<10	<10			<10	ug/kg	TM16/PM8
Surrogate Recovery 2-Fluorobiphenyl Surrogate Recovery p-Terphenyl-d14	104 116	115 125	120 111	116 130	115 127	120 126			<0 <0	%	TM16/PM8 TM16/PM8
Sallogate Notovery p-Terprienyi-014	110	123	111	130	121	120			ν,	/0	TIVITO/FIVIS

SVOC Report :

Solid

Client Name: Ground Investigations Ireland

Reference:

Location: Foynes Port
Contact: Fergal McNamara

JE Job No.: 17/7031

JE JOD NO.:	17/7031										
J E Sample No.	4-6	13-16	41-43	48	49-51	58-60					
Sample ID	LD02	LD02	LD04	LD04	LD06	LD06					
Depth	1.0	4.0	1.0	4.0	0.5	3.0				e attached n	
COC No / misc Containers	VJT	VJT	VJT	Т	VJT	VJT			abbrevia	ations and a	cronyms
Sample Date	<>	<>	<>	<>	<>	<>					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil					
Batch Number Date of Receipt	1 13/04/2017	1 13/04/2017	1 13/04/2017	1 13/04/2017	1 13/04/2017	1 13/04/2017			LOD/LOR	Units	Method No.
VOC MS	10/04/2017	10/04/2011	10/04/2011	10/04/2011	10/04/2017	10/04/2011					
Dichlorodifluoromethane	<2	<2	<2	<2	<2	<2			<2	ug/kg	TM15/PM10
Methyl Tertiary Butyl Ether #	<2	<2	<2	<2	<2	<2			<2	ug/kg	TM15/PM10
Chloromethane # Vinyl Chloride	<3 <2	<3 <2	<3 <2	<3 <2	<3 <2	<3 <2			<3 <2	ug/kg ug/kg	TM15/PM10 TM15_A/PM10
Bromomethane	<1	<1	<1	<1	<1	<1			<1	ug/kg	TM15/PM10
Chloroethane #	<2	<2	<2	<2	<2	<2			<2	ug/kg	TM15/PM10
Trichlorofluoromethane #	<2	<2	<2	<2	<2	<2 <6			<2	ug/kg	TM15/PM10 TM15/PM10
1,1-Dichloroethene (1,1 DCE) * Dichloromethane (DCM) *	<6 <30	<6 <30	<6 71	<6 <30	<6 <30	<30			<6 <30	ug/kg ug/kg	TM15/PM10
trans-1-2-Dichloroethene #	<3	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
1,1-Dichloroethane#	<3	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
cis-1-2-Dichloroethene # 2,2-Dichloropropane	<3 <4	<3 <4	<3 <4	<3 <4	<3 <4	<3 <4			<3 <4	ug/kg ug/kg	TM15/PM10 TM15/PM10
Bromochloromethane #	<3	<3	<3	<3	<3	<3			<3	ug/kg ug/kg	TM15/PM10
Chloroform#	<3	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
1,1,1-Trichloroethane#	<3	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
1,1-Dichloropropene # Carbon tetrachloride #	<3 <4	<3 <4	<3 <4	<3 <4	<3 <4	<3 <4			<3 <4	ug/kg ug/kg	TM15/PM10 TM15/PM10
1,2-Dichloroethane #	<4	<4	<4	<4	<4	<4			<4	ug/kg ug/kg	TM15/PM10
Benzene #	<3	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
Trichloroethene (TCE)#	<3	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
1,2-Dichloropropane # Dibromomethane #	<6 <3	<6 <3	<6 <3	<6 <3	<6 <3	<6 <3			<6 <3	ug/kg ug/kg	TM15/PM10 TM15/PM10
Bromodichloromethane #	<3	<3	<3	<3	<3	<3			<3	ug/kg ug/kg	TM15/PM10
cis-1-3-Dichloropropene	<4	<4	<4	<4	<4	<4			<4	ug/kg	TM15/PM10
Toluene #	<3	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
trans-1-3-Dichloropropene 1,1,2-Trichloroethane#	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3			<3 <3	ug/kg ug/kg	TM15/PM10 TM15/PM10
Tetrachloroethene (PCE) #	<3	<3	<3	<3	<3	<3			<3	ug/kg ug/kg	TM15/PM10
1,3-Dichloropropane #	<3	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
Dibromochloromethane #	<3	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
1,2-Dibromoethane # Chlorobenzene #	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3			<3 <3	ug/kg ug/kg	TM15/PM10 TM15/PM10
1,1,1,2-Tetrachloroethane	<3	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
Ethylbenzene #	<3	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
p/m-Xylene #	<5	<5	<5	<5	<5	<5			<5	ug/kg	TM15/PM10 TM15/PM10
o-Xylene * Styrene	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3			<3 <3	ug/kg ug/kg	TM15/PM10
Bromoform	<3	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
Isopropylbenzene #	<3	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
1,1,2,2-Tetrachloroethane # Bromobenzene	<3 <2	<3 <2	<3 <2	<3 <2	<3 <2	<3 <2			<3 <2	ug/kg ug/kg	TM15/PM10 TM15/PM10
1,2,3-Trichloropropane #	<4	<4	<4	<4	<4	<4			<4	ug/kg ug/kg	TM15/PM10
Propylbenzene #	<4	<4	<4	<4	<4	<4			<4	ug/kg	TM15/PM10
2-Chlorotoluene	<3	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
1,3,5-Trimethylbenzene * 4-Chlorotoluene	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3			<3 <3	ug/kg ug/kg	TM15/PM10 TM15/PM10
tert-Butylbenzene#	<5	<5	<5	<5	<5	<5			<5	ug/kg	TM15/PM10
1,2,4-Trimethylbenzene #	<6	<6	<6	<6	<6	<6			<6	ug/kg	TM15/PM10
sec-Butylbenzene#	<4	<4	<4	<4	<4	<4			<4	ug/kg	TM15/PM10
4-Isopropyltoluene # 1,3-Dichlorobenzene #	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4			<4 <4	ug/kg ug/kg	TM15/PM10 TM15/PM10
1,4-Dichlorobenzene #	<4	<4	<4	<4	<4	<4			<4	ug/kg	TM15/PM10
n-Butylbenzene#	<4	<4	<4	<4	<4	<4			<4	ug/kg	TM15/PM10
1,2-Dichlorobenzene #	<4	<4	<4	<4	<4	<4			<4	ug/kg	TM15/PM10 TM15/PM10
1,2-Dibromo-3-chloropropane # 1,2,4-Trichlorobenzene #	<4 <7	<4 <7	<4 <7	<4 <7	<4 <7	<4 <7			<4 <7	ug/kg ug/kg	TM15/PM10
Hexachlorobutadiene	<4	<4	<4	<4	<4	<4			<4	ug/kg	TM15/PM10
Naphthalene #	<27	<27	<27	<27	<27	<27			<27	ug/kg	TM15/PM10
1,2,3-Trichlorobenzene * Surrogate Recovery Toluene D8	<7 98	<7 98	<7 95	<7 103	<7 97	<7 92			<7 <0	ug/kg %	TM15/PM10 TM15/PM10
Surrogate Recovery 10luene D8 Surrogate Recovery 4-Bromofluorobenzene	98	98	95 87	103	97	70			<0	%	TM15/PM10 TM15/PM10

VOC Report :

Solid

Exova Jones Environmental Asbestos Analysis

Client Name: Ground Investigations Ireland

Reference:

Location:Foynes PortContact:Fergal McNamara

Note:

Analysis was carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Jones Environmental Laboratory consultant, Jones Environmental Laboratory cannot be responsible for inaccurate or unrepresentative sampling.

Signed on behalf of Jones Environmental Laboratory:

Ryan Butterworth Asbestos Team Leader

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
17/7031	1	LD02	1.0	5	27/04/2017	General Description (Bulk Analysis)	Soil/Stone
					27/04/2017	Asbestos Fibres	NAD
					27/04/2017	Asbestos Fibres (2)	NAD
					27/04/2017	Asbestos ACM	NAD
					27/04/2017	Asbestos ACM (2)	NAD
					27/04/2017	Asbestos Type	NAD
					27/04/2017	Asbestos Type (2)	NAD
					27/04/2017	Asbestos Level Screen	NAD
17/7031	1	LD02	4.0	15	27/04/2017	General Description (Bulk Analysis)	Soil/Stone
					27/04/2017	Asbestos Fibres	NAD
					27/04/2017	Asbestos Fibres (2)	NAD
					27/04/2017	Asbestos ACM	NAD
					27/04/2017	Asbestos ACM (2)	NAD
					27/04/2017	Asbestos Type	NAD
					27/04/2017	Asbestos Type (2)	NAD
					27/04/2017	Asbestos Level Screen	NAD
17/7031	1	LD04	1.0	42	27/04/2017	General Description (Bulk Analysis)	Soil/Stone
					27/04/2017	Asbestos Fibres	NAD
					27/04/2017	Asbestos Fibres (2)	NAD
					27/04/2017	Asbestos ACM	NAD
					27/04/2017	Asbestos ACM (2)	NAD
					27/04/2017	Asbestos Type	NAD
					27/04/2017	Asbestos Type (2)	NAD
					27/04/2017	Asbestos Level Screen	NAD
17/7031	1	LD04	4.0	48	27/04/2017	General Description (Bulk Analysis)	Soil/Stone
					27/04/2017	Asbestos Fibres	NAD
					27/04/2017	Asbestos Fibres (2)	NAD
					27/04/2017	Asbestos ACM	NAD
					27/04/2017	Asbestos ACM (2)	NAD
					27/04/2017	Asbestos Type	NAD
					27/04/2017	Asbestos Type (2)	NAD
					27/04/2017	Asbestos Level Screen	NAD
17/7031	1	LD06	0.5	50	27/04/2017	General Description (Bulk Analysis)	Soil/Stone
					27/04/2017	Asbestos Fibres	NAD
					27/04/2017	Asbestos Fibres (2)	NAD

Client Name:

Reference:

Ground Investigations Ireland

Location:Foynes PortContact:Fergal McNamara

J E Job No.	Batch 1	Sample ID	Depth	J E Sample	Date Of	Anglysia	Deput
17/7031	1	1.000		No.	Analysis	Analysis	Result
		LD06	0.5	50	27/04/2017	Asbestos ACM	NAD
						Asbestos ACM (2)	NAD
						Asbestos Type	NAD
						Asbestos Type (2)	NAD
							NAD
					27/04/2017	Asbestos Level Screen	INAD
		1.000					
17/7031	1	LD06	3.0	59		General Description (Bulk Analysis)	Soil/Stone
						Asbestos Fibres	NAD
						Asbestos Fibres (2)	NAD
						Asbestos ACM	NAD
						Asbestos ACM (2)	NAD
					27/04/2017	Asbestos Type	NAD
					27/04/2017	Asbestos Type (2)	NAD
					27/04/2017	Asbestos Level Screen	NAD

Notification of Deviating Samples

Client Name: Ground Investigations Ireland Matrix : Solid

Reference:

Location: Foynes Port

Contact: Fergal McNamara

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
17/7031	1	LD02	0.5	1-3	All analyses	No sampling date given
17/7031	1	LD02	1.0	4-6	All analyses	No sampling date given
17/7031	1	LD02	3.0	10-12	All analyses	No sampling date given
17/7031	1	LD02	4.0	13-16	All analyses	No sampling date given
17/7031	1	LD04	0.5	38-40	All analyses	No sampling date given
17/7031	1	LD04	1.0	41-43	All analyses	No sampling date given
17/7031	1	LD04	3.0	46-47	All analyses	No sampling date given
17/7031	1	LD04	4.0	48	All analyses	No sampling date given
17/7031	1	LD04	4.0	48	ЕРН	Sample received in inappropriate container
17/7031	1	LD06	0.5	49-51	All analyses	No sampling date given
17/7031	1	LD06	1.0	52-54	All analyses	No sampling date given
17/7031	1	LD06	2.0	55-57	All analyses	No sampling date given
17/7031	1	LD06	3.0	58-60	All analyses	No sampling date given

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 17/7031

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

17/7031

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS) accredited - UK.
SA	ISO17025 (SANAS) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.				
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	TM005: Modified USEPA 8015B. Determination of solvent Extractable Petroleum Hydrocarbons (EPH) including column fractionation in the carbon range of C10-35 into aliphatic and aromatic fractions by GC-FID. TM036: Modified USEPA 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C5-10 by headspace GC-FID. Including determination of	PM12/PM16	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis./Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5/TM36	TM005: Modified USEPA 8015B. Determination of solvent Extractable Petroleum Hydrocarbons (EPH) including column fractionation in the carbon range of C10-35 into aliphatic and aromatic fractions by GC-FID. TM036: Modified USEPA 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C5-10 by headspace GC-FID. Including determination of	PM12/PM16	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis./Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM15	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM15	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM16	Modified USEPA 8270. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM16	Modified USEPA 8270. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes

Test Method No.	lo. Description		Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM21	Modified USEPA 415.1. Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.			AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM21	As received solid or water samples are extracted in Methanol: Sodium Hydroxide (0.1M NaOH) (60:40) by orbital shaker.			AR	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM21	As received solid or water samples are extracted in Methanol: Sodium Hydroxide (0.1M NaOH) (60:40) by orbital shaker.	Yes		AR	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM50	Acid soluble sulphate (Total Sulphate) analysed by ICP-OES	PM29	Dried and ground solid sample is boiled with dilute hydrochloric acid, the resulting liquor is then analysed.	Yes		AD	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.			AR	
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM74	Analysis of water soluble boron (20:1 extract) by ICP-OES.	PM32	Hot water soluble boron is extracted from dried and ground samples using a 20:1 ratio.	Yes		AD	Yes
TM89	Modified USEPA method OIA-1667. Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM45	As received solid samples are extracted with 1M NaOH by orbital shaker for Cyanide and Thiocyanate analysis.	Yes		AR	Yes
TM94	Derivatisation and extraction of Organotins. Analysis by GC-MS	PM48	Samples are pretreated and derivatised. The derviatised organotins are then extracted using hexane.			AR	Yes
TM15_A	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds, Vinyl Chloride & Styrene by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes

Registered Address: Exova (UK) Ltd, Lochend Industrial Estate, Newbridge, Midlothian, EH28 8PL

Unit 3 Deeside Point Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland

Attention : Conor Finnerty

Date: 16th June, 2017

Your reference :

Our reference: Test Report 17/9027 Batch 1

Location : Foynes Port

Date samples received: 22nd May, 2017

Status: Final report

Issue:

Twenty three samples were received for analysis on 22nd May, 2017 of which three were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Bruce Leslie

Project Co-ordinator

Client Name:

Ground Investigations Ireland

Report : Solid

Reference: Location:

Foynes Port Conor Finnerty Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Contact: Conor Fine JE Job No.: 17/9027

0E 00B 140	11/3021			 	 				
J E Sample No.	1-3	7-9	19-21						
Sample ID	BHLD03	BHLD03	BHLD03						
Depth	0.50	2.00	6.00				Diagon	a attached n	otoo for all
COC No / misc								e attached r ations and a	
Containers	VJT	VJT	VJT						
Sample Date			16/05/2017						
Sample Type	Soil	Soil	Soil						
Batch Number	1	1	1				LOD/LOR	Units	Method
Date of Receipt	22/05/2017	22/05/2017	22/05/2017						No.
Aluminium	19500	10900	1218				<50	mg/kg	TM30/PM15
Arsenic#	17.1	11.0	2.4				<0.5	mg/kg	TM30/PM15
Barium #	43	25	5				<1	mg/kg	TM30/PM15
Beryllium	1.4	0.8	<0.5				<0.5	mg/kg	TM30/PM15
Cadmium # Chromium #	<0.1 49.6	0.2 30.6	0.5 13.2				<0.1 <0.5	mg/kg mg/kg	TM30/PM15 TM30/PM15
Copper#	5	7	6				<1	mg/kg	TM30/PM15
Iron	35460	23350	3480				<20	mg/kg	TM30/PM15
Lead#	19	9	<5				<5	mg/kg	TM30/PM15
Mercury#	<0.1	<0.1	<0.1				<0.1	mg/kg	TM30/PM15
Nickel [#]	32.7	22.4	9.6				<0.7	mg/kg	TM30/PM15
Selenium#	<1	<1	<1				<1	mg/kg	TM30/PM15
Sulphur as S	0.02	0.07	0.05				<0.01	%	TM30/PM15
Total Sulphate as SO4#	291	508	221				<50	mg/kg	TM50/PM29
Vanadium	60	31	3				<1	mg/kg	TM30/PM15
Water Soluble Boron #	1.6	2.0	0.7				<0.1	mg/kg	TM74/PM32
Zinc#	82	53	13				<5	mg/kg	TM30/PM15
PAH MS	0.04	0.04	0.04				0.04		T144/D140
Naphthalene #	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Acenaphthylene Acenaphthene #	<0.03 <0.05	<0.03 <0.05	<0.03 <0.05				<0.03 <0.05	mg/kg mg/kg	TM4/PM8 TM4/PM8
Fluorene #	<0.03	<0.04	<0.04				<0.03	mg/kg	TM4/PM8
Phenanthrene #	<0.03	<0.03	<0.03				<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Fluoranthene#	<0.03	<0.03	<0.03				<0.03	mg/kg	TM4/PM8
Pyrene #	<0.03	<0.03	<0.03				<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene#	<0.06	<0.06	<0.06				<0.06	mg/kg	TM4/PM8
Chrysene #	<0.02	<0.02	<0.02				<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	<0.07	<0.07	<0.07				<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene#	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Coronene	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
PAH 17 Total	<0.64	<0.64	<0.64				<0.64	mg/kg	TM4/PM8 TM4/PM8
Benzo(b)fluoranthene Benzo(k)fluoranthene	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02				<0.05 <0.02	mg/kg mg/kg	TM4/PM8
PAH Surrogate % Recovery	91	<0.02 83	83				<0.02	mg/kg %	TM4/PM8
7.1. Guirogale // Necovery	91	00	0.5				~0	/0	I IVIT/F IVIO
Methyl Tertiary Butyl Ether #	<2	<2	<2				<2	ug/kg	TM15/PM10
Benzene #	<3	<3	<3				<3	ug/kg	TM15/PM10
Toluene #	<3	<3	<3				<3	ug/kg	TM15/PM10
Ethylbenzene #	<3	<3	<3				<3	ug/kg	TM15/PM10

Client Name:

Ground Investigations Ireland

Report : Solid

Reference: Location:

Foynes Port Conor Finnerty Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Contact: Conor Fi

JE Job No.:	17/9027						_		
J E Sample No.	1-3	7-9	19-21						
Sample ID	BHLD03	BHLD03	BHLD03						
Depth	0.50	2.00	6.00						
COC No / misc								e attached r ations and a	
	V 1.T	V/ 1.T	\/ I.T						
Containers	VJT	VJT	VJT						
Sample Date	16/05/2017	16/05/2017	16/05/2017						
Sample Type	Soil	Soil	Soil						
Batch Number	1	1	1				LOD/LOR	Units	Method
Date of Receipt	22/05/2017	22/05/2017	22/05/2017						No.
p/m-Xylene #	<5	<5	<5				<5	ug/kg	TM15/PM10
o-Xylene [#]	<3	<3	<3				<3	ug/kg	TM15/PM10
Surrogate Recovery Toluene D8	96	96	97				<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	103	96	112				<0	%	TM15/PM10
TPH CWG									
Aliphatics									
>C5-C6#	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>C6-C8#	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>C10-C12#	<0.2	<0.2	<0.2				<0.2	mg/kg	TM5/PM16
>C12-C16#	<4	<4	<4				<4	mg/kg	TM5/PM16
>C16-C21#	<7	<7	<7				<7	mg/kg	TM5/PM16
>C21-C35#	<7	<7	<7				<7	mg/kg	TM5/PM16
Total aliphatics C5-35	<19	<19	<19				<19	mg/kg	TM5/TM36/PM12/PM16
Aromatics >C5-EC7#	-0.4	-0.4	-0.4				.0.4		TM36/PM12
>C5-EC7 >EC7-EC8 [#]	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1				<0.1 <0.1	mg/kg mg/kg	TM36/PM12
>EC8-EC10#	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>EC10-EC12#	<0.2	<0.2	<0.2				<0.2	mg/kg	TM5/PM16
>EC12-EC16#	<4	<4	<4				<4	mg/kg	TM5/PM16
>EC16-EC21 #	<7	<7	<7				<7	mg/kg	TM5/PM16
>EC21-EC35#	<7	<7	<7				<7	mg/kg	TM5/PM16
Total aromatics C5-35#	<19	<19	<19				<19	mg/kg	TM5/TM36/PM12/PM16
Total aliphatics and aromatics(C5-35)	<38	<38	<38				<38	mg/kg	TM5/TM36/PM12/PM16
DOD 00#	_						-		T1447/D140
PCB 28 * PCB 52 *	<5 <5	-	-				<5 <5	ug/kg ug/kg	TM17/PM8 TM17/PM8
PCB 52 PCB 101 #	<5 <5	-	-				<5 <5	ug/kg	TM17/PM8
PCB 118#	<5	-	-				<5	ug/kg	TM17/PM8
PCB 138 #	<5	-	-				<5	ug/kg	TM17/PM8
PCB 153#	<5	-	-				<5	ug/kg	TM17/PM8
PCB 180 #	<5	-	-				<5	ug/kg	TM17/PM8
Total 7 PCBs#	<35	-	-				<35	ug/kg	TM17/PM8
Resorcinol	<0.01	<0.01	<0.01				<0.01	mg/kg	TM26/PM21
Catechol	<0.01	<0.01	<0.01				<0.01	mg/kg	TM26/PM21
Phenol #	<0.01 <0.02	<0.01 <0.02	<0.01 <0.02				<0.01 <0.02	mg/kg	TM26/PM21 TM26/PM21
m/p-cresol # o-cresol	<0.02	<0.02	<0.02				<0.02	mg/kg mg/kg	TM26/PM21
Total cresols	<0.01	<0.01	<0.01				<0.01	mg/kg	TM26/PM21
Xylenols #	<0.06	<0.06	<0.06				<0.06	mg/kg	TM26/PM21
1-naphthol	<0.01	<0.01	<0.01				<0.01	mg/kg	TM26/PM21
2,3,5-trimethyl phenol #	<0.01	<0.01	<0.01				<0.01	mg/kg	TM26/PM21

Client Name:

Ground Investigations Ireland

Report : Solid

Reference:

Foynes Port Location: Contact:

Conor Finnerty

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

JE Job No.:	17/9027						_		
J E Sample No.	1-3	7-9	19-21						
Sample ID	BHLD03	BHLD03	BHLD03						
Depth	0.50	2.00	6.00				Diagona	o ottoobod n	otoo for all
COC No / misc								e attached n ations and a	
Containers	VJT	VJT	VJT						
Sample Date									
Sample Type	Soil	Soil	Soil						
Batch Number	1	1	1						
Date of Receipt							LOD/LOR	Units	Method No.
2-isopropylphenol #	<0.01	<0.01	<0.01				<0.01	mg/kg	TM26/PM21
Total Speciated Phenols HPLC	<0.15	<0.15	<0.15				<0.15	mg/kg	TM26/PM21
								0 0	
Natural Moisture Content	22.3	31.0	5.5				<0.1	%	PM4/PM0
Hexavalent Chromium#	<0.3	<0.3	<0.3				<0.3	mg/kg	TM38/PM20
Sulphate as SO4 (2:1 Ext) #	0.0021	0.0947	0.0748				<0.0015	g/l	TM38/PM20
Total Cyanide #	<0.5	<0.5	<0.5				<0.5	mg/kg	TM89/PM45
Organic Matter	1.3	2.1	<0.2				<0.2	%	TM21/PM24
Dibutyltin	<100	-	-				<100	ug/kg	TM94/PM48
Tributyltin Triphenyltin	<100 <100	-	-				<100 <100	ug/kg ug/kg	TM94/PM48 TM94/PM48
Прпепуш	<100	-	-				<100	ug/kg	110134/1 10140
pH#	6.49	8.34	8.47				<0.01	pH units	TM73/PM11
·				 	 	 	 ·		

Client Name: Ground Investigations Ireland

Reference:

Location: Foynes Port
Contact: Conor Finnerty
JE Job No.: 17/9027

SVOC Report : Solid

JE Job No.:	17/9027								
J E Sample No.	1-3	7-9	19-21						
Sample ID	BHLD03	BHLD03	BHLD03						
Depth	0.50	2.00	6.00				Please se	e attached n	otes for all
COC No / misc								ations and a	
Containers	VJT	VJT	VJT						
Sample Date	16/05/2017	16/05/2017	16/05/2017						
Sample Type	Soil	Soil	Soil						
Batch Number	1	1	1				LOD/LOR	Units	Method
Date of Receipt	22/05/2017	22/05/2017	22/05/2017						No.
SVOC MS Phenols									
2-Chlorophenol [#]	<10	<10	<10				<10	ug/kg	TM16/PM8
2-Methylphenol	<10	<10	<10				<10	ug/kg	TM16/PM8
2-Nitrophenol	<10	<10	<10				<10	ug/kg	TM16/PM8
2,4-Dichlorophenol #	<10	<10	<10				<10	ug/kg	TM16/PM8
2,4-Dimethylphenol	<10	<10	<10				<10	ug/kg	TM16/PM8
2,4,5-Trichlorophenol	<10	<10	<10				<10	ug/kg	TM16/PM8
2,4,6-Trichlorophenol	<10	<10	<10				<10	ug/kg	TM16/PM8
4-Chloro-3-methylphenol	<10	<10	<10				<10	ug/kg	TM16/PM8
4-Methylphenol	<10	<10	<10				<10	ug/kg	TM16/PM8
4-Nitrophenol	<10	<10	<10				<10	ug/kg	TM16/PM8
Pentachlorophenol Phenol #	<10 <10	<10 <10	<10 <10				<10 <10	ug/kg ug/kg	TM16/PM8 TM16/PM8
PAHs	<10	<10	<10				<10	ug/kg	TIVITO/FIVIO
2-Chloronaphthalene #	<10	<10	<10				<10	ug/kg	TM16/PM8
2-Methylnaphthalene#	<10	<10	<10				<10	ug/kg	TM16/PM8
Phthalates								5 5	
Bis(2-ethylhexyl) phthalate	<100	<100	<100				<100	ug/kg	TM16/PM8
Butylbenzyl phthalate	<100	<100	<100				<100	ug/kg	TM16/PM8
Di-n-butyl phthalate	<100	<100	<100				<100	ug/kg	TM16/PM8
Di-n-Octyl phthalate	<100	<100	<100				<100	ug/kg	TM16/PM8
Diethyl phthalate	<100	<100	<100				<100	ug/kg	TM16/PM8
Dimethyl phthalate # Other SVOCs	<100	<100	<100				<100	ug/kg	TM16/PM8
1,2-Dichlorobenzene	<10	<10	<10				<10	ug/kg	TM16/PM8
1,2,4-Trichlorobenzene #	<10	<10	<10				<10	ug/kg	TM16/PM8
1,3-Dichlorobenzene	<10	<10	<10				<10	ug/kg	TM16/PM8
1,4-Dichlorobenzene	<10	<10	<10				<10	ug/kg	TM16/PM8
2-Nitroaniline	<10	<10	<10				<10	ug/kg	TM16/PM8
2,4-Dinitrotoluene	<10	<10	<10				<10	ug/kg	TM16/PM8
2,6-Dinitrotoluene	<10	<10	<10				<10	ug/kg	TM16/PM8
3-Nitroaniline	<10	<10	<10				<10	ug/kg	TM16/PM8
4-Bromophenylphenylether #	<10	<10	<10 <10				<10	ug/kg	TM16/PM8 TM16/PM8
4-Chloroaniline 4-Chlorophenylphenylether	<10 <10	<10 <10	<10				<10 <10	ug/kg ug/kg	TM16/PM8
4-Nitroaniline	<10	<10	<10				<10	ug/kg	TM16/PM8
Azobenzene	<10	<10	<10				<10	ug/kg	TM16/PM8
Bis(2-chloroethoxy)methane	<10	<10	<10				<10	ug/kg	TM16/PM8
Bis(2-chloroethyl)ether	<10	<10	<10				<10	ug/kg	TM16/PM8
Carbazole	<10	<10	<10				<10	ug/kg	TM16/PM8
Dibenzofuran #	<10	<10	<10				<10	ug/kg	TM16/PM8
Hexachlorobenzene	<10	<10	<10				<10	ug/kg	TM16/PM8
Hexachlorobutadiene #	<10	<10	<10				<10	ug/kg	TM16/PM8
Hexachlorocyclopentadiene Hexachloroethane	<10 <10	<10 <10	<10 <10				<10 <10	ug/kg ug/kg	TM16/PM8 TM16/PM8
Isophorone #	<10	<10	<10				<10	ug/kg ug/kg	TM16/PM8
N-nitrosodi-n-propylamine #	<10	<10	<10				<10	ug/kg ug/kg	TM16/PM8
Nitrobenzene #	<10	<10	<10				<10	ug/kg	TM16/PM8
Surrogate Recovery 2-Fluorobiphenyl	105	114	74				<0	%	TM16/PM8
Surrogate Recovery p-Terphenyl-d14	102	120	117				<0	%	TM16/PM8

Client Name: Ground Investigations Ireland

Reference:

Location: Foynes Port
Contact: Conor Finnerty
JE Job No.: 17/9027

VOC Report : Solid

JE Job No.:	17/9027									
J E Sample No.	1-3	7-9	19-21							
Sample ID	BHLD03	BHLD03	BHLD03							
Depth	0.50	2.00	6.00					Please se	e attached n	otes for all
COC No / misc									ations and a	
Containers	VJT	VJT	VJT							
Sample Date	16/05/2017	16/05/2017	16/05/2017							
Sample Type	Soil	Soil	Soil							
Batch Number	1	1	1					LOD/LOR	Units	Method
Date of Receipt	22/05/2017	22/05/2017	22/05/2017							No.
VOC MS	_	_	_					_		
Dichlorodifluoromethane	<2	<2	<2					<2	ug/kg	TM15/PM10 TM15/PM10
Methyl Tertiary Butyl Ether * Chloromethane *	<2 <3	<2	<2					<2	ug/kg ug/kg	TM15/PM10
Vinyl Chloride	<2	<3 <2	<3 <2					<3 <2	ug/kg ug/kg	TM15_A/PM10
Bromomethane	<1	<1	<1					<1	ug/kg	TM15/PM10
Chloroethane #	<2	<2	<2					<2	ug/kg	TM15/PM10
Trichlorofluoromethane #	<2	<2	<2					<2	ug/kg	TM15/PM10
1,1-Dichloroethene (1,1 DCE)#	<6	<6	<6					<6	ug/kg	TM15/PM10
Dichloromethane (DCM) #	<30	<30	<30					<30	ug/kg	TM15/PM10
trans-1-2-Dichloroethene #	<3	<3	<3					<3	ug/kg	TM15/PM10
1,1-Dichloroethane#	<3	<3	<3					<3	ug/kg	TM15/PM10
cis-1-2-Dichloroethene #	<3	<3	<3					<3	ug/kg	TM15/PM10
2,2-Dichloropropane	<4	<4	<4					<4	ug/kg	TM15/PM10
Bromochloromethane #	<3	<3	<3					<3	ug/kg	TM15/PM10 TM15/PM10
Chloroform#	<3 <3	<3	<3					<3	ug/kg	
1,1,1-Trichloroethane # 1,1-Dichloropropene #	<3 <3	<3 <3	<3 <3					<3 <3	ug/kg	TM15/PM10 TM15/PM10
Carbon tetrachloride #	<4	<4	<4					<4	ug/kg ug/kg	TM15/PM10
1,2-Dichloroethane#	<4	<4	<4					<4	ug/kg	TM15/PM10
Benzene #	<3	<3	<3					<3	ug/kg	TM15/PM10
Trichloroethene (TCE)#	<3	<3	<3					<3	ug/kg	TM15/PM10
1,2-Dichloropropane #	<6	<6	<6					<6	ug/kg	TM15/PM10
Dibromomethane #	<3	<3	<3					<3	ug/kg	TM15/PM10
Bromodichloromethane #	<3	<3	<3					<3	ug/kg	TM15/PM10
cis-1-3-Dichloropropene	<4	<4	<4					<4	ug/kg	TM15/PM10
Toluene #	<3	<3	<3					<3	ug/kg	TM15/PM10
trans-1-3-Dichloropropene	<3	<3	<3					<3	ug/kg	TM15/PM10
1,1,2-Trichloroethane#	<3 <3	<3	<3					<3	ug/kg	TM15/PM10 TM15/PM10
Tetrachloroethene (PCE) # 1,3-Dichloropropane #	<3 <3	<3 <3	<3 <3					<3 <3	ug/kg ug/kg	TM15/PM10
Dibromochloromethane #	<3	<3	<3					<3	ug/kg	TM15/PM10
1,2-Dibromoethane #	<3	<3	<3					<3	ug/kg	TM15/PM10
Chlorobenzene #	<3	<3	<3					<3	ug/kg	TM15/PM10
1,1,1,2-Tetrachloroethane	<3	<3	<3					<3	ug/kg	TM15/PM10
Ethylbenzene #	<3	<3	<3					<3	ug/kg	TM15/PM10
p/m-Xylene #	<5	<5	<5					<5	ug/kg	TM15/PM10
o-Xylene #	<3	<3	<3					<3	ug/kg	TM15/PM10
Styrene	<3	<3	<3					<3	ug/kg	TM15_A/PM10
Bromoform	<3	<3	<3					<3	ug/kg	TM15/PM10
Isopropylbenzene #	<3 <3	<3 <3	<3 <3					<3 <3	ug/kg	TM15/PM10 TM15/PM10
1,1,2,2-Tetrachloroethane [#] Bromobenzene	<3 <2	<3 <2	<3 <2					<3 <2	ug/kg ug/kg	TM15/PM10
1,2,3-Trichloropropane #	<4	<4	<4					<2 <4	ug/kg ug/kg	TM15/PM10
Propylbenzene #	<4	<4	<4					<4	ug/kg ug/kg	TM15/PM10
2-Chlorotoluene	<3	<3	<3					<3	ug/kg	TM15/PM10
1,3,5-Trimethylbenzene #	<3	<3	<3					<3	ug/kg	TM15/PM10
4-Chlorotoluene	<3	<3	<3					<3	ug/kg	TM15/PM10
tert-Butylbenzene#	<5	<5	<5					<5	ug/kg	TM15/PM10
1,2,4-Trimethylbenzene #	<6	<6	<6					<6	ug/kg	TM15/PM10
sec-Butylbenzene#	<4	<4	<4					<4	ug/kg	TM15/PM10
4-Isopropyltoluene #	<4	<4	<4					<4	ug/kg	TM15/PM10
1,3-Dichlorobenzene #	<4	<4	<4					<4	ug/kg	TM15/PM10
1,4-Dichlorobenzene #	<4	<4	<4					<4	ug/kg	TM15/PM10 TM15/PM10
n-Butylbenzene [#] 1,2-Dichlorobenzene [#]	<4 <4	<4 <4	<4 <4					<4 <4	ug/kg ug/kg	TM15/PM10
1,2-Dichlorobenzene ** 1,2-Dibromo-3-chloropropane **	<4 <4	<4	<4 <4					<4 <4	ug/kg ug/kg	TM15/PM10
1,2,4-Trichlorobenzene #	<7	<7	<7					<7	ug/kg ug/kg	TM15/PM10
Hexachlorobutadiene	<4	<4	<4					<4	ug/kg ug/kg	TM15/PM10
Naphthalene	<27	<27	<27					<27	ug/kg	TM15/PM10
				1	1					T145/D1440
1,2,3-Trichlorobenzene #	<7	<7	<7					<7	ug/kg	TM15/PM10
1,2,3-Trichlorobenzene * Surrogate Recovery Toluene D8		<7 96	<7 97					<7 <0	ug/kg %	TM15/PM10 TM15/PM10

Exova Jones Environmental Asbestos Analysis

Client Name: Ground Investigations Ireland

Reference:

Location: Foynes Port **Contact:** Conor Finnerty

Note:

Analysis was carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Jones Environmental Laboratory consultant, Jones Environmental Laboratory cannot be responsible for inaccurate or unrepresentative sampling.

Signed on behalf of Jones Environmental Laboratory:

Ryan Butterworth Asbestos Team Leader

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
17/9027	1	BHLD03	0.50	2	09/06/2017	General Description (Bulk Analysis)	Soil/Stones
					09/06/2017	Asbestos Fibres	NAD
					09/06/2017	Asbestos Fibres (2)	NAD
					09/06/2017	Asbestos ACM	NAD
					09/06/2017	Asbestos ACM (2)	NAD
					09/06/2017	Asbestos Type	NAD
					09/06/2017	Asbestos Type (2)	NAD
					09/06/2017	Asbestos Level Screen	NAD
17/9027	1	BHLD03	2.00	8	09/06/2017	General Description (Bulk Analysis)	Soil/Stones
					09/06/2017	Asbestos Fibres	NAD
					09/06/2017	Asbestos Fibres (2)	NAD
					09/06/2017	Asbestos ACM	NAD
					09/06/2017	Asbestos ACM (2)	NAD
					09/06/2017	Asbestos Type	NAD
					09/06/2017	Asbestos Type (2)	NAD
					09/06/2017	Asbestos Level Screen	NAD
17/9027	1	BHLD03	6.00	20	09/06/2017	General Description (Bulk Analysis)	Soil/Stones
					09/06/2017	Asbestos Fibres	NAD
					09/06/2017	Asbestos Fibres (2)	NAD
					09/06/2017	Asbestos ACM	NAD
					09/06/2017	Asbestos ACM (2)	NAD
					09/06/2017	Asbestos Type	NAD
					09/06/2017	Asbestos Type (2)	NAD
					09/06/2017	Asbestos Level Screen	NAD

Notification of Deviating Samples

Client Name: Ground Investigations Ireland Matrix : Solid

Reference:

Location: Foynes Port **Contact:** Conor Finnerty

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
17/9027	1	BHLD03	0.50	1-3	Cyanide, EPH, GRO, PAH, PCB, Phenols, SVOC, VOC	Sample holding time exceeded
17/9027	1	BHLD03	0.50	1-3	GRO, VOC	Solid Samples were received at a temperature above 9°C.
17/9027	1	BHLD03	2.00	7-9	Cyanide, EPH, GRO, PAH, Phenols, SVOC, VOC	Sample holding time exceeded
17/9027	1	BHLD03	2.00	7-9	GRO, VOC	Solid Samples were received at a temperature above 9°C.
17/9027	1	BHLD03	6.00	19-21	Cyanide, EPH, GRO, PAH, Phenols, SVOC, VOC	Sample holding time exceeded
17/9027	1	BHLD03	6.00	19-21	GRO, VOC	Solid Samples were received at a temperature above 9°C.

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 17/9027

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

ISO17025 (UKAS) accredited - UK.
ISO17025 (SANAS) accredited - South Africa.
Indicates analyte found in associated method blank.
Dilution required.
MCERTS accredited.
Not applicable
No Asbestos Detected.
None Detected (usually refers to VOC and/SVOC TICs).
No Determination Possible
Calibrated against a single substance
Surrogate recovery outside performance criteria. This may be due to a matrix effect.
Results expressed on as received basis.
AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
Result outside calibration range, results should be considered as indicative only and are not accredited.
Analysis subcontracted to a Jones Environmental approved laboratory.
Samples are dried at 35°C ±5°C
Suspected carry over
Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
Matrix Effect
No Fibres Detected
AQC Sample
Blank Sample
Client Sample
Trip Blank Sample
Outside Calibration Range

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.				
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	TM005: Modified USEPA 8015B. Determination of solvent Extractable Petroleum Hydrocarbons (EPH) including column fractionation in the carbon range of C10-35 into aliphatic and aromatic fractions by GC-FID. TM036: Modified USEPA 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C5-10 by headspace GC-FID. Including determination of	PM12/PM16	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis./Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5/TM36	TM005: Modified USEPA 8015B. Determination of solvent Extractable Petroleum Hydrocarbons (EPH) including column fractionation in the carbon range of C10-35 into aliphatic and aromatic fractions by GC-FID. TM036: Modified USEPA 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C5-10 by headspace GC-FID. Including determination of	PM12/PM16	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis./Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM15	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM15	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM16	Modified USEPA 8270. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM16	Modified USEPA 8270. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM17	Modified US EPA method 8270. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM21	Modified USEPA 415.1. Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.			AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM21	As received solid or water samples are extracted in Methanol: Sodium Hydroxide (0.1M NaOH) (60:40) by orbital shaker.			AR	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM21	As received solid or water samples are extracted in Methanol: Sodium Hydroxide (0.1M NaOH) (60:40) by orbital shaker.	Yes		AR	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
ТМ38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM50	Acid soluble sulphate (Total Sulphate) analysed by ICP-OES	PM29	Dried and ground solid sample is boiled with dilute hydrochloric acid, the resulting liquor is then analysed.	Yes		AD	Yes
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.			AR	
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM74	Analysis of water soluble boron (20:1 extract) by ICP-OES.	PM32	Hot water soluble boron is extracted from dried and ground samples using a 20:1 ratio.	Yes		AD	Yes
TM89	Modified USEPA method OIA-1667. Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM45	As received solid samples are extracted with 1M NaOH by orbital shaker for Cyanide and Thiocyanate analysis.	Yes		AR	Yes
TM94	Derivatisation and extraction of Organotins. Analysis by GC-MS	PM48	Samples are pretreated and derivatised. The derviatised organotins are then extracted using hexane.			AR	Yes
TM15_A	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds, Vinyl Chloride & Styrene by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes

Registered Address: Exova (UK) Ltd, Lochend Industrial Estate, Newbridge, Midlothian, EH28 8PL

Unit 3 Deeside Point Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland

Attention : Conor Finnerty

Date: 8th May, 2017

Your reference: 17/02/6552

Our reference: Test Report 17/7213 Batch 1

Location: Foynes

Date samples received: 19th April, 2017

Status: Final report

Issue:

Twenty four samples were received for analysis on 19th April, 2017 of which twenty four were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Where Waste Acceptance Criteria Suite (EC Decision of 19 December 2002 (2003/33/EC)) has been requested, all analyses have been performed using the relevant EN methods where they exist.

Compiled By:

Bruce Leslie

Project Co-ordinator

Client Name: Ground Investigations Ireland

Reference: 17/02/6552
Location: Foynes
Contact: Conor Finnerty

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

JE Job No.: Conor Fin

JE Job No.:	17/7213												
J E Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30			
Sample ID	TP01 0.50 ENV	TP01 1.00 ENV	TP01 3.90 ENV	TP02 1.00 ENV	TP02 4.50 ENV	TP03 0.50 ENV	TP03 0.80 ENV	TP03 3.00 ENV	TP04 1.00 ENV	TP04 2.30 ENV			
Depth	0.50	1.00	3.90	1.00	4.50	0.50	0.80	3.00	1.00	2.30		e attached r ations and a	
COC No / misc											abbievi	alions and a	Cionyma
Containers	VJT												
Sample Date	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	LOD/LOR	Units	No.
Aluminium	14360	-	8145	8272	8851	17380	-	9144	2868	2232	<50	mg/kg	TM30/PM15
Arsenic #	15.9	-	15.2	8.6	8.5	9.5	-	6.2	6.5	6.1	<0.5	mg/kg	TM30/PM15
Barium #	26	-	18	17	22	30	-	18	16	13	<1	mg/kg	TM30/PM15
Beryllium	1.0	-	0.6	0.6	0.7	1.2	-	0.7	<0.5	<0.5	<0.5	mg/kg	TM30/PM15
Cadmium #	<0.1	-	0.1	0.1	0.2	<0.1	-	0.2	0.5	0.6	<0.1	mg/kg	TM30/PM15
Chromium #	42.5	-	26.6	22.5	25.6	47.3	-	25.3	10.8	10.7	<0.5	mg/kg	TM30/PM15
Copper#	<1	-	2	<1	3	<1	-	1	5	5	<1	mg/kg	TM30/PM15
Iron	20960	-	24270	18680	21220	35340	-	21950	6862	6083	<20	mg/kg	TM30/PM15
Lead#	15	-	10	9	10	16	-	13	12	8	<5	mg/kg	TM30/PM15
Mercury #	<0.1	-	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	mg/kg	TM30/PM15
Nickel [#]	24.7	-	21.7	16.7	20.5	32.4	-	19.2	14.6	12.7	<0.7	mg/kg	TM30/PM15
Selenium#	1	-	1	<1	<1	2	-	<1	<1	<1	<1	mg/kg	TM30/PM15
Sulphur as S	<0.01	-	0.73	0.01	0.46	<0.01	-	0.53	0.01	0.01	<0.01	%	TM30/PM15 TM50/PM29
Total Sulphate as SO4 * Vanadium	174 47	-	1654	281 26	1488	101	-	1659	154	139	<50	mg/kg	TM30/PM15
	0.9	-	26 4.9	0.8	22 4.5	46 2.1	-	25 3.8	6 0.2	0.2	<1 <0.1	mg/kg mg/kg	TM74/PM32
Water Soluble Boron * Zinc *	59	-	4.9	39	4.5	67	-	47	24	24	<5	mg/kg	TM30/PM15
Ziilio	00		72	00	40	01			2-7	2-7	ν.σ	mg/kg	11110071 11110
PAH MS													
Naphthalene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Fluorene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Phenanthrene #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Fluoranthene#	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Pyrene #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	mg/kg	TM4/PM8
Chrysene #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene#	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene#	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene # Coronene	<0.04	<0.04 <0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8 TM4/PM8
PAH 6 Total #	-	<0.04	-	-	-	-	<0.04	-	-	-	<0.04	mg/kg mg/kg	TM4/PM8
PAH 16 Total	<0.6	-	<0.6	<0.6	<0.6	<0.6	-	<0.6	<0.6	<0.6	<0.6	mg/kg	TM4/PM8
PAH 17 Total	-	<0.64	-	-	-	-	<0.64	-	-	-	<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM4/PM8
Benzo(j)fluoranthene	<1	-	<1	<1	<1	<1	-	<1	<1	<1	<1	mg/kg	TM4/PM8
PAH Surrogate % Recovery	114	109	107	99	105	100	98	100	100	103	<0	%	TM4/PM8
Methyl Tertiary Butyl Ether #	<2	-	<2	<2	<2	<2	-	<2	<2	<2	<2	ug/kg	TM15/PM10

Client Name: Ground Investigations Ireland

Reference: 17/02/6552
Location: Foynes
Contact: Conor Finnerty

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Contact: Conor Fining JE Job No.: 17/7213

JE Job No.:	17/7213												
J E Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30			
Sample ID	TP01 0.50 ENV	TP01 1.00 ENV	TP01 3.90 ENV	TP02 1.00 ENV	TP02 4.50 ENV	TP03 0.50 ENV	TP03 0.80 ENV	TP03 3.00 ENV	TP04 1.00 ENV	TP04 2.30 ENV			
Depth	0.50	1.00	3.90	1.00	4.50	0.50	0.80	3.00	1.00	2.30		e attached r ations and a	
COC No / misc											abblevi	alions and a	Cionyms
Containers	VJT												
Sample Date	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	LOD/LOR	Units	No.
Benzene#	<3	-	<3	<3	<3	<3	-	<3	<3	<3	<3	ug/kg	TM15/PM10
Toluene #	<3	-	<3	<3	<3	<3	-	<3	<3	<3	<3	ug/kg	TM15/PM10
Ethylbenzene #	<3	-	<3	<3	<3	<3	-	<3	<3	<3	<3	ug/kg	TM15/PM10
p/m-Xylene #	<5	-	<5	<5	<5	<5	-	<5	<5	<5	<5	ug/kg	TM15/PM10
o-Xylene #	<3	-	<3	<3	<3	<3	-	<3	<3	<3	<3	ug/kg	TM15/PM10
Surrogate Recovery Toluene D8	98	-	99	100	99	101	-	98	100	101	<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	102	-	99	108	99	107	-	95	117	111	<0	%	TM15/PM10
Mineral Oil (C10-C40)	-	<30	-	-	-	-	<30	-	-	-	<30	mg/kg	TM5/PM16
TPH CWG													
Aliphatics													
>C5-C6#	<0.1	-	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C6-C8#	<0.1	-	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1	-	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C10-C12#	<0.2	-	<0.2	<0.2	<0.2	<0.2	-	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM16
>C12-C16#	<4	-	<4	<4	<4	<4	-	<4	<4	<4	<4	mg/kg	TM5/PM16
>C16-C21 #	<7	-	<7	<7	<7	<7	-	<7	<7	<7	<7	mg/kg	TM5/PM16
>C21-C35 #	<7	-	<7	<7	<7	<7	-	<7	<7	<7	<7	mg/kg	TM5/PM16 TM5/TM36/PM12/PM16
Total aliphatics C5-35 Aromatics	<19	-	<19	<19	<19	<19	-	<19	<19	<19	<19	mg/kg	TWIST INSOFT MIZE MITO
>C5-EC7#	<0.1	_	<0.1	<0.1	<0.1	<0.1	_	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC7-EC8#	<0.1	-	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC8-EC10#	<0.1	-	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC10-EC12#	<0.2	-	<0.2	<0.2	<0.2	<0.2	-	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM16
>EC12-EC16#	<4	-	<4	<4	<4	<4	-	<4	<4	<4	<4	mg/kg	TM5/PM16
>EC16-EC21#	<7	-	<7	<7	<7	<7	-	<7	<7	<7	<7	mg/kg	TM5/PM16
>EC21-EC35 #	<7	-	<7	<7	<7	<7	-	<7	<7	<7	<7	mg/kg	TM5/PM16
Total aromatics C5-35#	<19	-	<19	<19	<19	<19	-	<19	<19	<19	<19	mg/kg	TM5/TM36/PM12/PM16
Total aliphatics and aromatics(C5-35)	<38	-	<38	<38	<38	<38	-	<38	<38	<38	<38	mg/kg	TM5/TM36/PM12/PM16
		_					_				_		TN404 /DN440
MTBE#	-	<5 <5	-	-	-	-	<5 <5	-	-	-	<5 <5	ug/kg	TM31/PM12 TM31/PM12
Benzene #	_	<5 <5	-	-	-	-	<5 <5	-	-	-	<5 <5	ug/kg	TM31/PM12
Toluene # Ethylbenzene #	-	<5 <5	-	-	-	-	<5 <5	-	-	-	<5 <5	ug/kg ug/kg	TM31/FM12
m/p-Xylene #	-	<5	-	_	_	-	<5	-	-	-	<5	ug/kg	TM31/PM12
o-Xylene #	-	<5	-	-	-	-	<5	-	-	-	<5	ug/kg	TM31/PM12
PCB 77	<5	-	-	<5	-	<5	-	-	<5	-	<5	ug/kg	TM16/PM8
PCB 81	<5	-	-	<5	-	<5	-	-	<5	-	<5	ug/kg	TM16/PM8
PCB 105	<5	-	-	<5	-	<5	-	-	<5	-	<5	ug/kg	TM16/PM8
PCB 114	<5	-	-	<5	-	<5	-	-	<5	-	<5	ug/kg	TM16/PM8
PCB 118	<5	-	-	<5	-	<5	-	-	<5	-	<5	ug/kg	TM16/PM8
PCB 123	<5	-	-	<5	-	<5	-	-	<5	-	<5	ug/kg	TM16/PM8

Client Name: Ground Investigations Ireland

Reference: 17/02/6552
Location: Foynes
Contact: Conor Finnerty

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Contact: Conor Fir **JE Job No.:** 17/7213

JE Job No.:	17/7213										_		
J E Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30			
Sample ID	TP01 0.50 ENV	TP01 1.00 ENV	TP01 3.90 ENV	TP02 1.00 ENV	TP02 4.50 ENV	TP03 0.50 ENV	TP03 0.80 ENV	TP03 3.00 ENV	TP04 1.00 ENV	TP04 2.30 ENV			
Depth	0.50	1.00	3.90	1.00	4.50	0.50	0.80	3.00	1.00	2.30	Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	VJT												
Sample Date	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	LOD/LOR	Units	No.
PCB 126	<5	-	-	<5	-	<5	-	-	<5	-	<5	ug/kg	TM16/PM8
PCB 156	<5	-	-	<5	-	<5	-	-	<5	-	<5	ug/kg	TM16/PM8
PCB 157	<5	-	-	<5	-	<5	-	-	<5	-	<5	ug/kg	TM16/PM8
PCB 167	<5	-	-	<5	-	<5	-	-	<5	-	<5	ug/kg	TM16/PM8
PCB 169	<5	-	-	<5	-	<5	-	-	<5	-	<5	ug/kg	TM16/PM8
PCB 189	<5	-	-	<5	-	<5	-	-	<5	-	<5	ug/kg	TM16/PM8
Total 12 PCBs PCB 28#	<60	-	-	<60	-	<60	-	-	<60	-	<60	ug/kg	TM16/PM8 TM17/PM8
PCB 52 #	-	<5 <5	-	-	-	-	<5 <5	-	-	-	<5 <5	ug/kg ug/kg	TM17/PM8
PCB 32	-	<5	-	_	_	-	<5	_	_	<u>-</u>	<5 <5	ug/kg	TM17/PM8
PCB 118 #	-	<5	-	-	-	-	<5	-	-	-	<5	ug/kg	TM17/PM8
PCB 138 #	-	<5	-	-	-	-	<5	-	-	-	<5	ug/kg	TM17/PM8
PCB 153#	-	<5	-	-	-	-	<5	-	-	-	<5	ug/kg	TM17/PM8
PCB 180#	-	<5	-	-	-	-	<5	-	-	-	<5	ug/kg	TM17/PM8
Total 7 PCBs#	-	<35	-	-	-	-	<35	-	-	-	<35	ug/kg	TM17/PM8
Resorcinol	<0.01	-	<0.01	<0.01	<0.01	<0.01	-	<0.01	<0.01	<0.01	<0.01	mg/kg	TM26/PM21
Catechol	<0.01	-	<0.01	<0.01	<0.01	<0.01	-	<0.01	<0.01	<0.01	<0.01	mg/kg	TM26/PM21
Phenol#	<0.01	-	<0.01	<0.01	<0.01	<0.01	-	<0.01	<0.01	<0.01	<0.01	mg/kg	TM26/PM21
m/p-cresol #	<0.02	-	<0.02	<0.02	<0.02	<0.02	-	<0.02	<0.02	<0.02	<0.02	mg/kg	TM26/PM21
o-cresol	0.02	-	<0.01	<0.01	<0.01	<0.01	-	<0.01	<0.01	<0.01	<0.01	mg/kg	TM26/PM21 TM26/PM21
Total cresols Xylenols #	<0.03 <0.06	-	<0.03 <0.06	<0.03 <0.06	<0.03 <0.06	<0.03 <0.06	-	<0.03 <0.06	<0.03 <0.06	<0.03 <0.06	<0.03	mg/kg mg/kg	TM26/PM21
1-naphthol	<0.00	<u> </u>	<0.00	<0.00	<0.00	<0.00	-	<0.00	<0.00	<0.00	<0.00	mg/kg	TM26/PM21
2,3,5-trimethyl phenol#	<0.01	-	<0.01	<0.01	<0.01	<0.01	-	<0.01	<0.01	<0.01	<0.01	mg/kg	TM26/PM21
2-isopropylphenol #	<0.01	-	<0.01	<0.01	<0.01	<0.01	-	<0.01	<0.01	<0.01	<0.01	mg/kg	TM26/PM21
Total Speciated Phenols HPLC	<0.15	-	<0.15	<0.15	<0.15	<0.15	-	<0.15	<0.15	<0.15	<0.15	mg/kg	TM26/PM21
Natural Moisture Content	28.9	38.1	33.4	25.2	31.7	28.6	34.6	30.6	8.9	7.2	<0.1	%	PM4/PM0
% Dry Matter 105°C	-	71.4	-	-	-	-	72.7	-	-	-	<0.1	%	NONE/PM4
Hexavalent Chromium #	<0.3	-	<0.3	<0.3	<0.3	<0.3	-	<0.3	<0.3	<0.3	<0.3	mg/kg	TM38/PM20
Sulphate as SO4 (2:1 Ext) #	<0.0015	-	0.6390	0.0085	0.4432	0.0029	-	0.4328	0.0034	0.0023	<0.0015	g/l	TM38/PM20
Total Cyanide #	<0.5	-	<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5	mg/kg	TM89/PM45
Total Organic Carbon #	-	0.63	-	-	-	-	0.13	-	-	-	<0.02	%	TM21/PM24
Organic Matter	0.7	-	0.8	1.1	0.9	0.2	-	0.7	1.2	<0.2	<0.2	%	TM21/PM24
ANC at pH4	-	0.03	-	-	-	-	0.04	-	-	-	<0.03	mol/kg	TM77/PM0
ANC at pH7	-	<0.03	-	-	-	-	<0.03	-	-	-	<0.03	mol/kg	TM77/PM0
Loss on Ignition#	-	3.9	- 0.04	- 0.74	-	- 7.55	4.2	- 7.07	- 0.74	-	<1.0	%	TM22/PM0
pH#	6.96	7.41	8.24	8.71	8.54	7.55	7.76	7.97	8.74	8.93	<0.01	pH units	TM73/PM11

Client Name: Ground Investigations Ireland

Reference: 17/02/6552
Location: Foynes
Contact: Conor Finnerty

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Contact: Conor Fill
JE Job No.: 17/7213

JE Job No.:	17/7213												
J E Sample No.	31-33	34-36	37-39	40-42	43-45	46-48	49-51	52-54	55-57	58-60			
Sample ID	TP05 0.50 ENV	TP05 0.80 ENV	TP05 2.00 ENV	TP06 1.00 ENV	TP07 0.50 ENV	TP07 1.00 ENV	TP07 3.80 ENV	TP08 0.50 ENV	TP08 2.00 ENV	TP09 0.50 ENV			
Depth	0.50	0.80	2.00	1.00	0.50	1.00	3.80	0.50	2.00	0.50		e attached r ations and a	
COC No / misc											abbievi	allorio aria a	ororrymo
Containers	VJT												
Sample Date	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	LOD/LOR	Units	No.
Aluminium	4995	-	2714	12020	17860	-	7372	6567	3177	8159	<50	mg/kg	TM30/PM15
Arsenic #	7.8	-	6.0	28.4	24.1	-	6.6	7.2	4.9	5.6	<0.5	mg/kg	TM30/PM15
Barium #	14	-	11	60	30	-	20	37	12	23	<1	mg/kg	TM30/PM15
Beryllium	<0.5	-	<0.5	1.2	1.3	-	0.6	0.5	<0.5	0.6	<0.5	mg/kg	TM30/PM15
Cadmium#	<0.1	-	0.5	0.4	<0.1	-	0.2	0.3	0.5	0.1	<0.1	mg/kg	TM30/PM15
Chromium #	26.0	-	11.9	41.6	49.4	-	24.4	18.1	13.0	24.0	<0.5	mg/kg	TM30/PM15
Copper#	<1	-	6	4	<1	-	3	2	7	<1	<1	mg/kg	TM30/PM15
Iron	13120	-	7213	32880	40890	-	18190	15280	6420	18120	<20	mg/kg	TM30/PM15
Lead#	8	-	8	14	20	-	10	10	9	10	<5	mg/kg	TM30/PM15
Mercury #	<0.1	-	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM30/PM15
Nickel [#]	7.3	-	18.5	65.9	30.7	-	18.0	15.6	18.0	17.2	<0.7	mg/kg	TM30/PM15
Selenium#	<1	-	<1	3	2	-	1	<1	<1	<1	<1	mg/kg	TM30/PM15
Sulphur as S	<0.01	-	0.01	0.01	<0.01	-	0.49	0.01	0.01	0.01	<0.01	%	TM30/PM15
Total Sulphate as SO4 # Vanadium	69 16	-	131 7	346 40	133	-	2118 19	162	114 7	324 24	<50	mg/kg	TM50/PM29 TM30/PM15
Water Soluble Boron #	0.3	-	0.3	1.6	68 2.1	-	5.6	19 0.6	0.4	0.8	<1 <0.1	mg/kg mg/kg	TM74/PM32
Zinc#	24	-	28	94	71	-	40	41	31	39	<5	mg/kg	TM30/PM15
2110			20	0.					· ·		10	9/1.9	
PAH MS													
Naphthalene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Fluorene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Phenanthrene #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Fluoranthene #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Pyrene #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	mg/kg	TM4/PM8
Chrysene *	<0.02 <0.07	<0.02 <0.07	<0.02 <0.07	<0.02 <0.07	<0.02 <0.07	<0.02 <0.07	<0.02 <0.07	<0.02 <0.07	<0.02 <0.07	<0.02 <0.07	<0.02 <0.07	mg/kg	TM4/PM8 TM4/PM8
Benzo(bk)fluoranthene # Benzo(a)pyrene #	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg mg/kg	TM4/PM8
Indeno(123cd)pyrene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Coronene	-	<0.04	-	-	-	<0.04	-	-	-	-	<0.04	mg/kg	TM4/PM8
PAH 6 Total #	-	<0.22	-	-	-	<0.22	-	-	-	-	<0.22	mg/kg	TM4/PM8
PAH 16 Total	<0.6	-	<0.6	<0.6	<0.6	-	<0.6	<0.6	<0.6	<0.6	<0.6	mg/kg	TM4/PM8
PAH 17 Total	-	<0.64	-	-	-	<0.64	-	-	-	-	<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM4/PM8
Benzo(j)fluoranthene	<1	-	<1	<1	<1	-	<1	<1	<1	<1	<1	mg/kg	TM4/PM8
PAH Surrogate % Recovery	99	99	101	99	94	99	95	104	103	99	<0	%	TM4/PM8
Methyl Tertiary Butyl Ether #	<2	-	<2	<2	<2	-	<2	<2	<2	<2	<2	ug/kg	TM15/PM10

Client Name: Ground Investigations Ireland

Reference: 17/02/6552
Location: Foynes
Contact: Conor Finnerty

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Report : Solid

JF Joh No 17/7213

JE Job No.:	17/7213												
J E Sample No.	31-33	34-36	37-39	40-42	43-45	46-48	49-51	52-54	55-57	58-60			
Sample ID	TP05 0.50 ENV	TP05 0.80 ENV	TP05 2.00 ENV	TP06 1.00 ENV	TP07 0.50 ENV	TP07 1.00 ENV	TP07 3.80 ENV	TP08 0.50 ENV	TP08 2.00 ENV	TP09 0.50 ENV			
Depth	0.50	0.80	2.00	1.00	0.50	1.00	3.80	0.50	2.00	0.50		e attached r	
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT												
Sample Date	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	LOD/LOR	Units	No.
Benzene #	<3	-	<3	<3	<3	-	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
Toluene #	<3	_	<3	<3	<3	-	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
Ethylbenzene#	<3	-	<3	<3	<3	-	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
p/m-Xylene #	<5	-	<5	<5	<5	-	<5	<5	<5	<5	<5	ug/kg	TM15/PM10
o-Xylene #	<3	-	<3	<3	<3	-	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
Surrogate Recovery Toluene D8	95	-	99	102	98	-	98	98	101	99	<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	99	-	114	114	104	-	96	102	110	104	<0	%	TM15/PM10
Mineral Oil (C10-C40)	-	<30	-	-	-	<30	-	-	-	-	<30	mg/kg	TM5/PM16
TPH CWG													
Aliphatics													
>C5-C6#	<0.1	-	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C6-C8#	<0.1	-	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1	-	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C10-C12#	<0.2	-	<0.2	<0.2	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM16
>C12-C16#	<4	-	<4	<4	<4	-	<4	<4	<4	<4	<4	mg/kg	TM5/PM16
>C16-C21 #	<7	-	<7	<7	<7	-	<7	<7	<7	<7	<7	mg/kg	TM5/PM16
>C21-C35#	<7	-	<7	<7	<7	-	<7	<7	<7	<7	<7	mg/kg	TM5/PM16
Total aliphatics C5-35 Aromatics	<19	-	<19	<19	<19	-	<19	<19	<19	<19	<19	mg/kg	TM5/TM36/PM12/PM16
>C5-EC7#	<0.1	_	<0.1	<0.1	<0.1	_	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC7-EC8 [#]	<0.1	_	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC8-EC10#	<0.1	-	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC10-EC12#	<0.2	-	<0.2	<0.2	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM16
>EC12-EC16#	<4	-	<4	<4	<4	-	<4	<4	<4	<4	<4	mg/kg	TM5/PM16
>EC16-EC21#	<7	-	<7	<7	<7	-	<7	<7	<7	<7	<7	mg/kg	TM5/PM16
>EC21-EC35#	<7	-	<7	<7	<7	-	<7	<7	<7	<7	<7	mg/kg	TM5/PM16
Total aromatics C5-35#	<19	-	<19	<19	<19	-	<19	<19	<19	<19	<19	mg/kg	TM5/TM36/PM12/PM16
Total aliphatics and aromatics(C5-35)	<38	-	<38	<38	<38	-	<38	<38	<38	<38	<38	mg/kg	TM5/TM36/PM12/PM16
#		_				_					_		Th 10.1 (7)
MTBE#	-	<5 -5	-	-	-	<5 -5	-	-	-	-	<5 -5	ug/kg	TM31/PM12
Benzene #	-	<5 <5	-	-	-	<5 <5	-	-	-	-	<5 <5	ug/kg	TM31/PM12 TM31/PM12
Toluene # Ethylbenzene #	-	<5 <5	-	-	-	<5 <5	-	-	-	-	<5 <5	ug/kg ug/kg	TM31/PM12
m/p-Xylene #	-	<5	-	-	-	<5	-	-	-	-	<5	ug/kg ug/kg	TM31/PM12
o-Xylene #	-	<5	-	-	-	<5	-	-	-	-	<5	ug/kg	TM31/PM12
PCB 77	<5	-	-	<5	<5	-	-	<5	-	<5	<5	ug/kg	TM16/PM8
PCB 81	<5	-	-	<5	<5	-	-	<5	-	<5	<5	ug/kg	TM16/PM8
PCB 105	<5	-	-	<5	<5	-	-	<5	-	<5	<5	ug/kg	TM16/PM8
PCB 114	<5	-	-	<5	<5	-	-	<5	-	<5	<5	ug/kg	TM16/PM8
PCB 118	<5	-	-	<5	<5	-	-	<5	-	<5	<5	ug/kg	TM16/PM8
PCB 123	<5	-	-	<5	<5	-	-	<5	-	<5	<5	ug/kg	TM16/PM8

Client Name: Ground Investigations Ireland

Reference: 17/02/6552
Location: Foynes
Contact: Conor Finnerty

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

	11/1210										-		
J E Sample No.	31-33	34-36	37-39	40-42	43-45	46-48	49-51	52-54	55-57	58-60			
Sample ID	TP05 0.50 ENV	TP05 0.80 ENV	TP05 2.00 ENV	TP06 1.00 ENV	TP07 0.50 ENV	TP07 1.00 ENV	TP07 3.80 ENV	TP08 0.50 ENV	TP08 2.00 ENV	TP09 0.50 ENV			
Depth	0.50	0.80	2.00	1.00	0.50	1.00	3.80	0.50	2.00	0.50	Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	VJT												
Sample Date	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method No.
		19/04/2017		19/04/2017		19/04/2017			19/04/2017	19/04/2017			
PCB 126	<5 _	-	-	<5 -	<5	-	-	<5	-	<5	<5	ug/kg	TM16/PM8
PCB 156	<5	-	-	<5 .5	<5	-	-	<5	-	<5	<5	ug/kg	TM16/PM8 TM16/PM8
PCB 157 PCB 167	<5 <5	-	-	<5 <5	<5 <5	-	-	<5 -5	-	<5 <5	<5 <5	ug/kg	TM16/PM8
PCB 167	<5 <5	-	-	<5 <5	<5 <5	-	-	<5 <5	-	<5 <5	<5 <5	ug/kg ug/kg	TM16/PM8
PCB 189	<5 <5	-	-	<5 <5	<5 <5	-	-	<5 <5	-	<5 <5	<5 <5	ug/kg ug/kg	TM16/PM8
Total 12 PCBs	<60	-	-	<60	<60	_	-	<60	-	<60	<60	ug/kg	TM16/PM8
PCB 28#	-	<5	-	-	-	<5	-	-	-	-	<5	ug/kg	TM17/PM8
PCB 52#	-	<5	-	-	-	<5	-	-	-	-	<5	ug/kg	TM17/PM8
PCB 101 #	-	<5	-	-	-	<5	-	-	-	-	<5	ug/kg	TM17/PM8
PCB 118#	-	<5	-	-	-	<5	-	-	-	-	<5	ug/kg	TM17/PM8
PCB 138#	-	<5	-	-	-	<5	-	-	-	-	<5	ug/kg	TM17/PM8
PCB 153#	-	<5	-	-	-	<5	-	-	-	-	<5	ug/kg	TM17/PM8
PCB 180#	-	<5	-	-	-	<5	-	-	-	-	<5	ug/kg	TM17/PM8
Total 7 PCBs#	-	<35	-	-	-	<35	-	-	-	-	<35	ug/kg	TM17/PM8
Resorcinol	<0.01	_	<0.01	<0.01	<0.01	_	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	TM26/PM21
Catechol	<0.01	_	<0.01	<0.01	<0.01	_	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	TM26/PM21
Phenol #	<0.01	_	<0.01	<0.01	<0.01	_	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	TM26/PM21
m/p-cresol#	<0.02	-	<0.02	<0.02	<0.02	-	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM26/PM21
o-cresol	0.02	-	<0.01	<0.01	<0.01	-	<0.01	0.02	<0.01	<0.01	<0.01	mg/kg	TM26/PM21
Total cresols	<0.03	-	<0.03	<0.03	<0.03	-	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM26/PM21
Xylenols #	<0.06	-	<0.06	<0.06	<0.06	-	<0.06	<0.06	<0.06	<0.06	<0.06	mg/kg	TM26/PM21
1-naphthol	<0.01	-	<0.01	<0.01	<0.01	-	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	TM26/PM21
2,3,5-trimethyl phenol#	<0.01	-	<0.01	<0.01	<0.01	-	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	TM26/PM21
2-isopropylphenol #	<0.01	-	<0.01	<0.01	<0.01	-	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	TM26/PM21
Total Speciated Phenols HPLC	<0.15	-	<0.15	<0.15	<0.15	-	<0.15	<0.15	<0.15	<0.15	<0.15	mg/kg	TM26/PM21
Natural Moisture Content	18.4	23.5	11.5	37.0	24.1	28.9	29.5	12.4	9.6	23.9	<0.1	%	PM4/PM0
% Dry Matter 105°C	-	76.9	-	-	-	76.0	-	-	-	-	<0.1	%	NONE/PM4
Hexavalent Chromium #	<0.3	-	<0.3	<0.3	<0.3	-	<0.3	<0.3	<0.3	<0.3	<0.3	mg/kg	TM38/PM20
Sulphate as SO4 (2:1 Ext) #	0.0021	-	0.0035	0.0061	<0.0015	-	0.5705	0.0048	0.0053	<0.0015	<0.0015	g/l	TM38/PM20
Total Cyanide #	<0.5	-	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	mg/kg	TM89/PM45
Total Organic Carbon #	-	0.11	-	-	-	0.11	-	-	-	-	<0.02	%	TM21/PM24
Organic Matter	<0.2	-	<0.2	0.2	0.5	-	0.8	1.0	<0.2	<0.2	<0.2	%	TM21/PM24
ANC at pH4	-	1.36	-	-	-	0.03	-	-	-	-	<0.03	mol/kg	TM77/PM0
ANC at pH7	-	0.05	-	-	-	<0.03	-	-	-	-	<0.03	mol/kg	TM77/PM0
Loss on Ignition#	-	3.0	-	-	-	4.1	-	-	-	-	<1.0	%	TM22/PM0
pH [#]	6.22	8.26	8.66	8.25	7.09	7.38	8.31	8.41	8.82	8.68	<0.01	pH units	TM73/PM11

Ground Investigations Ireland Client Name:

17/02/6552 Reference: Location: Foynes Conor Finnerty Contact:

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

JE JOD NO.:	17/7213									
J E Sample No.	61-63	64-66	67-69	70-72						
Sample ID	TP09 1.80 ENV	TP10 0.50 ENV	TP10 1.00 ENV	TP10 4.70 ENV						
Depth	1.80	0.50	1.00	4.70				5.		
COC No / misc									e attached nations and a	
		V 1.T	\/ I.T	\/ LT						
Containers	-	VJT	VJT	VJT						
Sample Date	13/04/2017	13/04/2017	13/04/2017	13/04/2017						
Sample Type	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1				LOD/LOR	Units	Method
Date of Receipt	19/04/2017	19/04/2017	19/04/2017	19/04/2017				202/2011	011110	No.
Aluminium	7156	-	8281	8335				<50	mg/kg	TM30/PM15
Arsenic #	8.3	-	5.5	6.9				<0.5	mg/kg	TM30/PM15
Barium#	19	-	17	19				<1	mg/kg	TM30/PM15
Beryllium #	0.8	-	0.6	0.6				<0.5	mg/kg	TM30/PM15
Cadmium#	0.1	-	<0.1	0.1 24.0				<0.1	mg/kg	TM30/PM15 TM30/PM15
Chromium# Copper#	30.5 6	-	26.6	1				<0.5 <1	mg/kg mg/kg	TM30/PM15
Iron	15430	-	21490	19890				<20	mg/kg	TM30/PM15
Lead#	11	-	11	10				<5	mg/kg	TM30/PM15
Mercury#	<0.1	-	<0.1	<0.1				<0.1	mg/kg	TM30/PM15
Nickel [#]	22.1	-	18.5	22.0				<0.7	mg/kg	TM30/PM15
Selenium #	<1	-	<1	<1				<1	mg/kg	TM30/PM15
Sulphur as S	0.05	-	<0.01	0.30				<0.01	%	TM30/PM15
Total Sulphate as SO4 #	514	-	162	892				<50	mg/kg	TM50/PM29
Vanadium #	21	-	26	20				<1	mg/kg	TM30/PM15
Water Soluble Boron # Zinc #	1.2 52	-	0.6 44	2.0 45				<0.1 <5	mg/kg	TM74/PM32 TM30/PM15
Zinc	52	-	44	45				<0	mg/kg	TWISO/FWITS
PAH MS										
Naphthalene #	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	<0.03				<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05	<0.05	<0.05				<0.05	mg/kg	TM4/PM8
Fluorene #	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Phenanthrene #	<0.03	<0.03	<0.03	<0.03				<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Fluoranthene #	<0.03	<0.03	<0.03	<0.03				<0.03	mg/kg	TM4/PM8
Pyrene * Benzo(a)anthracene *	<0.03 <0.06	<0.03	<0.03 <0.06	<0.03 <0.06				<0.03 <0.06	mg/kg mg/kg	TM4/PM8 TM4/PM8
Chrysene #	<0.02	<0.02	<0.02	<0.02				<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	<0.07	<0.07	<0.07	<0.07				<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene #	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	<0.04	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Coronene	-	<0.04	-	-				<0.04	mg/kg	TM4/PM8
PAH 6 Total #	-	<0.22	-	-				<0.22	mg/kg	TM4/PM8
PAH 16 Total	<0.6	-0.64	<0.6	<0.6				<0.6	mg/kg	TM4/PM8
PAH 17 Total Benzo(b)fluoranthene	<0.05	<0.64 <0.05	<0.05	<0.05				<0.64 <0.05	mg/kg mg/kg	TM4/PM8 TM4/PM8
Benzo(b)fluoranthene	<0.05	<0.05	<0.05	<0.05				<0.05	mg/kg mg/kg	TM4/PM8
Benzo(j)fluoranthene	<1	-	<1	<1				<1	mg/kg	TM4/PM8
PAH Surrogate % Recovery	113	96	102	97				<0	%	TM4/PM8
Methyl Tertiary Butyl Ether #	<2	-	<2	<2				<2	ug/kg	TM15/PM10

Ground Investigations Ireland Client Name:

17/02/6552 Reference: Location: Foynes Conor Finnerty Contact:

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

JE Job No.:	17/7213				 	 	 	_		
J E Sample No.	61-63	64-66	67-69	70-72						
Sample ID	TP09 1.80 ENV	TP10 0.50 ENV	TP10 1.00 ENV	TP10 4.70 ENV						
Depth	1.80	0.50	1.00	4.70				Division		
COC No / misc									e attached nations and a	
Containers	VJT	VJT	VJT	VJT						
Sample Date			13/04/2017							
Sample Type	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1				LOD/LOR	Units	Method No.
Date of Receipt		19/04/2017	19/04/2017					_		
Benzene #	<3	-	<3	<3				<3	ug/kg	TM15/PM10
Toluene #	<3 <3	-	<3	<3 <3				<3	ug/kg	TM15/PM10 TM15/PM10
Ethylbenzene #	<5 <5	-	<3 <5	<5 <5				<3 <5	ug/kg	TM15/PM10
p/m-Xylene [#] o-Xylene [#]	<3	-	<3	<3				<3	ug/kg ug/kg	TM15/PM10
Surrogate Recovery Toluene D8	96	-	100	99				<0	ug/kg %	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	97	-	104	96				<0	%	TM15/PM10
Mineral Oil (C10-C40)	-	<30	-	-				<30	mg/kg	TM5/PM16
TPH CWG										
Aliphatics										
>C5-C6#	<0.1	-	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>C6-C8#	<0.1	-	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1	-	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>C10-C12#	<0.2	-	<0.2	<0.2				<0.2	mg/kg	TM5/PM16
>C12-C16#	<4	-	<4	<4				<4	mg/kg	TM5/PM16
>C16-C21 #	<7	-	<7	<7				<7	mg/kg	TM5/PM16
>C21-C35#	<7	-	<7	<7				<7	mg/kg	TM5/PM16
Total aliphatics C5-35 Aromatics	<19	-	<19	<19				<19	mg/kg	TM5/TM36/PM12/PM16
>C5-EC7#	<0.1	-	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>EC7-EC8#	<0.1	-	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>EC8-EC10#	<0.1	-	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>EC10-EC12#	<0.2	-	<0.2	<0.2				<0.2	mg/kg	TM5/PM16
>EC12-EC16#	<4	-	<4	<4				<4	mg/kg	TM5/PM16
>EC16-EC21#	<7	-	<7	<7				<7	mg/kg	TM5/PM16
>EC21-EC35#	<7	-	<7	<7				<7	mg/kg	TM5/PM16
Total aromatics C5-35 * Total aliphatics and aromatics(C5-35)	<19	-	<19	<19				<19	mg/kg	TM5/TM36/PM12/PM16 TM5/TM36/PM12/PM16
	<38	-	<38	<38				<38	mg/kg	
MTBE#	-	<5	-	-				<5	ug/kg	TM31/PM12
Benzene #	-	<5	-	-				<5	ug/kg	TM31/PM12
Toluene #	-	<5	-	-				<5	ug/kg	TM31/PM12
Ethylbenzene#	-	<5	-	-				<5	ug/kg	TM31/PM12
m/p-Xylene #	-	<5	-	-				<5	ug/kg	TM31/PM12
o-Xylene [#]	-	<5	-	-				<5	ug/kg	TM31/PM12
PCB 77	-	-	<5	-				<5	ug/kg	TM16/PM8
PCB 81	-	-	<5	-				<5	ug/kg	TM16/PM8
PCB 105	-	-	<5	-				<5	ug/kg	TM16/PM8
PCB 114	-	-	<5	-				<5	ug/kg	TM16/PM8
PCB 118	-	-	<5	-				<5	ug/kg	TM16/PM8
PCB 123	-	-	<5	-				<5	ug/kg	TM16/PM8

Client Name: Ground Investigations Ireland

Reference: 17/02/6552
Location: Foynes
Contact: Conor Finnerty

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

0E 00B NO.:	11/1210							-		
J E Sample No.	61-63	64-66	67-69	70-72						
Sample ID	TP09 1.80 ENV	TP10 0.50 ENV	TP10 1.00 ENV	TP10 4.70 ENV						
Depth	1.80	0.50	1.00	4.70				Diseases	e attached n	-t fII
COC No / misc									ations and a	
	V 1.T	V 1.T	\/ LT	\/ LT						
Containers	VJT	VJT	VJT	VJT						
Sample Date	13/04/2017	13/04/2017	13/04/2017	13/04/2017						
Sample Type	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1				LOD/LOR	Units	Method
Date of Receipt	19/04/2017	19/04/2017	19/04/2017	19/04/2017				LOD/LOR	Offics	No.
PCB 126	-	-	<5	-				<5	ug/kg	TM16/PM8
PCB 156	-	-	<5	-				<5	ug/kg	TM16/PM8
PCB 157	-	-	<5	-				<5	ug/kg	TM16/PM8
PCB 167	-	-	<5	-				<5	ug/kg	TM16/PM8
PCB 169	-	-	<5	-				<5	ug/kg	TM16/PM8
PCB 189	-	-	<5	-				<5	ug/kg	TM16/PM8
Total 12 PCBs	-	-	<60	-				<60	ug/kg	TM16/PM8
PCB 28#	-	<5	-	-				<5	ug/kg	TM17/PM8
PCB 52#	-	<5	-	-				<5	ug/kg	TM17/PM8
PCB 101 #	-	<5 <5	-	-				<5 <5	ug/kg ug/kg	TM17/PM8 TM17/PM8
PCB 118* PCB 138*		<5 <5	-	-				<5	ug/kg	TM17/PM8
PCB 153#		<5	-	-				<5	ug/kg	TM17/PM8
PCB 180 #	_	<5	-	-				<5	ug/kg	TM17/PM8
Total 7 PCBs#	-	<35	-	-				<35	ug/kg	TM17/PM8
Resorcinol	<0.01	-	<0.01	<0.01				<0.01	mg/kg	TM26/PM21
Catechol	<0.01	-	<0.01	<0.01				<0.01	mg/kg	TM26/PM21
Phenol [#]	<0.01	-	<0.01	<0.01				<0.01	mg/kg	TM26/PM21
m/p-cresol#	<0.02	-	<0.02	<0.02				<0.02	mg/kg	TM26/PM21
o-cresol	<0.01	-	<0.01	<0.01				<0.01	mg/kg	TM26/PM21
Total cresols	<0.03	-	<0.03	<0.03				<0.03	mg/kg	TM26/PM21
Xylenols #	<0.06	-	<0.06	<0.06				<0.06	mg/kg	TM26/PM21
1-naphthol	<0.01	-	<0.01	<0.01				<0.01	mg/kg	TM26/PM21
2,3,5-trimethyl phenol #	<0.01	-	<0.01	<0.01				<0.01	mg/kg	TM26/PM21
2-isopropylphenol #	<0.01	-	<0.01	<0.01				<0.01	mg/kg	TM26/PM21 TM26/PM21
Total Speciated Phenols HPLC	<0.15	-	<0.15	<0.15				<0.15	mg/kg	TIVIZO/FIVIZI
Natural Moisture Content	36.9	25.9	25.1	34.1				<0.1	%	PM4/PM0
% Dry Matter 105°C	-	77.2	-	-				<0.1	%	NONE/PM4
,										
Hexavalent Chromium #	<0.3	-	<0.3	<0.3				<0.3	mg/kg	TM38/PM20
Sulphate as SO4 (2:1 Ext) #	0.1019	-	0.0025	0.2201				<0.0015	g/l	TM38/PM20
Total Cyanide #	<0.5	-	<0.5	<0.5				<0.5	mg/kg	TM89/PM45
Total Organic Carbon #	-	0.12	-	-				<0.02	%	TM21/PM24
Organic Matter	1.0	-	<0.2	0.2				<0.2	%	TM21/PM24
ANC at pH4	-	0.04	-	-				<0.03	mol/kg	TM77/PM0
ANC at pH7	-	NDP	-	-				<0.03	mol/kg %	TM77/PM0
Loss on Ignition # pH #	8.25	4.0 7.47	8.87	8.53				<1.0 <0.01	% pH units	TM22/PM0 TM73/PM11
ριi	0.23	1.41	0.07	0.00				\U.U1	pri unito	. 1417 0/1 141111

Client Name: Ground Investigations Ireland

Reference: 17/02/6552 Location: Foynes Contact: Conor Finnerty JE Job No.: 17/7213

Report: EN12457_2

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

J E Sample No. 46-48 19-21 34-36 64-66 TP05 0.80 ENV Sample ID 0.80 0.80 1.00 0.50 1.00

Depth	1.00	0.80	0.80	1.00	0.50							e attached n	
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT	VJT	VJT								
Sample Date	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017								
Sample Type	Soil	Soil	Soil	Soil	Soil								
Batch Number	1	1	1	1	1								
Date of Receipt		19/04/2017	19/04/2017	19/04/2017	19/04/2017			Inert	Stable Non- reactive	Hazardous	LOD LOR	Units	Method No.
Solid Waste Analysis	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017								
	0.63	0.13	0.11	0.11	0.12			3	5	6	<0.02	%	TM21/PM24
Total Organic Carbon # Sum of BTEX	<0.025	<0.025	<0.025	<0.025	<0.025			6	-	-	<0.02	mg/kg	TM31/PM12
Sum of 7 PCBs#	<0.025	<0.025	<0.025	<0.025	<0.025			1	_	-	<0.025	mg/kg	TM17/PM8
PAH Sum of 6#	<0.22	<0.22	<0.22	<0.22	<0.22			-	_	-	<0.22	mg/kg	TM4/PM8
PAH Sum of 17	<0.64	<0.64	<0.64	<0.64	<0.64			100	-	-	<0.64	mg/kg	TM4/PM8
7 ATTOURIED TY	40.04	40.04	40.04	40.04	40.04			100			40.04	mg/kg	1101-4/1 1010
CEN 10:1 Leachate													
Mass of raw test portion	0.1256	0.1235	0.1165	0.1186	0.1164			-	-	-		kg	NONE/PM17
Dry Matter Content Ratio	71.4	72.7	76.9	76.0	77.2			-	-	-	<0.1	%	NONE/PM4
Leachant Volume	0.864	0.866	0.873	0.872	0.873			-	-	-		1	NONE/PM17
Mineral Oil (C10-C40)	<30	<30	<30	<30	<30			-	-	-	<30	mg/kg	TM5/PM16
ANC at pH4	0.03	0.04	1.36	0.03	0.04			-	-	-	<0.03	mol/kg	TM77/PM0
ANC at pH7	<0.03	<0.03	0.05	<0.03	NDP			-	-	-	<0.03	mol/kg	TM77/PM0
pH#	7.41	7.76	8.26	7.38	7.47			-	-	-	<0.01	pH units	TM73/PM11

Ground Investigations Ireland Client Name:

17/02/6552 Reference: Location: Foynes

SVOC Report : Solid

Contact:	Conor Fin	nerty										
JE Job No.:	17/7213											
J E Sample No.	1-3	7-9	10-12	13-15	16-18	22-24	25-27	28-30	31-33	37-39	1	
Sample ID	TP01 0.50 ENV	TP01 3.90 ENV	TP02 1.00 ENV	TP02 4.50 ENV	TP03 0.50 ENV	TP03 3.00 ENV	TP04 1.00 ENV	TP04 2.30 ENV	TP05 0.50 ENV	TP05 2.00 ENV		
Depth	0.50	3.90	1.00	4.50	0.50	3.00	1.00	2.30	0.50	2.00	Please se	e attached
COC No / misc										i	abbrevi	ations and
Containers	VJT	i										
Sample Date	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017		
Sample Type	Soil											
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units
Date of Receipt	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	LOD/LOR	Utilis
SVOC MS												
Phenois												
2-Chlorophenol#	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg
2-Methylphenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg
2-Nitrophenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg
2,4-Dichlorophenol #	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg
2,4-Dimethylphenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg
2,4,5-Trichlorophenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg
2,4,6-Trichlorophenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg
4-Chloro-3-methylphenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg
4-Methylphenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg
4-Nitrophenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg
Pentachlorophenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg
Phenol [#]	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg
PAHs												
2-Chloronaphthalene #	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg
2-Methylnaphthalene #	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg
Phthalates												
Bis(2-ethylhexyl) phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/kg
Butylbenzyl phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/kg
Di-n-butyl phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/kg
Di-n-Octyl phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/kg
Diethyl ohthalate	<100	<100	~100	~100	~100	~100	~100	~100	~100	~100	~100	ua/ka

ed notes for all nd acronyms

Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	LOD/LOR	Units	No.
SVOC MS													
Phenols													
2-Chlorophenol [#]	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
2-Methylphenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
2-Nitrophenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
2,4-Dichlorophenol #	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
2,4-Dimethylphenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
2,4,5-Trichlorophenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
2,4,6-Trichlorophenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
4-Chloro-3-methylphenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
4-Methylphenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
4-Nitrophenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
· ·						<10			<10		<10		TM16/PM8
Pentachlorophenol	<10	<10	<10	<10	<10		<10	<10		<10		ug/kg	
Phenol#	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
PAHs													
2-Chloronaphthalene #	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
2-Methylnaphthalene #	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
Phthalates													
Bis(2-ethylhexyl) phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/kg	TM16/PM8
Butylbenzyl phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/kg	TM16/PM8
Di-n-butyl phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/kg	TM16/PM8
Di-n-Octyl phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/kg	TM16/PM8
Diethyl phthalate				<100			<100				<100		TM16/PM8
	<100	<100	<100		<100	<100		<100	<100	<100		ug/kg	l .
Dimethyl phthalate #	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/kg	TM16/PM8
Other SVOCs													
1,2-Dichlorobenzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
1,2,4-Trichlorobenzene #	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
1,3-Dichlorobenzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
1,4-Dichlorobenzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
2-Nitroaniline	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
2,4-Dinitrotoluene	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
2,6-Dinitrotoluene	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10		TM16/PM8
												ug/kg	
3-Nitroaniline	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
4-Bromophenylphenylether#	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
4-Chloroaniline	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
4-Chlorophenylphenylether	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
4-Nitroaniline	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
Azobenzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
Bis(2-chloroethoxy)methane	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
Bis(2-chloroethyl)ether	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
Carbazole	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
Dibenzofuran #	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
Hexachlorobenzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
Hexachlorobutadiene #	<10					<10			<10		<10		
		<10	<10	<10	<10		<10	<10		<10		ug/kg	TM16/PM8
Hexachlorocyclopentadiene	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
Hexachloroethane	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
Isophorone #	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
N-nitrosodi-n-propylamine #	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
Nitrobenzene #	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
Surrogate Recovery 2-Fluorobiphenyl	121	115	107	89	54 sv	69 ^{SV}	84	97	64 ^{SV}	113	<0	%	TM16/PM8
Surrogate Recovery p-Terphenyl-d14	128	123	110	102	103	99	105	116	109	105	<0	%	TM16/PM8
													-
													<u> </u>
													[
			l	l				1		l	l		1

Client Name: Ground Investigations Ireland

 Reference:
 17/02/6552

 Location:
 Foynes

 Contact:
 Conor Finnerty

 JE Job No.:
 17/7213

SVOC Report : Solid

JE Job No.:	17/7213											
J E Sample No.	40-42	43-45	49-51	52-54	55-57	58-60	61-63	67-69	70-72			
Sample ID	TP06 1.00 ENV	TP07 0.50 ENV	TP07 3.80 ENV	TP08 0.50 ENV	TP08 2.00 ENV	TP09 0.50 ENV	TP09 1.80 ENV	TP10 1.00 ENV	TP10 4.70 ENV			
Depth	1.00	0.50	3.80	0.50	2.00	0.50	1.80	1.00	4.70		e attached n	
COC No / misc										abbrevia	ations and a	cronyms
Containers Sample Date	V J T	V J T	V J T	V J T	V J T	V J T	V J T	V J T	V J T			
Sample Date Sample Type	13/04/2017 Soil	13/04/2017 Soil	13/04/2017 Soil	13/04/2017 Soil	13/04/2017 Soil	13/04/2017 Soil	13/04/2017 Soil	13/04/2017 Soil	13/04/2017 Soil			
Batch Number	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017		LOD/LOR	Units	No.
SVOC MS												
Phenois												
2-Chlorophenol #	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
2-Methylphenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
2-Nitrophenol 2,4-Dichlorophenol #	<10 <10	<10 <10	ug/kg ug/kg	TM16/PM8 TM16/PM8								
2,4-Dimethylphenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
2,4,5-Trichlorophenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
2,4,6-Trichlorophenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
4-Chloro-3-methylphenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
4-Methylphenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
4-Nitrophenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
Pentachlorophenol Phenol #	<10 <10	<10 <10	ug/kg ug/kg	TM16/PM8 TM16/PM8								
Phenoi	10	×10	10	×10	×10	\10	×10	\10	\10	×10	agrity	1 IVI 1 O/ 1- IVIO
2-Chloronaphthalene #	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
2-Methylnaphthalene #	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
Phthalates Bis(2-ethylhexyl) phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/kg	TM16/PM8
Butylbenzyl phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/kg	TM16/PM8
Di-n-butyl phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/kg	TM16/PM8
Di-n-Octyl phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/kg	TM16/PM8
Diethyl phthalate	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/kg	TM16/PM8
Dimethyl phthalate #	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ug/kg	TM16/PM8
Other SVOCs 1,2-Dichlorobenzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
1,2,4-Trichlorobenzene #	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg ug/kg	TM16/PM8
1,3-Dichlorobenzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
1,4-Dichlorobenzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
2-Nitroaniline	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
2,4-Dinitrotoluene	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
2,6-Dinitrotoluene 3-Nitroaniline	<10 <10	<10 <10	ug/kg	TM16/PM8 TM16/PM8								
4-Bromophenylphenylether #	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg ug/kg	TM16/PM8
4-Chloroaniline	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
4-Chlorophenylphenylether	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
4-Nitroaniline	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
Azobenzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
Bis(2-chloroethoxy)methane	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
Bis(2-chloroethyl)ether Carbazole	<10 <10	<10 <10	ug/kg ug/kg	TM16/PM8 TM16/PM8								
Dibenzofuran #	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg ug/kg	TM16/PM8
Hexachlorobenzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
Hexachlorobutadiene#	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
Hexachlorocyclopentadiene	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
Hexachloroethane	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg	TM16/PM8
Isophorone * N-nitrosodi-n-propylamine *	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	ug/kg ug/kg	TM16/PM8 TM16/PM8
Nitrobenzene #	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/kg ug/kg	TM16/PM8
Surrogate Recovery 2-Fluorobiphenyl	101	115	101	72	78	69 sv	92	86	94	<0	%	TM16/PM8
Surrogate Recovery p-Terphenyl-d14	122	131	113	108	106	93	123	90	111	<0	%	TM16/PM8
	1	1	1					1	1	1		

Ground Investigations Ireland Client Name:

17/02/6552 Reference: Foynes Location: Conor Finnerty Contact: JE Job No.: 17/7213

VOC Report : Solid

J E Sample No.	1-3	7-9	10-12	13-15	16-18	22-24	25-27	28-30	31-33	37-39
Sample ID	TP01 0.50 ENV	TP01 3.90 ENV	TP02 1.00 ENV	TP02 4.50 ENV	TP03 0.50 ENV	TP03 3.00 ENV	TP04 1.00 ENV	TP04 2.30 ENV	TP05 0.50 ENV	TP05 2.00 ENV
Depth	0.50	3.90	1.00	4.50	0.50	3.00	1.00	2.30	0.50	2.00
COC No / misc										
Containers	VJT									
Sample Date	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017
Sample Type	Soil									
Batch Number	1	1	1	1	1	1	1	1	1	1

Sample ID	ENV												
Depth	0.50	3.90	1.00	4.50	0.50	3.00	1.00	2.30	0.50	2.00	Please se	e attached r	notes for all
COC No / misc												ations and a	
Containers	VJT												
Sample Date Sample Type	13/04/2017 Soil	13/04/2017 Soil	13/04/2017 Soil	13/04/2017 Soil	13/04/2017 Soil	13/04/2017 Soil	13/04/2017 Soil	13/04/2017 Soil	13/04/2017 Soil	13/04/2017 Soil			
Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	19/04/2017	LOD/LOR	Units	No.
VOC MS													
Dichlorodifluoromethane	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/kg	TM15/PM10
Methyl Tertiary Butyl Ether * Chloromethane *	<2 <3	<2 <3	ug/kg ug/kg	TM15/PM10 TM15/PM10									
Vinyl Chloride	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/kg	TM15_A/PM10
Bromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/kg	TM15/PM10
Chloroethane #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/kg	TM15/PM10
Trichlorofluoromethane #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/kg	TM15/PM10
1,1-Dichloroethene (1,1 DCE) # Dichloromethane (DCM) #	<6 <30	<6 <30	ug/kg ug/kg	TM15/PM10 TM15/PM10									
trans-1-2-Dichloroethene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
1,1-Dichloroethane#	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
cis-1-2-Dichloroethene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
2,2-Dichloropropane	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
Bromochloromethane #	<3 <3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10 TM15/PM10
Chloroform # 1,1,1-Trichloroethane #	<3 <3	<3 <3	ug/kg ug/kg	TM15/PM10 TM15/PM10									
1,1-Dichloropropene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
Carbon tetrachloride #	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
1,2-Dichloroethane#	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
Benzene#	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
Trichloroethene (TCE) # 1,2-Dichloropropane #	<3 <6	<3 <6	ug/kg ug/kg	TM15/PM10 TM15/PM10									
Dibromomethane #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
Bromodichloromethane #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
cis-1-3-Dichloropropene	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
Toluene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
trans-1-3-Dichloropropene 1,1,2-Trichloroethane#	<3 <3	<3 <3	ug/kg ug/kg	TM15/PM10 TM15/PM10									
Tetrachloroethene (PCE) #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
1,3-Dichloropropane #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
Dibromochloromethane #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
1,2-Dibromoethane #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10 TM15/PM10
Chlorobenzene # 1,1,1,2-Tetrachloroethane	<3 <3	<3 <3	ug/kg ug/kg	TM15/PM10									
Ethylbenzene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
p/m-Xylene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM15/PM10
o-Xylene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
Styrene Bromoform	<3 <3	<3 <3	ug/kg	TM15_A/PM10 TM15/PM10									
Isopropylbenzene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg ug/kg	TM15/PM10
1,1,2,2-Tetrachloroethane #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
Bromobenzene	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/kg	TM15/PM10
1,2,3-Trichloropropane #	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
Propylbenzene # 2-Chlorotoluene	<4 <3	<4 <3	ug/kg ug/kg	TM15/PM10 TM15/PM10									
1,3,5-Trimethylbenzene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg ug/kg	TM15/PM10
4-Chlorotoluene	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
tert-Butylbenzene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM15/PM10
1,2,4-Trimethylbenzene#	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	ug/kg	TM15/PM10
sec-Butylbenzene# 4-Isopropyltoluene#	<4 <4	<4 <4	ug/kg ug/kg	TM15/PM10 TM15/PM10									
1,3-Dichlorobenzene #	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
1,4-Dichlorobenzene #	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
n-Butylbenzene #	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
1,2-Dichlorobenzene	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
1,2-Dibromo-3-chloropropane # 1,2,4-Trichlorobenzene #	<4 <7	<4 <7	<4 <7	<4 <7	<4 <7	<4 <7	<4 <7	<4 <7	<4 <7	<4 <7	<4 <7	ug/kg ug/kg	TM15/PM10 TM15/PM10
Hexachlorobutadiene	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg ug/kg	TM15/PM10
Naphthalene	<27	<27	<27	<27	<27	<27	<27	<27	<27	<27	<27	ug/kg	TM15/PM10
1,2,3-Trichlorobenzene #	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	ug/kg	TM15/PM10
Surrogate Recovery Toluene D8	98	99	100	99	101	98	100	101	95	99	<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	102	99	108	99	107	95	117	111	99	114	<0	%	TM15/PM10

Client Name: Ground Investigations Ireland

 Reference:
 17/02/6552

 Location:
 Foynes

 Contact:
 Conor Finnerty

 JE Job No.:
 17/7213

VOC Report : Solid

J E Sample No.	40-42	43-45	49-51	52-54	55-57	58-60	61-63	67-69	70-72			
Sample ID	TP06 1.00 ENV	TP07 0.50 ENV	TP07 3.80 ENV	TP08 0.50 ENV	TP08 2.00 ENV	TP09 0.50 ENV	TP09 1.80 ENV	TP10 1.00 ENV	TP10 4.70 ENV			
Depth COC No / misc	1.00	0.50	3.80	0.50	2.00	0.50	1.80	1.00	4.70		e attached n ations and a	
Containers	VJT			,								
Sample Date	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017	13/04/2017			
Sample Type	Soil											
Batch Number Date of Receipt	1 19/04/2017	1 19/04/2017	1 19/04/2017	1 19/04/2017	1 19/04/2017	1 19/04/2017	1 19/04/2017	1 19/04/2017	1 19/04/2017	LOD/LOR	Units	Method No.
VOC MS	10/04/2017	10/04/2017	10/04/2017	10/04/2017	10/04/2017	10/04/2017	10/04/2017	10/04/2017	10/04/2011			
Dichlorodifluoromethane	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/kg	TM15/PM10
Methyl Tertiary Butyl Ether #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/kg	TM15/PM10
Chloromethane # Vinyl Chloride	<3 <2	<3 <2	ug/kg ug/kg	TM15/PM10 TM15_A/PM10								
Bromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/kg	TM15/PM10
Chloroethane #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/kg	TM15/PM10
Trichlorofluoromethane #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/kg	TM15/PM10
1,1-Dichloroethene (1,1 DCE) #	<6	<6	<6 <30	<6	<6	<6 <30	<6 <30	<6	<6	<6	ug/kg	TM15/PM10 TM15/PM10
Dichloromethane (DCM) # trans-1-2-Dichloroethene #	<30 <3	<30 <3	<30	<30 <3	<30 <3	<30	<30	<30 <3	<30 <3	<30 <3	ug/kg ug/kg	TM15/PM10
1,1-Dichloroethane#	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
cis-1-2-Dichloroethene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
2,2-Dichloropropane	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
Bromochloromethane * Chloroform *	<3 <3	<3 <3	ug/kg ug/kg	TM15/PM10 TM15/PM10								
1,1,1-Trichloroethane #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg ug/kg	TM15/PM10
1,1-Dichloropropene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
Carbon tetrachloride #	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
1,2-Dichloroethane * Benzene *	<4 <3	<4	<4	<4 <3	<4	<4	<4 <3	<4 <3	<4	<4	ug/kg	TM15/PM10 TM15/PM10
Trichloroethene (TCE)#	<3	<3 <3	<3 <3	<3	<3 <3	<3 <3	<3	<3	<3 <3	<3 <3	ug/kg ug/kg	TM15/PM10
1,2-Dichloropropane #	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	ug/kg	TM15/PM10
Dibromomethane #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
Bromodichloromethane #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
cis-1-3-Dichloropropene Toluene #	<4 <3	<4 <3	ug/kg ug/kg	TM15/PM10 TM15/PM10								
trans-1-3-Dichloropropene	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
1,1,2-Trichloroethane #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
Tetrachloroethene (PCE)#	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
1,3-Dichloropropane * Dibromochloromethane *	<3 <3	<3 <3	ug/kg ug/kg	TM15/PM10 TM15/PM10								
1,2-Dibromoethane #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
Chlorobenzene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
1,1,1,2-Tetrachloroethane	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
Ethylbenzene # p/m-Xylene #	<3 <5	<3 <5	<3 <5	<3 <5	<3 <5	<3 <5	<3	<3 <5	<3 <5	<3 <5	ug/kg ug/kg	TM15/PM10 TM15/PM10
o-Xylene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
Styrene	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15_A/PM10
Bromoform	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
Isopropylbenzene#	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10 TM15/PM10
1,1,2,2-Tetrachloroethane * Bromobenzene	<3 <2	<3 <2	ug/kg ug/kg	TM15/PM10 TM15/PM10								
1,2,3-Trichloropropane #	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
Propylbenzene #	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
2-Chlorotoluene	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
1,3,5-Trimethylbenzene * 4-Chlorotoluene	<3 <3	<3 <3	ug/kg ug/kg	TM15/PM10 TM15/PM10								
tert-Butylbenzene #	<5	<5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5	<5 <5	ug/kg	TM15/PM10
1,2,4-Trimethylbenzene #	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	ug/kg	TM15/PM10
sec-Butylbenzene#	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
4-Isopropyltoluene # 1,3-Dichlorobenzene #	<4 <4	<4 <4	ug/kg ug/kg	TM15/PM10 TM15/PM10								
1,3-Dichlorobenzene 1,4-Dichlorobenzene #	<4 <4	<4 <4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg ug/kg	TM15/PM10
n-Butylbenzene#	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
1,2-Dichlorobenzene #	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
1,2-Dibromo-3-chloropropane #	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
1,2,4-Trichlorobenzene * Hexachlorobutadiene	<7 <4	<7 <4	ug/kg ug/kg	TM15/PM10 TM15/PM10								
Naphthalene	<27	<27	<27	<27	<27	<27	<27	<27	<27	<27	ug/kg	TM15/PM10
1,2,3-Trichlorobenzene #	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	ug/kg	TM15/PM10
Surrogate Recovery Toluene D8	102	98	98	98	101	99	96	100	99	<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	114	104	96	102	110	104	97	104	96	<0	%	TM15/PM10

Mass of sample taken (kg)	0.1256		Moisture Content Ratio (%) =		40.1	
Mass of dry sample (kg) =	0.09		Dry Matter Content Ratio (%) =		71.4	
Particle Size <4mm =	>95%					
JEFL Job No			17/7213	Land	fill Waste Ac	ceptance
Sample No			6		Criteria Lim	nits
Client Sample No			TP01 1.00 ENV		Stable	
Depth/Other			1.00	Inert	Non-reactive	Hazardous
Sample Date			13/04/2017	Waste	Hazardous Waste in Non-	Waste
Batch No			1	Landfill	Hazardous	Landfill
Solid Waste Analysis					Landfill	
Total Organic Carbon (%)	0.63			3	5	6
Loss on Ignition (%)	3.9			-	-	10
Sum of BTEX (mg/kg)	<0.025			6	-	-
Sum of 7 PCBs (mg/kg)	< 0.035			1	-	-
Mineral Oil (mg/kg)	<30			500	-	-
PAH Sum of 17(mg/kg)	<0.64			100	-	-
pH (pH Units)	7.41			-	>6	-
ANC to pH 7 (mol/kg)	<0.03			-	to be evaluated	to be evaluated
ANC to pH 4 (mol/kg)	0.03			-	to be evaluated	to be evaluated
Eluate Analysis		conc ⁿ ched ————————————————————————————————————		le	values for co aching test 12457-2 at l	using
	mg/l	mg/kg			mg/kg	
Arsenic	<0.0025	<0.025		0.5	2	25
Barium	< 0.003	<0.03		20	100	300
Cadmium	<0.0005	<0.005		0.04	1	5
Chromium	<0.0015	<0.015		0.5	10	70
Copper	< 0.007	<0.07		2	50	100
Mercury	<0.001	<0.01		0.01	0.2	2
Molybdenum	<0.002	<0.02		0.5	10	30
Nickel	< 0.002	<0.02		0.4	10	40
Lead	<0.005	<0.05		0.5	10	50
Antimony	0.003	0.03		0.06	0.7	5
Selenium	< 0.003	<0.03		0.1	0.5	7
Zinc	0.004	0.04		4	50	200
Chloride	11.3	113		800	15000	25000
Fluoride	<0.3	<3		10	150	500
Sulphate as SO4	16.95	169.5		1000	20000	50000
Total Dissolved Solids	84	840		4000	60000	100000
Phenol	<0.01	<0.1		1	-	-
Dissolved Organic Carbon	8	80		500	800	1000

Mass of sample taken (kg)	0.1235		Moisture Content Ratio (%) =		37.5	
Mass of dry sample (kg) =	0.09		Dry Matter Content Ratio (%) =		72.7	
Particle Size <4mm =	>95%					
JEFL Job No			17/7213	Land	fill Waste Ac	ceptance
Sample No			21		Criteria Lim	nits
Client Sample No			TP03 0.80 ENV		Stable	
Depth/Other			0.80	Inert	Non-reactive	Hazardous
Sample Date			13/04/2017	Waste	Hazardous Waste in Non-	Waste
Batch No			1	Landfill	Hazardous	Landfill
Solid Waste Analysis					Landfill	
Total Organic Carbon (%)	0.13			3	5	6
Loss on Ignition (%)	4.2			-	-	10
Sum of BTEX (mg/kg)	< 0.025			6	-	-
Sum of 7 PCBs (mg/kg)	< 0.035			1	-	-
Mineral Oil (mg/kg)	<30			500	-	-
PAH Sum of 17(mg/kg)	<0.64			100	-	-
pH (pH Units)	7.76			-	>6	-
ANC to pH 7 (mol/kg)	< 0.03			-	to be evaluated	to be evaluated
ANC to pH 4 (mol/kg)	0.04			-	to be evaluated	to be evaluated
Eluate Analysis		conc ⁿ ched ————————————————————————————————————		le	values for co aching test I 12457-2 at I	using
	mg/l	mg/kg			mg/kg	
Arsenic	<0.0025	<0.025		0.5	2	25
Barium	< 0.003	<0.03		20	100	300
Cadmium	< 0.0005	<0.005		0.04	1	5
Chromium	< 0.0015	<0.015		0.5	10	70
Copper	< 0.007	<0.07		2	50	100
Mercury	<0.001	<0.01		0.01	0.2	2
Molybdenum	0.005	0.05		0.5	10	30
Nickel	<0.002	<0.02		0.4	10	40
Lead	<0.005	<0.05		0.5	10	50
Antimony	<0.002	<0.02		0.06	0.7	5
Selenium	< 0.003	<0.03		0.1	0.5	7
Zinc	<0.003	<0.03		4	50	200
Chloride	0.5	5		800	15000	25000
Fluoride	0.6	6		10	150	500
Sulphate as SO4	0.52	5.2		1000	20000	50000
Total Dissolved Solids	87	870		4000	60000	100000
Phenol	<0.01	<0.1		1	-	-
Dissolved Organic Carbon	7	70		500	800	1000

Mass of sample taken (kg)	0.1165		Moisture Content Ratio (%) =		30.1	
Mass of dry sample (kg) =	0.09		Dry Matter Content Ratio (%) =		76.9	
Particle Size <4mm =	>95%					
IEEL II. N	1		47/7042	l		
JEFL Job No	-		17/7213	Landf	ill Waste Ac Criteria Lim	
Sample No	-		36		Criteria Lili	iits
Client Sample No	-		TP05 0.80 ENV	4	Stable	
Depth/Other	-		0.80	Inert	Non-reactive Hazardous	Hazardous
Sample Date	-		13/04/2017	Waste Landfill	Waste in Non-	Waste Landfill
Batch No			1	Lanuini	Hazardous Landfill	Lanum
Solid Waste Analysis						
Total Organic Carbon (%)	0.11			3	5	6
Loss on Ignition (%)	3.0			-	-	10
Sum of BTEX (mg/kg)	<0.025			6	-	-
Sum of 7 PCBs (mg/kg)	< 0.035			1	-	-
Mineral Oil (mg/kg)	<30			500	-	-
PAH Sum of 17(mg/kg)	<0.64			100	-	-
pH (pH Units)	8.26			-	>6	-
ANC to pH 7 (mol/kg)	0.05			-	to be evaluated	to be evaluated
ANC to pH 4 (mol/kg)	1.36			-	to be evaluated	to be evaluated
Eluate Analysis		conc ⁿ ched A ₁₀		le	/alues for co aching test 12457-2 at I	using
	mg/l	mg/kg			mg/kg	
Arsenic	<0.0025	<0.025		0.5	2	25
Barium	< 0.003	<0.03		20	100	300
Cadmium	<0.0005	<0.005		0.04	1	5
Chromium	<0.0015	<0.015		0.5	10	70
Copper	< 0.007	<0.07		2	50	100
Mercury	<0.001	<0.01		0.01	0.2	2
Molybdenum	<0.002	<0.02		0.5	10	30
Nickel	<0.002	<0.02		0.4	10	40
Lead	<0.005	<0.05		0.5	10	50
Antimony	<0.002	<0.02		0.06	0.7	5
Selenium	< 0.003	<0.03		0.1	0.5	7
Zinc	< 0.003	<0.03		4	50	200
Chloride	0.4	4		800	15000	25000
Fluoride	0.5	5		10	150	500
Sulphate as SO4	0.90	9.0		1000	20000	50000
Total Dissolved Solids	112	1120		4000	60000	100000
Phenol	<0.01	<0.1		1	-	-
Dissolved Organic Carbon	7	70		500	800	1000

Mass of sample taken (kg)	0.1186		Moisture Content Ratio (%) =		31.5	
Mass of dry sample (kg) =	0.09		Dry Matter Content Ratio (%) =		76.0	
Particle Size <4mm =	>95%					
JEFL Job No			17/7213	Land	fill Waste Ac	ceptance
Sample No			48		Criteria Lim	nits
Client Sample No			TP07 1.00 ENV		Stable	
Depth/Other			1.00	Inert	Non-reactive	Hazardous
Sample Date			13/04/2017	Waste	Hazardous Waste in Non-	Waste
Batch No			1	Landfill	Hazardous	Landfill
Solid Waste Analysis					Landfill	
Total Organic Carbon (%)	0.11			3	5	6
Loss on Ignition (%)	4.1			-	-	10
Sum of BTEX (mg/kg)	<0.025			6	-	-
Sum of 7 PCBs (mg/kg)	< 0.035			1	-	-
Mineral Oil (mg/kg)	<30			500	-	-
PAH Sum of 17(mg/kg)	<0.64			100	-	-
pH (pH Units)	7.38			-	>6	-
ANC to pH 7 (mol/kg)	< 0.03			-	to be evaluated	to be evaluated
ANC to pH 4 (mol/kg)	0.03			_	to be evaluated	to be evaluated
Eluate Analysis		conc ⁿ ched A ₁₀		le	values for co aching test I 12457-2 at I	using
	mg/l	mg/kg			mg/kg	
Arsenic	<0.0025	<0.025		0.5	2	25
Barium	< 0.003	<0.03		20	100	300
Cadmium	< 0.0005	<0.005		0.04	1	5
Chromium	<0.0015	<0.015		0.5	10	70
Copper	< 0.007	<0.07		2	50	100
Mercury	<0.001	<0.01		0.01	0.2	2
Molybdenum	<0.002	<0.02		0.5	10	30
Nickel	<0.002	<0.02		0.4	10	40
Lead	<0.005	<0.05		0.5	10	50
Antimony	<0.002	<0.02		0.06	0.7	5
Selenium	< 0.003	<0.03		0.1	0.5	7
Zinc	0.006	0.06		4	50	200
Chloride	<0.3	<3		800	15000	25000
Fluoride	0.6	6		10	150	500
Sulphate as SO4	0.77	7.7		1000	20000	50000
Total Dissolved Solids	80	800		4000	60000	100000
Phenol	<0.01	<0.1		1	-	-
Dissolved Organic Carbon	13	130		500	800	1000

Mass of sample taken (kg)	0.1164		Moisture Content Ratio (%) =		29.6	
Mass of dry sample (kg) =	0.09		Dry Matter Content Ratio (%) =		77.2	
Particle Size <4mm =	>95%					
IEEL Jah Na	1		17/7213			
JEFL Job No			66	Landi	ill Waste Ac Criteria Lim	
Sample No					Criteria Lin	1113
Client Sample No			TP10 0.50 ENV	-	Stable	
Depth/Other			0.50	Inert	Non-reactive Hazardous	Hazardous
Sample Date			13/04/2017	Waste Landfill	Waste in Non-	Waste Landfill
Batch No			1	Landini	Hazardous Landfill	Lanaiiii
Solid Waste Analysis		Ī			_	_
Total Organic Carbon (%)	0.12			3	5	6
Loss on Ignition (%)	4.0			-	-	10
Sum of BTEX (mg/kg)	<0.025			6	-	-
Sum of 7 PCBs (mg/kg)	<0.035			1	-	-
Mineral Oil (mg/kg)	<30			500	-	-
PAH Sum of 17(mg/kg)	<0.64			100	-	-
pH (pH Units)	7.47			-	>6	-
ANC to pH 7 (mol/kg)	NDP			-	to be evaluated	to be evaluated
ANC to pH 4 (mol/kg)	0.04			-	to be evaluated	to be evaluated
Eluate Analysis		conc ⁿ ched A ₁₀		le	/alues for co aching test 12457-2 at I	using
	mg/l	mg/kg			mg/kg	
Arsenic	<0.0025	<0.025		0.5	2	25
Barium	< 0.003	<0.03		20	100	300
Cadmium	<0.0005	<0.005		0.04	1	5
Chromium	<0.0015	<0.015		0.5	10	70
Copper	<0.007	<0.07		2	50	100
Mercury	<0.001	<0.01		0.01	0.2	2
Molybdenum	<0.002	<0.02		0.5	10	30
Nickel	<0.002	<0.02		0.4	10	40
Lead	< 0.005	< 0.05		0.5	10	50
Antimony	<0.002	<0.02		0.06	0.7	5
Selenium	< 0.003	<0.03		0.1	0.5	7
Zinc	< 0.003	<0.03		4	50	200
Chloride	<0.3	<3		800	15000	25000
Fluoride	<0.3	<3		10	150	500
Sulphate as SO4	0.63	6.3		1000	20000	50000
Total Dissolved Solids	48	480		4000	60000	100000
Phenol	<0.01	<0.1		1	-	-
Dissolved Organic Carbon	7	70		500	800	1000

Exova Jones Environmental Asbestos Analysis

Client Name: Ground Investigations Ireland

Reference: 17/02/6552
Location: Foynes
Contact: Conor Finnerty

Note:

Analysis was carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Jones Environmental Laboratory consultant, Jones Environmental Laboratory cannot be responsible for inaccurate or unrepresentative sampling.

Signed on behalf of Jones Environmental Laboratory:

Ryan Butterworth Asbestos Team Leader

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
17/7213	1	TP01 0.50 ENV	0.50	2	27/04/2017	General Description (Bulk Analysis)	soil-stones
					27/04/2017	Asbestos Fibres	NAD
					27/04/2017	Asbestos Fibres (2)	NAD
					27/04/2017	Asbestos ACM	NAD
					27/04/2017	Asbestos ACM (2)	NAD
					27/04/2017	Asbestos Type	NAD
					27/04/2017	Asbestos Type (2)	NAD
					27/04/2017	Asbestos Level Screen	NAD
17/7213	1	TP01 3.90 ENV	3.90	8	27/04/2017	General Description (Bulk Analysis)	soil-stones
					27/04/2017	Asbestos Fibres	NAD
					27/04/2017	Asbestos Fibres (2)	NAD
					27/04/2017	Asbestos ACM	NAD
					27/04/2017	Asbestos ACM (2)	NAD
					27/04/2017	Asbestos Type	NAD
					27/04/2017	Asbestos Type (2)	NAD
					27/04/2017	Asbestos Level Screen	NAD
17/7213	1	TP02 1.00 ENV	1.00	11	27/04/2017	General Description (Bulk Analysis)	soil-stones
					27/04/2017	Asbestos Fibres	NAD
					27/04/2017	Asbestos Fibres (2)	NAD
					27/04/2017	Asbestos ACM	NAD
					27/04/2017	Asbestos ACM (2)	NAD
					27/04/2017	Asbestos Type	NAD
					27/04/2017	Asbestos Type (2)	NAD
					27/04/2017	Asbestos Level Screen	NAD
17/7213	1	TP02 4.50 ENV	4.50	14	27/04/2017	General Description (Bulk Analysis)	soil/stones
					27/04/2017	Asbestos Fibres	NAD
					27/04/2017	Asbestos Fibres (2)	NAD
					27/04/2017	Asbestos ACM	NAD
					27/04/2017	Asbestos ACM (2)	NAD
					27/04/2017	Asbestos Type	NAD
					27/04/2017	Asbestos Type (2)	NAD
					27/04/2017	Asbestos Level Screen	NAD
17/7213	1	TP03 0.50 ENV	0.50	17	27/04/2017	General Description (Bulk Analysis)	soil/stones
					27/04/2017	Asbestos Fibres	NAD
					27/04/2017	Asbestos Fibres (2)	NAD

Client Name: Ground Investigations Ireland

Reference: 17/02/6552
Location: Foynes
Contact: Conor Finnerty

Contact	•		Conor Fir	illerty			
J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
17/7213	1	TP03 0.50 ENV	0.50	17	27/04/2017	Asbestos ACM	NAD
					27/04/2017	Asbestos ACM (2)	NAD
					27/04/2017	Asbestos Type	NAD
					27/04/2017	Asbestos Type (2)	NAD
					27/04/2017	Asbestos Level Screen	NAD
17/7213	1	TP03 3.00 ENV	3.00	23	27/04/2017	General Description (Bulk Analysis)	soil/stones
					27/04/2017	Asbestos Fibres	NAD
					27/04/2017	Asbestos Fibres (2)	NAD
					27/04/2017	Asbestos ACM	NAD
					27/04/2017	Asbestos ACM (2)	NAD
					27/04/2017	Asbestos Type	NAD
					27/04/2017	Asbestos Type (2)	NAD
					27/04/2017	Asbestos Level Screen	NAD
17/7213	1	TP04 1.00 ENV	1.00	26	27/04/2017	General Description (Bulk Analysis)	soil/stones
					27/04/2017	Asbestos Fibres	NAD
					27/04/2017	Asbestos Fibres (2)	NAD
					27/04/2017	Asbestos ACM	NAD
					27/04/2017	Asbestos ACM (2)	NAD
					27/04/2017	Asbestos Type	NAD
					27/04/2017	Asbestos Type (2)	NAD
					27/04/2017	Asbestos Level Screen	NAD
17/7213	1	TP04 2.30 ENV	2.30	29	27/04/2017	General Description (Bulk Analysis)	soil/stones
					27/04/2017	Asbestos Fibres	NAD
					27/04/2017	Asbestos Fibres (2)	NAD
					27/04/2017	Asbestos ACM	NAD
					27/04/2017	Asbestos ACM (2)	NAD
					27/04/2017	Asbestos Type	NAD
					27/04/2017	Asbestos Type (2)	NAD
					27/04/2017	Asbestos Level Screen	NAD
17/7213	1	TP05 0.50 ENV	0.50	32	27/04/2017	General Description (Bulk Analysis)	soil/stones
					27/04/2017	Asbestos Fibres	NAD
					27/04/2017	Asbestos Fibres (2)	NAD
					27/04/2017	Asbestos ACM	NAD
					27/04/2017	Asbestos ACM (2)	NAD
					27/04/2017	Asbestos Type	NAD
					27/04/2017	Asbestos Type (2)	NAD
					27/04/2017	Asbestos Level Screen	NAD
17/7213	1	TP05 2.00 ENV	2.00	38	27/04/2017	General Description (Bulk Analysis)	soil/stones
					27/04/2017	Asbestos Fibres	NAD
					27/04/2017	Asbestos Fibres (2)	NAD
					27/04/2017	Asbestos ACM	NAD
					27/04/2017	Asbestos ACM (2)	NAD
					27/04/2017	Asbestos Type	NAD
					27/04/2017	Asbestos Type (2)	NAD
					27/04/2017	Asbestos Level Screen	NAD
17/7213	1	TP06 1.00 ENV	1.00	41	27/04/2017	General Description (Bulk Analysis)	soil/stones
					27/04/2017	Asbestos Fibres	NAD
							l .

Client Name: Ground Investigations Ireland

Reference: 17/02/6552
Location: Foynes
Contact: Conor Finnerty

Contact			Conor Fir	illerty			
J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
17/7213	1	TP06 1.00 ENV	1.00	41	27/04/2017	Asbestos Fibres (2)	NAD
					27/04/2017	Asbestos ACM	NAD
					27/04/2017	Asbestos ACM (2)	NAD
					27/04/2017	Asbestos Type	NAD
					27/04/2017	Asbestos Type (2)	NAD
					27/04/2017	Asbestos Level Screen	NAD
17/7213	1	TP07 0.50 ENV	0.50	44	27/04/2017	General Description (Bulk Analysis)	soil/stones
					27/04/2017	Asbestos Fibres	NAD
					27/04/2017	Asbestos Fibres (2)	NAD
					27/04/2017	Asbestos ACM	NAD
					27/04/2017	Asbestos ACM (2)	NAD
							NAD
					27/04/2017	Asbestos Type	
					27/04/2017	Asbestos Type (2)	NAD
					27/04/2017	Asbestos Level Screen	NAD
17/7213	1	TP07 3.80 ENV	3.80	50	27/04/2017	General Description (Bulk Analysis)	Soil-Silt/Stones
					27/04/2017	Asbestos Fibres	NAD
					27/04/2017	Asbestos Fibres (2)	NAD
					27/04/2017	Asbestos ACM	NAD
					27/04/2017	Asbestos ACM (2)	NAD
					27/04/2017	Asbestos Type	NAD
					27/04/2017	Asbestos Type (2)	NAD
					27/04/2017	Asbestos Level Screen	NAD
17/7213	1	TP08 0.50 ENV	0.50	53	27/04/2017	General Description (Bulk Analysis)	Soil/Stones
					27/04/2017	Asbestos Fibres	NAD
					27/04/2017	Asbestos Fibres (2)	NAD
					27/04/2017	Asbestos ACM	NAD
					27/04/2017	Asbestos ACM (2)	NAD
					27/04/2017	Asbestos Type	NAD
					27/04/2017	Asbestos Type (2)	NAD
					27/04/2017	Asbestos Level Screen	NAD
					2170-1/2011	ASSOCIOS ECVOI COI COI	
17/7213	1	TP08 2.00 ENV	2.00	56	27/04/2017	General Description (Bulk Analysis)	soil-stones
17/7213	'	11 00 2.00 2144	2.00	30	27/04/2017		
						Asbestos Fibres	NAD NAD
						Asbestos Fibres (2)	
					27/04/2017	Asbestos ACM	NAD
					27/04/2017	Asbestos ACM (2)	NAD
					27/04/2017	Asbestos Type	NAD
					27/04/2017	Asbestos Type (2)	NAD
					27/04/2017	Asbestos Level Screen	NAD
17/7213	1	TP09 0.50 ENV	0.50	59	27/04/2017	General Description (Bulk Analysis)	soil/stones
					27/04/2017	Asbestos Fibres	NAD
					27/04/2017	Asbestos Fibres (2)	NAD
					27/04/2017	Asbestos ACM	NAD
					27/04/2017	Asbestos ACM (2)	NAD
					27/04/2017	Asbestos Type	NAD
					27/04/2017	Asbestos Type (2)	NAD
					27/04/2017	Asbestos Level Screen	NAD
						ı	

Client Name: Ground Investigations Ireland

Reference: 17/02/6552
Location: Foynes
Contact: Conor Finnerty

1777213 1 1798 1.00 ENV 1.00 06 27940077 200000000000000000000000000000000	Contac	ntact:		Conor Fir	nnerty			
Asbestos Fibres NAD 27/04/2017 27/04/2017 Asbestos Fibres (2) NAD 27/04/2017 27/04/2017 Asbestos ACM NAD Asbestos ACM NAD Asbestos ACM NAD Asbestos ACM NAD Asbestos Type NAD 27/04/2017 Asbestos Type (2) NAD Asbestos Level Screen NAD 17/7213 1 TP10 1.00 ENV 1.00 68 27/04/2017 Asbestos Fibres (2) NAD 27/04/2017 Asbestos Fibres (2) NAD Asbestos Fibres (2) NAD Asbestos Fibres (2) NAD Asbestos Fibres (2) NAD Asbestos Fibres (2) NAD Asbestos Fibres (2) NAD Asbestos Fibres (2) NAD Asbestos Fibres (2) NAD Asbestos Fibres (2) NAD Asbestos Fibres (2) NAD Asbestos Fibres (2) NAD Asbestos ACM NAD Asbestos Fibres (2) NAD Asbestos ACM NAD Asbestos Type NAD Asbestos Type NAD Asbestos Type (2) NAD Asbestos Type (2) NAD Asbestos Type (2) NAD Asbestos Fibres (2) NAD Asbestos Type NAD Asbestos Type NAD Asbestos Type NAD Asbestos Type NAD Asbestos Type NAD Asbestos Type NAD Asbestos Type NAD	Job	Batch	Sample ID	Depth	Sample		Analysis	Result
Asbestos Fibres (2)	17/7213	1	TP09 1.80 ENV	1.80	62	27/04/2017	General Description (Bulk Analysis)	soil/stones
Asbestos ACM						27/04/2017	Asbestos Fibres	NAD
27/04/2017 Asbestos ACM (2) NAD						27/04/2017	Asbestos Fibres (2)	NAD
Asbestos Type						27/04/2017	Asbestos ACM	NAD
17/7213 1 TP10 1.00 ENV 1.00 68 27/04/2017 Asbestos Level Screen NAD						27/04/2017	Asbestos ACM (2)	NAD
17/7213						27/04/2017	Asbestos Type	NAD
17/7213						27/04/2017	Asbestos Type (2)	NAD
Asbestos Fibres NAD Asbestos Fibres NAD Asbestos Fibres Asbestos Fibres NAD Asbestos Fibres NAD Asbestos ACM NAD Asbestos ACM NAD Asbestos ACM NAD Asbestos ACM NAD Asbestos Type NAD Asbestos Type NAD NA						27/04/2017	Asbestos Level Screen	NAD
Asbestos Fibres NAD Asbestos Fibres NAD Asbestos Fibres Asbestos Fibres NAD Asbestos Fibres NAD Asbestos ACM NAD Asbestos ACM NAD Asbestos ACM NAD Asbestos ACM NAD Asbestos Type NAD Asbestos Type NAD NA								
Asbestos Fibres (2)	17/7213	1	TP10 1.00 ENV	1.00	68	27/04/2017	General Description (Bulk Analysis)	soil/stones
Asbestos ACM						27/04/2017	Asbestos Fibres	NAD
27/04/2017 Asbestos ACM (2) NAD						27/04/2017	Asbestos Fibres (2)	NAD
27/04/2017						27/04/2017	Asbestos ACM	NAD
17/7213 1 TP10 4.70 ENV 4.70 71 27/04/2017 Asbestos Type (2) NAD						27/04/2017	Asbestos ACM (2)	NAD
17/7213 1 TP10 4.70 ENV 4.70 71 27/04/2017 General Description (Bulk Analysis) Soil-Siit/Stones NAD						27/04/2017	Asbestos Type	NAD
17/7213						27/04/2017	Asbestos Type (2)	NAD
27/04/2017						27/04/2017	Asbestos Level Screen	NAD
27/04/2017								
27/04/2017 27/04/2017 27/04/2017 27/04/2017 27/04/2017 27/04/2017 27/04/2017 27/04/2017 27/04/2017 27/04/2017 27/04/2017 27/04/2017 27/04/2017 27/04/2017 27/04/2017	17/7213	1	TP10 4.70 ENV	4.70	71	27/04/2017	General Description (Bulk Analysis)	Soil-Silt/Stones
27/04/2017 27/04/2017 Asbestos ACM NAD Asbestos ACM (2) NAD 27/04/2017 Asbestos Type NAD Asbestos Type (2) NAD						27/04/2017	Asbestos Fibres	NAD
27/04/2017 Asbestos ACM (2) NAD 27/04/2017 Asbestos Type NAD 27/04/2017 Asbestos Type (2) NAD						27/04/2017	Asbestos Fibres (2)	NAD
27/04/2017 Asbestos Type NAD NAD Asbestos Type (2)						27/04/2017	Asbestos ACM	NAD
27/04/2017 Asbestos Type (2) NAD						27/04/2017	Asbestos ACM (2)	NAD
						27/04/2017	Asbestos Type	NAD
Asbestos Level Screen NAD Asbestos Level Screen NAD Asbestos Level Screen NAD Asbestos Level Screen NAD						27/04/2017	Asbestos Type (2)	NAD
						27/04/2017	Asbestos Level Screen	NAD

NDP Reason Report

Client Name: Ground Investigations Ireland Matrix : Solid

Reference: 17/02/6552 **Location:** Foynes

Contact: Conor Finnerty

JE					
Job No.	Batch	Sample ID	Depth	J E Sample No.	NDP Reason
17/7213	1	TP10 0.50 ENV	0.50	64-66	Sample received is below pH7

Notification of Deviating Samples

Client Name: Ground Investigations Ireland Matrix : Solid

Reference: 17/02/6552 **Location:** Foynes

Contact: Conor Finnerty

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
17/7213	1	TP01 0.50 ENV	0.50	1-3	VOC	Sample holding time exceeded
17/7213	1	TP01 3.90 ENV	3.90	7-9	voc	Sample holding time exceeded
17/7213	1	TP02 1.00 ENV	1.00	10-12	voc	Sample holding time exceeded
17/7213	1	TP02 4.50 ENV	4.50	13-15	voc	Sample holding time exceeded
17/7213	1	TP03 0.50 ENV	0.50	16-18	VOC	Sample holding time exceeded
17/7213	1	TP03 3.00 ENV	3.00	22-24	VOC	Sample holding time exceeded
17/7213	1	TP04 1.00 ENV	1.00	25-27	VOC	Sample holding time exceeded
17/7213	1	TP05 2.00 ENV	2.00	37-39	VOC	Sample holding time exceeded
17/7213	1	TP06 1.00 ENV	1.00	40-42	VOC	Sample holding time exceeded
17/7213	1	TP07 0.50 ENV	0.50	43-45	VOC	Sample holding time exceeded

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 17/7213

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS) accredited - UK.
SA	ISO17025 (SANAS) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.				
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	TM005: Modified USEPA 8015B. Determination of solvent Extractable Petroleum Hydrocarbons (EPH) including column fractionation in the carbon range of C10-35 into aliphatic and aromatic fractions by GC-FID. TM036: Modified USEPA 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C5-10 by headspace GC-FID. Including determination of	PM12/PM16	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis./Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5/TM36	TM005: Modified USEPA 8015B. Determination of solvent Extractable Petroleum Hydrocarbons (EPH) including column fractionation in the carbon range of C10-35 into aliphatic and aromatic fractions by GC-FID. TM036: Modified USEPA 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C5-10 by headspace GC-FID. Including determination of	PM12/PM16	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis./Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM15	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM15	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM16	Modified USEPA 8270. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM16	Modified USEPA 8270. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM17	Modified US EPA method 8270. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3: 1990/USEPA 160.3 Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.			AR	Yes
TM21	Modified USEPA 415.1. Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.			AD	Yes
TM21	Modified USEPA 415.1. Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes
TM22	Modified USEPA 160.4. Gravimetric determination of Loss on Ignition by temperature controlled Muffle Furnace (450°C)	PM0	No preparation is required.	Yes		AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM21	As received solid or water samples are extracted in Methanol: Sodium Hydroxide (0.1M NaOH) (60:40) by orbital shaker.			AR	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM21	As received solid or water samples are extracted in Methanol: Sodium Hydroxide (0.1M NaOH) (60:40) by orbital shaker.	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM17	Modified method EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM50	Acid soluble sulphate (Total Sulphate) analysed by ICP-OES	PM29	Dried and ground solid sample is boiled with dilute hydrochloric acid, the resulting liquor is then analysed.	Yes		AD	Yes
TM60	Modified USEPA 9060. Determination of TOC by calculation from Total Carbon and Inorganic Carbon using a TOC analyser, the carbon in the sample is converted to CO2 and then passed through a non-dispersive infrared gas analyser (NDIR).	PM0	No preparation is required.			AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.			AR	
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM74	Analysis of water soluble boron (20:1 extract) by ICP-OES.	PM32	Hot water soluble boron is extracted from dried and ground samples using a 20:1 ratio.	Yes		AD	Yes
TM77	Modified DDCEN/TS method 15364:2006. Determination of Acid Neutralization Capacity by Metrohm automated probe analyser.	PM0	No preparation is required.			AR	No
TM89	Modified USEPA method OIA-1667. Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM45	As received solid samples are extracted with 1M NaOH by orbital shaker for Cyanide and Thiocyanate analysis.	Yes		AR	Yes
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 340.2	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	PM17	Modified method EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				

Exova Jones Environmental

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.			AR	
TM15_A	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds, Vinyl Chloride & Styrene by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes

Appendix - Methods used for WAC (2003/33/EC)

Leachate tests	
401/I:-: 4mm	I.S. EN 12457-2:2002 Specified particle size; water added to L/S ratio; capped; agitated for 24 ± 0.5 hours; eluate settled and
10l/kg; 4mm	filtered over 0.45 μm membrane filter.
Eluate analysis	
As	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Ba	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cd	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cr total	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cu	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Hg	I.S. EN 13370 rec. EN 1483 (CVAAS)
Мо	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Ni	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Pb	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Sb	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Se	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Zn	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Chloride	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Fluoride	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Sulphate	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Phenol index	I.S. EN 13370 rec. ISO 6439 (4-Aminoantipyrine spectrometic methods after distillation)* (BY HPLC - Jones Env)
DOC	I.S. EN 1484
TDS	I.S. EN 15216
Compositional anal	ysis
TOC	I.S. EN 13137 Method B: carbonates removed with acid; TOC by combustion.
BTEX	GC-FID
PCB7**	I.S. EN 15308 analysis by GC-ECD.
Mineral oil	I.S. EN 14039 C10 to C40 analysis by GC-FID.
PAH17***	I.S. EN 15527 PAH17 analysis by GC-MS
Metals	I.S. EN 13657 - Aqua regia digestion: EN ISO 11885 (ICP-OES)
Other	
	I.S. EN 14346 sample is dried to a constant mass in an oven at 105 ± 3 °C; Method B Water content by direct Karl-Fischer-
Dry matter	titration and either volumetric or coulometric detection.
LOI	I.S. EN 15169 Difference in mass after heating in a furnace up to 550 ± 25 °C.
ANC	CEN/TS 15364 Determined by amouns of acid or base needed to cover the pH range

Notes

^{*}If not suitable due to LOD, precision, etc., any other suitable method can be used, e.g. AFS, ICP-MS

^{**}PCB-28, PCB-52, PCB-101, PCB-118, PCB-138, PCB-153 and PCB-180

^{***}Naphthalene, Acenaphthylene, Acenaphthene, Anthracene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(g,h,i)perylene, Benzo(a)pyrene, Chrysene, Coronene, Dibenzo(a,h)anthracene, Fluorene, Fluoranthene, Indeno(1,2,3-c,d)pyrene, Phenanthrene and Pyrene.

Registered Address: Exova (UK) Ltd, Lochend Industrial Estate, Newbridge, Midlothian, EH28 8PL

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland

Tel: +44 (0) 1244 833780

Fax: +44 (0) 1244 833781

Attention : Conor Costigan

Date: 29th August, 2017

Your reference: 6552-02-17

Our reference: Test Report 17/13689 Batch 1

Location : Foynes Port

Date samples received: 14th August, 2017

Status: Final report

Issue:

Six samples were received for analysis on 14th August, 2017 of which six were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Bruce Leslie

b luce

Project Co-ordinator

Client Name: Ground Investigations Ireland

Reference: 6552-02-17
Location: Foynes Port
Contact: Conor Costigan
JE Job No.: 17/13689

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

JE Job No.:	17/13689						H=H ₂ SO ₄ , 2	L=ZNAC, N=	:NaOH, HN=	∙HNU ₃			
J E Sample No.	1-6	7-12	13-18	19-24	25-30	31-36							
Sample ID	BHLD-01	BHLD-02	BHLD-03	BHLD-04	BHLD-05	BHLD-06							
Depth											Diagon on	o ottoobod n	otoo for all
COC No / misc												e attached rations and a	
Containers	V HN P G	V HN P G	V HN P G	V HN P G	V HN P G	V HN P G							
Sample Date	10/08/2017	10/08/2017	10/08/2017	10/08/2017	10/08/2017	10/08/2017							
-													
Sample Type	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid							_
Batch Number	1	1	1	1	1	1					LOD/LOR	Units	Method
Date of Receipt	14/08/2017	14/08/2017	14/08/2017	14/08/2017	14/08/2017	14/08/2017	•						No.
Dissolved Aluminium	261	250	134	355	<20	<20					<20	ug/l	TM30/PM14
Dissolved Arsenic	52.5	7.5	4.1	11.8	13.3	10.9					<2.5	ug/l	TM30/PM14
Dissolved Barium	36	15	179	53	18	135					<3	ug/l	TM30/PM14
Dissolved Beryllium	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5					<0.5	ug/l	TM30/PM14
Dissolved Boron	268	259	2500	2459	227	537					<12	ug/l	TM30/PM14
Dissolved Cadmium	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5					<0.5	ug/l	TM30/PM14
Dissolved Calcium	285.5	290.3	369.0 _{AB}	321.2 _{AB}	179.3	109.3					<0.2	mg/l	TM30/PM14
Total Dissolved Chromium	9.3	8.3	6.7	4.0	<1.5	<1.5					<1.5	ug/l	TM30/PM14
Dissolved Copper	<7	<7	<7	<7	<7	<7					<7	ug/l	TM30/PM14
Total Dissolved Iron	37220 _{AC}	1458	1537	7391	<20	<20					<20	ug/l	TM30/PM14
Dissolved Lead	<5	<5	<5	<5	<5	<5					<5	ug/l	TM30/PM14
Dissolved Magnesium	56.1	42.4	1062.0	661.6	34.1	24.1					<0.1	mg/l	TM30/PM14
Dissolved Manganese	6122	344	779	415	667	77					<2	ug/l	TM30/PM14
Dissolved Mercury	<1	<1	<1	<1	<1	<1					<1	ug/l	TM30/PM14
Dissolved Nickel Dissolved Potassium	7 15.4	5 13.6	7	34	23 11.0	9.2					<2 <0.1	ug/l	TM30/PM14
Dissolved Folassium Dissolved Selenium	<3	<3	291.7 _{AB}	186.4 _{AB}	<3	<3					<3	mg/l ug/l	TM30/PM14
Dissolved Selement	486.6 _{AB}	273.5 _{AB}	8473.0 _{AE}	5237.0 _{AE}	143.2	335.8 _{AB}					<0.1	mg/l	TM30/PM14
Dissolved Vanadium	7.9	4.5	<1.5	<1.5	<1.5	<1.5					<1.5	ug/l	TM30/PM14
Dissolved Zinc	18	12	126	31	17	20					<3	ug/l	TM30/PM14
Total Hardness Dissolved (as CaCO3)	949 _{AB}	904 _{AB}	5383 _{AE}	3582 _{AE}	591	374					<1	mg/l	TM30/PM14
	AD	AD	AL	AL								Ü	
PAH MS													
Naphthalene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					<0.1	ug/l	TM4/PM30
Acenaphthylene	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013					<0.013	ug/l	TM4/PM30
Acenaphthene	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013					<0.013	ug/l	TM4/PM30
Fluorene	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014					<0.014	ug/l	TM4/PM30
Phenanthrene	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011					<0.011	ug/l	TM4/PM30
Anthracene	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013					<0.013	ug/l	TM4/PM30
Fluoranthene	<0.012	<0.012	<0.012	<0.012	<0.012	<0.012					<0.012	ug/l	TM4/PM30
Pyrene	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013					<0.013	ug/l	TM4/PM30
Benzo(a)anthracene	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015					<0.015	ug/l	TM4/PM30
Chrysene	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011					<0.011	ug/l	TM4/PM30
Benzo(bk)fluoranthene	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018					<0.018	ug/l	TM4/PM30
Benzo(a)pyrene	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016					<0.016	ug/l	TM4/PM30
Indeno(123cd)pyrene	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011					<0.011	ug/l	TM4/PM30
Dibenzo(ah)anthracene	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01					<0.01	ug/l	TM4/PM30
Benzo(ghi)perylene	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011					<0.011	ug/l	TM4/PM30
Coronene PAH 17 Total	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					<0.1	ug/l	TM4/PM30 TM4/PM30
PAH 17 Total Benzo(b)fluoranthene	<0.295 <0.01	<0.295 <0.01	<0.295 <0.01	<0.295 <0.01	<0.295 <0.01	<0.295 <0.01					<0.295 <0.01	ug/l ug/l	TM4/PM30
Benzo(b)fluorantnene Benzo(k)fluoranthene	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01					<0.01	ug/l	TM4/PM30
PAH Surrogate % Recovery	73	76	79	74	<0.01 81	<0.01 83					<0.01	ug/i %	TM4/PM30
ALL Sulloyate /6 Recovery	13	10	19	14	01	ပၥ	1		1	ı	<u< td=""><td>70</td><td>I IVI+/FIVI3U</td></u<>	70	I IVI+/FIVI3U

Client Name: Ground Investigations Ireland

Reference: 6552-02-17
Location: Foynes Port
Contact: Conor Costigan
JE Job No.: 17/13689

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

JE Job No.:	17/13689						H=H ₂ SO ₄ ,	Z=ZnAc, N=	:NaOH, HN=	∙HN0 ₃	_		
J E Sample No.	1-6	7-12	13-18	19-24	25-30	31-36							
Sample ID	BHLD-01	BHLD-02	BHLD-03	BHLD-04	BHLD-05	BHLD-06							
Depth											Please se	e attached r	notes for all
COC No / misc												ations and a	
Containers	VHNPG	VHNPG	V HN P G	VHNPG	VHNPG	VHNPG							
Sample Date			10/08/2017		10/08/2017	10/08/2017							
Sample Type	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid							
Batch Number	1	1	1	1	1	1					LOD/LOR	Units	Method No.
Date of Receipt			14/08/2017		14/08/2017	14/08/2017							
Methyl Tertiary Butyl Ether	1.0	<0.1	<0.1	<0.1	<0.1	<0.1					<0.1	ug/l	TM15/PM10
Benzene Toluene	<0.5 <5	<0.5 <5	<0.5 <5	<0.5 <5	<0.5 <5	<0.5 <5					<0.5 <5	ug/l	TM15/PM10 TM15/PM10
Ethylbenzene	<1	<1	<1	<1	<1	<1					<1	ug/l	TM15/PM10
p/m-Xylene	<2	<2	<2	<2	<2	<2					<2	ug/l ug/l	TM15/PM10
o-Xylene	<1	<1	<1	<1	<1	<1					<1	ug/l	TM15/PM10
Surrogate Recovery Toluene D8	92	92	93	94	93	93					<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	110	110	111	110	111	112					<0	%	TM15/PM10
TPH CWG													
Aliphatics													
>C5-C6	<10	<10	<10	<10	<10	<10					<10	ug/l	TM36/PM12
>C6-C8	<10	<10	<10	<10	<10	<10					<10	ug/l	TM36/PM12
>C8-C10	<10	<10	<10	<10	<10	<10					<10	ug/l	TM36/PM12
>C10-C12	<5	<5	<5	<5	<5	<5					<5	ug/l	TM5/PM30
>C12-C16 >C16-C21	<10	<10	<10	<10	<10	<10					<10	ug/l	TM5/PM30 TM5/PM30
>C16-C21 >C21-C35	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10					<10 <10	ug/l ug/l	TM5/PM30
Total aliphatics C5-35	<10	<10	<10	<10	<10	<10					<10	ug/l	TM5/TM36/PM30/PM12
Aromatics			•									-5.	
>C5-EC7	<10	<10	<10	<10	<10	<10					<10	ug/l	TM36/PM12
>EC7-EC8	<10	<10	<10	<10	<10	<10					<10	ug/l	TM36/PM12
>EC8-EC10	<10	<10	<10	<10	<10	<10					<10	ug/l	TM36/PM12
>EC10-EC12	<5	<5	<5	<5	<5	<5					<5	ug/l	TM5/PM30
>EC12-EC16	<10	<10	<10	<10	<10	<10					<10	ug/l	TM5/PM30
>EC16-EC21	<10	<10	<10	<10	<10	<10					<10	ug/l	TM5/PM30
>EC21-EC35	<10	<10	<10	<10	<10	<10					<10	ug/l	TM5/PM30
Total aromatics C5-35	<10	<10	<10	<10	<10	<10					<10	ug/l	TM5/TM36/PM30/PM12
Total aliphatics and aromatics(C5-35)	<10	<10	<10	<10	<10	<10					<10	ug/l	TM5/TM36/PM30/PM12
PCB 28	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					<0.1	ug/l	TM17/PM30
PCB 52	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					<0.1	ug/l	TM17/PM30
PCB 101	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					<0.1	ug/l	TM17/PM30
PCB 118	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					<0.1	ug/l	TM17/PM30
PCB 138	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					<0.1	ug/l	TM17/PM30
PCB 153	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					<0.1	ug/l	TM17/PM30
PCB 180 Total 7 PCBs	<0.1 <0.7	<0.1 <0.7	<0.1 <0.7	<0.1 <0.7	<0.1 <0.7	<0.1 <0.7					<0.1 <0.7	ug/l ug/l	TM17/PM30 TM17/PM30
Resorcinol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01					<0.01	mg/l	TM26/PM0
Catechol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01					<0.01	mg/l	TM26/PM0
Phenol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01					<0.01	mg/l	TM26/PM0
m/p-cresol	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02					<0.02	mg/l	TM26/PM0
o-cresol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			l		<0.01	mg/l	TM26/PM0

Client Name: Ground Investigations Ireland

Reference: 6552-02-17
Location: Foynes Port
Contact: Conor Costigan
JE Job No.: 17/13689

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

JE Job No.:	17/13689						Π=Π ₂ SU ₄ ,	Z=ZNAC, N=	NaOH, HN=	:IIIVU3	_		
J E Sample No.	1-6	7-12	13-18	19-24	25-30	31-36							
Sample ID	BHLD-01	BHLD-02	BHLD-03	BHLD-04	BHLD-05	BHLD-06							
Depth													
COC No / misc												e attached n ations and a	
		VUNDO	VUNDO	VUNDO	VUNDO	VIINDO							
	VHNPG	VHNPG	VHNPG	VHNPG	VHNPG	VHNPG							
Sample Date	10/08/2017	10/08/2017	10/08/2017	10/08/2017	10/08/2017	10/08/2017							
Sample Type	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid							1
Batch Number	1	1	1	1	1	1					LOD/LOR	Units	Method
Date of Receipt	14/08/2017	14/08/2017	14/08/2017	14/08/2017	14/08/2017	14/08/2017							No.
Total cresols	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03					<0.03	mg/l	TM26/PM0
Xylenols	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06					<0.06	mg/l	TM26/PM0
1-naphthol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01					<0.01	mg/l	TM26/PM0
2,3,5-trimethyl phenol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01					<0.01	mg/l	TM26/PM0
2-isopropylphenol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01					<0.01	mg/l	TM26/PM0
Total Speciated Phenols HPLC	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					<0.1	mg/l	TM26/PM0
Sulphate as SO4	90.0	137.7	1918.4	1258.5	91.4	198.3					<0.5	mg/l	TM38/PM0
Chloride	267.9	525.2	13829.0 _{AD}	7814.3	267.0	195.4					<0.3	mg/l	TM38/PM0
Nitrate as N	0.12	0.55	<0.05	<0.05	0.12	2.40					<0.05	mg/l	TM38/PM0
Nitrite as N	0.014	0.060	<0.006	<0.006	0.014	<0.006					<0.006	mg/l	TM38/PM0
Ortho Phosphate as P	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03					<0.03	mg/l	TM38/PM0
Total Cyanide	1587 _{AA}	1090 _{AA}	3326 _{AB}	1760 _{AA}	2637 _{AB}	1627 _{AA}					<5	ug/l	TM89/PM0
Ammoniacal Nitrogen as N	<0.03	0.10	<0.03	7.89	0.22	<0.03					<0.03	mg/l	TM38/PM0
Hexavalent Chromium	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006					<0.006	mg/l	TM38/PM0
Total Alkalinity as CaCO3	682	466	204	1126	646	558					<1	mg/l	TM75/PM0
Dibutyltin	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					<0.1	ug/l	TM94/PM48
Tributyltin	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					<0.1	ug/l	TM94/PM48
Triphenyltin	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					<0.1	ug/l	TM94/PM48
рН	7.30	7.36	7.74	7.22	7.32	7.53					<0.01	pH units	TM73/PM0

Client Name: Ground Investigations Ireland

Reference: 6552-02-17
Location: Foynes Port
Contact: Conor Costigan
JE Job No.: 17/13689

SVOC Report : Liquid

							 		 _		
J E Sample No.	1-6	7-12	13-18	19-24	25-30	31-36			1		
Sample ID	BHLD-01	BHLD-02	BHLD-03	BHLD-04	BHLD-05	BHLD-06					
Depth									Diagram	e attached n	-4 fII
COC No / misc										e attacned n ations and a	
Containers	VHNPG	VHNPG	V HN P G	VHNPG	VHNPG	V HN P G					,
Sample Date	10/08/2017	10/08/2017	10/08/2017	10/08/2017	10/08/2017	10/08/2017					
Sample Type	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid			i		
Batch Number	1	1	1	1	1	1			LOD/LOR	Llaita	Method
Date of Receipt	14/08/2017	14/08/2017	14/08/2017	14/08/2017	14/08/2017	14/08/2017			LOD/LOR	Units	No.
SVOC MS											
Phenols											
2-Chlorophenol	<1	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
2-Methylphenol	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
2-Nitrophenol	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
2,4-Dichlorophenol	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30 TM16/PM30
2,4-Dimethylphenol 2,4,5-Trichlorophenol	<1 <0.5	<1 <0.5	<1 <0.5	<1 <0.5	<1 <0.5	<1 <0.5			<1 <0.5	ug/l ug/l	TM16/PM30
2,4,6-Trichlorophenol	<1	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
4-Chloro-3-methylphenol	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		1	<0.5	ug/l	TM16/PM30
4-Methylphenol	<1	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
4-Nitrophenol	<10	<10	<10	<10	<10	<10		1	<10	ug/l	TM16/PM30
Pentachlorophenol	<1	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
Phenol	<1	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
PAHs											
2-Chloronaphthalene	<1	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
2-Methylnaphthalene	<1	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
Phthalates	_	_	_	_	_	_					T146 = # : : :
Bis(2-ethylhexyl) phthalate	<5	<5	<5	<5	<5	<5			<5	ug/l	TM16/PM30
Butylbenzyl phthalate	<1	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
Di-n-butyl phthalate Di-n-Octyl phthalate	<1.5 <1	<1.5 <1	<1.5 <1	<1.5 <1	<1.5 <1	<1.5 <1			<1.5 <1	ug/l ug/l	TM16/PM30 TM16/PM30
Diethyl phthalate	<1	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
Dimethyl phthalate	<1	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
Other SVOCs	7.	7.	7.	,,	7.	7.			7.	ug.	
1,2-Dichlorobenzene	<1	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
1,2,4-Trichlorobenzene	<1	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
1,3-Dichlorobenzene	<1	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
1,4-Dichlorobenzene	<1	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
2-Nitroaniline	<1	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
2,4-Dinitrotoluene	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
2,6-Dinitrotoluene	<1	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
3-Nitroaniline	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1			<1	ug/l	TM16/PM30 TM16/PM30
4-Bromophenylphenylether 4-Chloroaniline	<1	<1	<1	<1	<1	<1			<1 <1	ug/l ug/l	TM16/PM30
4-Chlorophenylphenylether	<1	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
4-Nitroaniline	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
Azobenzene	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
Bis(2-chloroethoxy)methane	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		1	<0.5	ug/l	TM16/PM30
Bis(2-chloroethyl)ether	<1	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
Carbazole	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
Dibenzofuran	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
Hexachlorobenzene	<1	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
Hexachlorobutadiene	<1	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
Hexachlorocyclopentadiene Hexachloroethane	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1			<1	ug/l	TM16/PM30 TM16/PM30
Isophorone	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<1 <0.5	ug/l ug/l	TM16/PM30
N-nitrosodi-n-propylamine	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5			<0.5 <0.5	ug/l ug/l	TM16/PM30
Nitrobenzene	<1	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
Surrogate Recovery 2-Fluorobiphenyl	79	84	74	74	78	76			<0	%	TM16/PM30
Surrogate Recovery p-Terphenyl-d14	89	102	85	91	88	83			<0	%	TM16/PM30
	Ī									1	
										1	

Client Name: Ground Investigations Ireland

Reference: 6552-02-17
Location: Foynes Port
Contact: Conor Costigan
JE Job No.: 17/13689

VOC Report : Liquid

Date of Receipt												
Page Cock for Inter- Containers Sample Date Court	J E Sample No.	1-6	7-12	13-18	19-24	25-30	31-36					
COCO Not make Commany Coco Not Coc	Sample ID	BHLD-01	BHLD-02	BHLD-03	BHLD-04	BHLD-05	BHLD-06					
COC Nor miscs Sample Date	Depth									Please se	e attached n	notes for all
Semple Name	·											
Search Type	Containers	V HN P G	V HN P G	V HN P G	V HN P G	V HN P G	V HN P G					
Batch Number 1	·											
Date of Recogn 44000007 40000007 40000007 40000007 40000007				· ·			· ·					1
Decision							,			LOD/LOR	Units	Method No.
Debtoordenbure Q2	· · · · · · · · · · · · · · · · · · ·	14/08/2017	14/08/2017	14/08/2017	14/08/2017	14/08/2017	14/08/2017					140.
Morty Tenting Bug Efree 10		<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Voy (Chickies) -0.1											-	TM15/PM10
Sourcentance	Chloromethane	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Controllering -2	Vinyl Chloride	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	ug/l	TM15/PM10
Trichestoromembrane 43											-	TM15/PM10
15-Definitionetheme (1, DCE)											-	TM15/PM10
Dehlororetham (DM)											-	TM15/PM10
Value 1.5 Value											-	TM15/PM10
act 3-2 Dichloroprophere 43 43 43 43 43 43 43 43 43 41 42 42 42 4	` ,											TM15/PM10
22-Dichiopropriate	1,1-Dichloroethane	<3		<3	<3		<3				-	TM15/PM10
Bomochiormenhane						<3						TM15/PM10
Distriction											-	TM15/PM10
1.1.1-Tich/chropropene											-	TM15/PM10
1.1-Dichioropropene											-	TM15/PM10 TM15/PM10
Carbon tetrachionide 22 22 22 22 22 22 22 22 22 22 22 29 TMIS Benzene 40.5 70.5 70.5 40.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>TM15/PM10</td>											-	TM15/PM10
1.2 Dichropropene											-	TM15/PM10
Trichtorethene (TCE)												TM15/PM10
1.2 Dictoromethane	Benzene	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM15/PM10
Debromomethane	Trichloroethene (TCE)	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Bromodichloromethane	· ·										-	TM15/PM10
cs-1-3-Dichloropropene 42<												TM15/PM10
Toluene											-	TM15/PM10 TM15/PM10
trans-1-3-Dichloropropene											-	TM15/PM10
1.1.2-Trichtoroethane <2											-	TM15/PM10
1.3-Dichloropropane	1,1,2-Trichloroethane	<2	<2	<2	<2	<2	<2			<2	-	TM15/PM10
Dibromochloromethane	Tetrachloroethene (PCE)	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1.2-Dibromoethane	· ·										ug/l	TM15/PM10
Chlorobenzene											-	TM15/PM10
1,1,2-Tetrachloroethane	· ·											TM15/PM10 TM15/PM10
Ethylbenzene											-	TM15/PM10
p/m-Xylene												TM15/PM10
Styrene	•	<2	<2	<2	<2	<2	<2			<2	-	TM15/PM10
Bromoform	o-Xylene	<1	<1	<1	<1	<1	<1			<1	ug/l	TM15/PM10
Isopropylbenzene	·										-	TM15/PM10
1,1,2,2-Tetrachloroethane <4											-	TM15/PM10
Bromobenzene												TM15/PM10
1,2,3-Trichloropropane <3											-	TM15/PM10 TM15/PM10
Propylbenzene <3												TM15/PM10
2-Chlorotoluene												TM15/PM10
4-Chlorotoluene	• • • • • • • • • • • • • • • • • • • •										-	TM15/PM10
tert-Butylbenzene <3	· · · · · · · · · · · · · · · · · · ·											TM15/PM10
1,2,4-Trimethylbenzene <3											-	TM15/PM10
sec-Butylbenzene <3	·											TM15/PM10
4-Isopropyltoluene <3	•											TM15/PM10 TM15/PM10
1,3-Dichlorobenzene <3	·										-	TM15/PM10
1,4-Dichlorobenzene <3												TM15/PM10
1,2-Dichlorobenzene <3											-	TM15/PM10
1,2-Dibromo-3-chloropropane <2	n-Butylbenzene	<3		<3	<3		<3				-	TM15/PM10
1,2,4-Trichlorobenzene <3											-	TM15/PM10
Hexachlorobutadiene <3 <3 <3 <3 <3 ug/l TM15. Naphthalene <2											-	TM15/PM10
Naphthalene <2 <2 <2 <2 <2 <2 <2 <4												TM15/PM10
											-	TM15/PM10 TM15/PM10
	•											TM15/PM10
											-	TM15/PM10
												TM15/PM10

Exova Jones Environmental Notification of Deviating Samples

Client Name: Ground Investigations Ireland

Reference:6552-02-17Location:Foynes PortContact:Conor Costigan

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
					No deviating sample report results for job 17/13689	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 17/13689

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

	1
#	ISO17025 (UKAS) accredited - UK.
SA	ISO17025 (SANAS) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
TB	Trip Blank Sample
ОС	Outside Calibration Range
AA	x2 Dilution
AB	x5 Dilution
AC	x10 Dilution
AD	x20 Dilution
AE	x50 Dilution

Exova Jones Environmental

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM5/TM36	Hydrocarbons (EPH) including column fractionation in the carbon range of C10-35 into aliphatic and aromatic fractions by GC-FID. TM036: Modified USEPA 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C5-10 by headspace GC-FID. Including determination of Park and provided the carbon chain range of C5-10 by headspace GC-FID.	PM30/PM12	CWG GC-FID				
TM15	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.				
TM16	Modified USEPA 8270. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM17	Modified US EPA method 8270. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.				
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.				
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM0	No preparation is required.				

Exova Jones Environmental

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.				
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.				
TM89	Modified USEPA method OIA-1667. Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM0	No preparation is required.				
TM94	Derivatisation and extraction of Organotins. Analysis by GC-MS	PM48	Samples are pretreated and derivatised. The derviatised organotins are then extracted using hexane.				

Appendix B Soil screening tables

Ref: IBR0973/Reports

Status: Final Date: April 2018

	Meti	nod Detection Lin	nit		1	<0.1	<0.01	<2	<0.0015	<1.0	<0.5	<0.2	<0.02	1		<50	<0.5	<1	<0.5	<0.1	<0.1	<1	(0.5
Depth	Sample Identity	Sample Date	Exova Jones Environmenta Sample ID	Sample No.		Natural Moisture Content	P	Chloride	Sulphate as SO4 (2:1 Ext)	Loss on ignition	Cyanide (total)	Organic matter	Total organic carbon	Asbestos (fibres and/or ACM)		Aluminium	Arsenic	Barium	Beryllium	Boron (water soluble)	Cadmium	Copper	Total Chromium
	lotty Ev	tension site bore	= pholos			%	pH Units	mg/kg	g/l	%	mg/kg	%	%			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1.00	L01	25/05/2017	67-69	1		10.6	7.91	-	0.0779	-	<0.5	0.5	-	NAD		1975	5.6	297	<0.5	1.4	0.8	8	17.7
3.00	L01	25/05/2017	70-72	2		11.8	8.2	-	0.1282	-	<0.5	0.3	-	NAD		2233	3.5	39	<0.5	2	0.3	5	19.2
7.00 1.00	L01 L05	25/05/2017 10/04/2017	76-78 10-12	3		34.3 66.8	8.21 8.35	-	0.3813 0.6183	-	<0.5 <0.5	1.1 0.5	-	NAD NAD		6128 11270	6 10.1	17 40	<0.5 0.9	7 11	0.2	5 10	30.7 38.5
3.00	L05	10/04/2017	13-15	5		42.5	8.31	-	0.3366	-	<0.5	0.4	-	NAD		10610	10.1	38	0.8	10.4	0.2	8	33.6
0.50	Durni: LD01	11/04/2017	oles 1-3	6		17.2	7.96	l	0.1143		<0.5	0.8	l	NAD		21170	13	161	1.5	0.6	0.3	59	51.3
1.00	LD01	11/04/2017	4-6	7		-	7.90	84	0.1143	-	- <0.5	-	-	- NAD		-	-	-	-	-	-	-	- 51.5
2.00	LD01	11/04/2017	7-9	8		28.1	8.1	-	0.0473	-	<0.5	1.1	-	NAD		16400	21.9	213	1.4	2.3	<0.1	2	52.2
3.00 8.00	LD01 LD01	11/04/2017 12/04/2017	10-12 52-54	9 10		10.4	8.1 8.06	57	0.0037 0.1775	-	<0.5	0.9	-	- NAD		1492	5.7	- 10	<0.5	1.3	0.2	3	18.3
0.50	LD02	13/04/2017	1-3	11			8.19	12	0.0241	-	-	-		-		-	-	-	-	-	-	-	-
1.00	LD02	13/04/2017	4-6	12		30.6	8.39 8.14	-	0.007 0.1849	-	<0.5	0.9	-	NAD -		11710	21.3	25	0.8	1.1	0.2	<1	32.9
3.00 4.00	LD02 LD02	13/04/2017 13/04/2017	10-12 13-16	13 14		39.1	8.14	147	0.1849	-	<0.5	0.9	-	NAD		7045	4.8	17	0.5	3.5	0.2	1	26.1
0.50	LD03	16/05/2017	1-3	15		22.3	6.49	-	0.0021	-	<0.5	1.3	-	NAD		19500	17.1	43	1.4	1.6	<0.1	5	49.6
2.00 6.00	LD03 LD03	16/05/2017	7-9	16		31	8.34 8.47	-	0.0947 0.0748	-	<0.5	2.1	-	NAD		10900	11	25	0.8	2	0.2	7	30.6
0.50	LD03 LD04	16/05/2017 13/04/2017	19-21 38-40	17 18		5.5	7.99	160	0.0748	-	<0.5	<0.2	-	NAD -		1218	2.4	5 -	<0.5	0.7	0.5	6	13.2
1.00	LD04	13/04/2017	41-43	19		30.8	8.27	-	0.367	-	<0.5	0.5	-	NAD		10440	8.4	23	0.8	7.4	0.2	2	36.9
3.00	LD04	13/04/2017	46-47	20			7.89	341	1.4657	-	-	-	-	-		-	-	-	-	-	-	-	-
4.00 0.50	LD04 LD05	13/04/2017 10/04/2017	48 16-18	21	_	29.1 41.3	8.3 7.81	-	0.3941 0.0912	<u> </u>	<0.5	0.8 7.5	-	NAD NAD		10260 9822	9.3 9.1	24 95	0.9	6.6 3.8	0.3 0.7	6 10	28.8 50.1
2.00	LD05	10/04/2017	22-24	23	INORGAN	-	8.56	34	0.0203	-	-	-	-	-		-	-	-	-	-	-	-	-
6.00	LD05 LD06	11/04/2017	34-36 49-51	24 25	ĜA	-	8.64	67	0.021 0.0082	-	-	0.9	-	-	METALS	19800	17.8	- 40	1.6	-	-	-	52.9
0.50 1.00	LD06	13/04/2017 13/04/2017	52-54	26	NICS	28	7.2 8.11	14	0.0082		<0.5	0.9	-	NAD -	S	19800	- 17.8	- 40	1.0	1.6	<0.1	<1	52.9
2.00	LD06	13/04/2017	55-57	27	S	-	8.59	43	0.0192	-	-	-	-	-		-	-	-	-	-	-	-	-
3.00	LD06	13/04/2017	58-60	28		6.7	8.69	-	0.0113	-	<0.5	1.1	-	NAD		1342	2.1	6	<0.5	0.4	0.2	3	9.6
0.50 1.00	TP01 TP01	13/04/2017 13/04/2017	1-3 4-6	29 30	_	28.9 38.1	6.96 7.41	-	<0.0015	3.9	<0.5	0.7	0.63	NAD -		14360	15.9	26	1	0.9	<0.1	<1	42.5
3.90	TP01	13/04/2017	7-9	31		33.4	8.24	-	0.639	-	<0.5	0.8	-	NAD		8145	15.2	18	0.6	4.9	0.1	2	26.6
1.00	TP02	13/04/2017	10-12	32		25.2	8.71	-	0.0085	-	<0.5	1.1	-	NAD		8272	8.6	17	0.6	0.8	0.1	<1	22.5
4.50 0.50	TP02 TP03	13/04/2017 13/04/2017	13-15 16-18	33 34		31.7 28.6	8.54 7.55	-	0.4432 0.0029	-	<0.5 <0.5	0.9	-	NAD NAD		8851 17380	8.5 9.5	22 30	0.7 1.2	4.5 2.1	0.2 <0.1	3 <1	25.6 47.3
0.80	TP03	13/04/2017	19-21	35		34.6	7.76	-	-	4.2	-	-	0.13	-		-	-	-	-	-	-	-	-
3.00	TP03	13/04/2017	22-24	36		30.6	7.97	-	0.4328	-	<0.5	0.7	-	NAD		9144	6.2	18	0.7	3.8	0.2	1	25.3
1.00 2.30	TP04 TP04	13/04/2017 13/04/2017	25-27 28-30	37 38		8.9 7.2	8.74 8.93	-	0.0034 0.0023	-	<0.5 <0.5	1.2 <0.2	-	NAD NAD		2868 2232	6.5 6.1	16 13	<0.5 <0.5	0.2	0.5 0.6	5 5	10.8 10.7
0.50	TP05	13/04/2017	31-33	39		18.4	6.22	-	0.0021	-	<0.5	<0.2	-	NAD		4995	7.8	14	<0.5	0.3	<0.1	<1	26
0.80	TP05	13/04/2017	34-36	40		23.5	8.26	-	-	3	-	-	0.11	-		-	-	-	-	-	-	-	-
2.00 1.00	TP05 TP06	13/04/2017 13/04/2017	37-39 40-42	41 42		11.5 37	8.66 8.25	-	0.0035 0.0061	-	<0.5 <0.5	<0.2 0.2	-	NAD NAD		2714 12020	6 28.4	11 60	<0.5 1.2	0.3 1.6	0.5 0.4	6	11.9 41.6
0.50	TP07	13/04/2017	43-45	43		24.1	7.09	-	<0.0015	-	<0.5	0.5		NAD		17860	24.1	30	1.3	2.1	<0.1	<1	49.4
1.00	TP07	13/04/2017	46-48	44 45		28.9	7.38	-	-	4.1	-	-	0.11	- NAS		-	-	-	-	-	-	-	
3.80 0.50	TP07 TP08	13/04/2017 13/04/2017	49-51 52-54	45 46		29.5 12.4	8.31 8.41	-	0.5705 0.0048	-	<0.5 <0.5	0.8	-	NAD NAD		7372 6567	6.6 7.2	20 37	0.6 0.5	5.6 0.6	0.2	3 2	24.4 18.1
2.00	TP08	13/04/2017	55-57	47		9.6	8.82	-	0.0053	-	<0.5	<0.2	-	NAD		3177	4.9	12	<0.5	0.4	0.5	7	13
0.50	TP09	13/04/2017	58-60	48		23.9	8.68	-	<0.0015	-	<0.5	<0.2	-	NAD		8159	5.6	23	0.6	0.8	0.1	<1	24
1.80 0.50	TP09 TP10	13/04/2017 13/04/2017	61-63 64-66	49 50		36.9 25.9	8.25 7.47	-	0.1019	4	<0.5	1 -	0.12	NAD -		7156	8.3	19	0.8	1.2	0.1	6	30.5
1.00	TP10	13/04/2017	67-69	51		25.1	8.87		0.0025	-	<0.5	<0.2	-	NAD		8281	5.5	17	0.6	0.6	<0.1	<1	26.6
4.70	TP10	13/04/2017	70-72	52		34.1	8.53	-	0.2201	-	<0.5	0.2	-	NAD		8335	6.9	19	0.6	2	0.1	1	24
	CL:AIRE G	AC commercial (SOM	6%) SOM 1%)														640				230		
	CL:AIRE GA	C commercial (S	OM 2.5%)																				
	CL:AIRE G	AC commercial (SOM	5OM 6%) 1%)																				
	S4UL co	ommercial (SOM	2.5%)																				
Convright	S4UL of and Quality Mana	ommercial (SOM	6%)	h nermiceies:													640		12	240000	190	68000	8600 (CrIII)
	Publication Numb																						

	Meti	nod Detection Lim	nit		<0.3	<20	<5	<0.1	<0.7	<1	<0.01	<50	<1	<5	<100	<100	<100		<0.05	<0.03	<0.04	<0.06	<0.04
Depth	Sample Identity	Sample Date	Exova Jones Environment Sample ID	Sample No.	Chromium VI	Iron	Lead	Mercury	Nickel	Selenium	Sulphur as S	Total Sulphate as SO4	Vanadium	Zinc	Dibutyltin	Tributyltin	Triphenyltin		Acenaphthene	Acenaphthylene	Anthracene	Benzo(a) anthracene	Benzo(a)pyrene
			<u> </u>		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	%	mg/kg	mg/kg	mg/kg	ug/kg	ug/kg	ug/kg		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1.00	Jetty Ex	25/05/2017	eholes 67-69	1 4	<0.3	5246	19	<0.1	11.1	<1	0.06	508	7	56	<100	<100	<100		<0.05	<0.03	<0.04	<0.06	<0.04
3.00	L01	25/05/2017	70-72	2	<0.3	4702	9	<0.1	6.6	<1	0.07	538	6	25	-	-	- 100		<0.05	<0.03	<0.04	<0.06	<0.04
7.00	L01	25/05/2017	76-78	3	<0.3	14600	7	<0.1	14	<1	0.71	2645	18	35	-	-	-		<0.05	<0.03	<0.04	<0.06	<0.04
1.00 3.00	L05	10/04/2017 10/04/2017	10-12 13-15	4 5	<0.3 <0.3	24700 20930	24 19	<0.1 <0.1	22.6 19.9	2	0.23 0.23	2327 1692	33 26	85 73	<100	<100	<100		<0.05 <0.05	<0.03 <0.03	<0.04	<0.06 <0.06	<0.04 <0.04
3.00		sh Lands boreho	oles	, ,	40.5	20300	13	40.1	13.3	'	0.20	1032	20	73					40.00	40.00	40.04	₹0.00	Q0.04
0.50	LD01	11/04/2017	1-3	6	<0.3	38140	21	<0.1	37.9	3	0.28	426	52	87	<100	<100	<100		<0.05	<0.03	<0.04	<0.06	<0.04
1.00 2.00	LD01 LD01	11/04/2017 11/04/2017	4-6 7-9	7	<0.3	37360	- 19	<0.1	32.6	- 2	<0.01	385	60	- 65	-	-	-		<0.05	<0.03	<0.04	<0.06	<0.04
3.00	LD01	11/04/2017	10-12	9	<0.3	3/360	- 19	<0.1	32.6	-	<0.01	385	-	- 00	-	-	-		<0.05	<0.03	<0.04	<0.06	<0.04
8.00	LD01	12/04/2017	52-54	10	<0.3	4404	9	<0.1	6.8	<1	0.09	592	8	15	-	-	-		<0.05	<0.03	<0.04	<0.06	<0.04
0.50	LD02	13/04/2017	1-3	11			-			-		-				-	-			-	-	-	
1.00 3.00	LD02 LD02	13/04/2017 13/04/2017	4-6 10-12	12 13	<0.3	22590	13	<0.1	22.9	<1	0.01	195	39	54	<100	<100	<100		<0.05	<0.03	<0.04	<0.06	<0.04
4.00	LD02	13/04/2017	13-16	14	<0.3	17420	9	<0.1	14.9	<1	0.38	1522	20	37		-	-		<0.05	<0.03	<0.04	<0.06	<0.04
0.50	LD03	16/05/2017	1-3	15	<0.3	35460	19	<0.1	32.7	<1	0.02	291	60	82	<100	<100	<100		<0.05	< 0.03	<0.04	<0.06	<0.04
2.00	LD03	16/05/2017	7-9	16	<0.3	23350	9	<0.1	22.4	<1	0.07	508	31	53	-	-	-		<0.05	< 0.03	<0.04	<0.06	<0.04
6.00 0.50	LD03 LD04	16/05/2017 13/04/2017	19-21 38-40	17 18	<0.3	3480	<5	<0.1	9.6	<1	0.05	221	3	13	-	-	-	POL	<0.05	<0.03	<0.04	<0.06	<0.04
1.00	LD04	13/04/2017	41-43	19	<0.3	24360	13	<0.1	22.5	<1	0.49	1481	31	55	<100	<100	<100	LYC	<0.05	<0.03	<0.04	<0.06	<0.04
3.00	LD04	13/04/2017	46-47	20	-	-	-	-	-	-	-	-		-	-	-	-	-YCYCL	-	-		-	-
4.00	LD04	13/04/2017	48	21	<0.3	21800	13	<0.1	27.1	<1	0.48	1324	26	62	-		-	ic.	< 0.05	< 0.03	<0.04	<0.06	<0.04
0.50	LD05	10/04/2017	16-18	22	<0.3	19050	34	<0.1	31.6	2	0.02	1144	31	137	-	-	-	AROM#	<0.05	<0.03	<0.04	<0.06	<0.04
2.00 6.00	LD05	10/04/2017 11/04/2017	22-24 34-36	23	-	-	-	-	-	-	-	-	-	-	-	-	-	OMA		-	-	-	
0.50	LD06	13/04/2017	49-51	25	<0.3	44840	22	<0.1	33.5	1	0.01	309	64	83	<100	<100	<100	тс	< 0.05	< 0.03	<0.04	<0.06	<0.04
1.00	LD06	13/04/2017	52-54	26	-	-	-	-	-	-	-	-	-	-	-	-	-	HY	-	-	-	-	-
3.00	LD06 LD06	13/04/2017 13/04/2017	55-57 58-60	27 28	<0.3	2931	7	- <0.1	7.8	- <1	0.03	205	- 6	14	-	-	-	DRO	<0.05	<0.03	<0.04	<0.06	<0.04
0.50	TP01	13/04/2017	1-3	28	<0.3	20960	15	<0.1	24.7	1	<0.01	174	47	59		-	-	OC.A	<0.05	<0.03	<0.04	<0.06	<0.04
1.00	TP01	13/04/2017	4-6	30	-	-	-	-	-	-	-	-	-	-	-	-	-	Ŕ	<0.05	<0.03	<0.04	<0.06	<0.04
3.90	TP01	13/04/2017	7-9	31	<0.3	24270	10	<0.1	21.7	1	0.73	1654	26	42	-	-	-	ONS	< 0.05	< 0.03	<0.04	<0.06	<0.04
1.00	TP02	13/04/2017	10-12	32	<0.3	18680	9	<0.1	16.7	<1	0.01	281	26	39	-	-	-	0,	<0.05	<0.03	<0.04	<0.06	<0.04
4.50 0.50	TP02 TP03	13/04/2017 13/04/2017	13-15 16-18	33 34	<0.3 <0.3	21220 35340	10 16	<0.1 <0.1	20.5 32.4	<1 2	0.46 <0.01	1488 101	22 46	45 67	-	-	-		<0.05 <0.05	<0.03 <0.03	<0.04 <0.04	<0.06 <0.06	<0.04 <0.04
0.80	TP03	13/04/2017	19-21	35	-	-	-	-	-	-	-	-	-	-	-	-	-		<0.05	<0.03	<0.04	<0.06	<0.04
3.00	TP03	13/04/2017	22-24	36	<0.3	21950	13	<0.1	19.2	<1	0.53	1659	25	47	-	-	-		< 0.05	< 0.03	<0.04	<0.06	<0.04
1.00	TP04	13/04/2017	25-27	37	<0.3	6862	12	<0.1	14.6	<1	0.01	154	6	24	-	-	-		<0.05	<0.03	<0.04	<0.06	<0.04
2.30 0.50	TP04 TP05	13/04/2017 13/04/2017	28-30 31-33	38 39	<0.3 <0.3	6083 13120	8	<0.1 <0.1	12.7 7.3	<1 <1	0.01 <0.01	139 69	6 16	24 24		1	-		<0.05 <0.05	<0.03	<0.04	<0.06 <0.06	<0.04 <0.04
0.80	TP05	13/04/2017	34-36	40	-	-	-	-	-	-	-	-	-	-	-	-	-		<0.05	<0.03	<0.04	<0.06	<0.04
2.00	TP05	13/04/2017	37-39	41	<0.3	7213	8	<0.1	18.5	<1	0.01	131	7	28	-	-	-		<0.05	< 0.03	<0.04	<0.06	<0.04
1.00	TP06	13/04/2017	40-42	42	<0.3	32880	14	<0.1	65.9	3	0.01	346	40	94	-	-	-		<0.05	<0.03	<0.04	<0.06	<0.04
0.50 1.00	TP07 TP07	13/04/2017 13/04/2017	43-45 46-48	43	<0.3	40890	20	<0.1	30.7	2	<0.01	133	68	71	-	1	-		<0.05 <0.05	<0.03 <0.03	<0.04 <0.04	<0.06 <0.06	<0.04 <0.04
3.80	TP07	13/04/2017	49-51	45	<0.3	18190	10	<0.1	18	1	0.49	2118	19	40	-	-	-		<0.05	<0.03	<0.04	<0.06	<0.04
0.50	TP08	13/04/2017	52-54	46	<0.3	15280	10	<0.1	15.6	<1	0.01	162	19	41	-	-	-		<0.05	< 0.03	<0.04	<0.06	<0.04
2.00	TP08	13/04/2017	55-57	47	<0.3	6420	9	<0.1	18	<1	0.01	114	7	31	-	-	-		<0.05	<0.03	<0.04	<0.06	<0.04
0.50 1.80	TP09 TP09	13/04/2017 13/04/2017	58-60 61-63	48 49	<0.3 <0.3	18120 15430	10 11	<0.1 <0.1	17.2 22.1	<1 <1	0.01 0.05	324 514	24 21	39 52	-	-	-		<0.05 <0.05	<0.03 <0.03	<0.04 <0.04	<0.06 <0.06	<0.04 <0.04
0.50	TP10	13/04/2017	64-66	50	-	-		-	-	-	-	-	-	-	-	-	-		<0.05	<0.03	<0.04	<0.06	<0.04
1.00	TP10	13/04/2017	67-69	51	<0.3	21490	11	<0.1	18.5	<1	<0.01	162	26	44	-		-		<0.05	< 0.03	< 0.04	<0.06	< 0.04
4.70	TP10	13/04/2017	70-72	52	<0.3	19890	10	<0.1	22	<1	0.3	892	20	45	-	-	-		<0.05	<0.03	<0.04	<0.06	<0.04
	SGV co	rrimercial (SOM AC commercial (S	6%) SOM 1%)					26		13000						130000							
	CL:AIRE GA	C commercial (S	OM 2.5%)													101000							
	CL:AIRE G	AC commercial (S	SOM 6%)													241000							
	S4UL c	ommercial (SOM)	1%) 2.5%)					_								_			97000	97000	520000 540000	170 170	35 35
	S4UL c	ommercial (SOM	6%)		33			58	980	12000			9000	730000					100000	100000	540000	180	36
	and Quality Mana																						
ŀ	Publication Numb	er 54UL3474. All	rights reserve	u.																			

	8.4.41	and Detection 1:-	ni#		0.05	0.04	0.07	0.00	0.00	0.04	0.04	0.00	0.04	1 004	0.04	0.00	0.00	0.0/.00:					any, Port exp
	Meth	nod Detection Lin	nit		<0.05	<0.04	<0.07	<0.02	<0.02	<0.04	<0.04	<0.03	<0.04	<0.04	<0.04	<0.03	<0.03	<0.6/<0.64		<0.1	<0.1	<0.1	<0.2
Depth	Sample Identity	Sample Date	Exova Jones Environmental Sample ID	Sample No.	Benzo(b)fluoranthene gk/kg	Benzo(ghi) perylene	Benzo(bk)fluoranthene	Benzo(k)fluoranthene	Chrysene g/kg	Coronene mg/kg	Dibenzo(ah) anthracene	Fluoranthene g/kg	Fluorene mg/kg	Indeno(123cd) pyrene	Naphthalene g/kg	Phenanthrene gk/kg	Pyrene Pyrene Eg/kg	Total 16/17 PAHs gg/kg		Aliphatics EC C5-C6	Aliphatics EC>C6-C8	Aliphatics EC>C8-C10 & &	Aliphatics EC>C10-C12 g/kg
1.00	Jetty Ext	tension site bore	eholes 67-69	1 1	< 0.05	< 0.04	< 0.07	<0.02	<0.02	<0.04	<0.04	< 0.03	<0.04	<0.04	<0.04	< 0.03	< 0.03	< 0.64		<0.1	<0.1	<0.1	<0.2
3.00	L01	25/05/2017	70-72	2	<0.05	<0.04	<0.07	<0.02	<0.02	<0.04	<0.04	<0.03	<0.04	<0.04	<0.04	<0.03	<0.03	<0.64		<0.1	<0.1	<0.1	<0.2
7.00	L01	25/05/2017	76-78	3	< 0.05	<0.04	<0.07	<0.02	<0.02	<0.04	<0.04	< 0.03	<0.04	<0.04	<0.04	< 0.03	<0.03	<0.64		<0.1	<0.1	<0.1	<0.2
1.00 3.00	L05	10/04/2017 10/04/2017	10-12 13-15	5	<0.05 <0.05	<0.04 <0.04	<0.07 <0.07	<0.02 <0.02	<0.02 <0.02	<0.04 <0.04	<0.04 <0.04	<0.03 <0.03	<0.04	<0.04 <0.04	<0.04 <0.04	<0.03 <0.03	<0.03	<0.64 <0.64		<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.2 <0.2
3.00		sh Lands boreh	oles		Q0.00	₹0.04	40.07	40.0Z	Q0.02	40.04	40.04	40.00	40.04	40.04	Q0.04	40.00	40.00	₹0.04		40.1	40.1	ζ0.1	Q0.2
0.50	LD01	11/04/2017	1-3	6	<0.05	<0.04	< 0.07	<0.02	<0.02	<0.04	<0.04	< 0.03	<0.04	<0.04	<0.04	< 0.03	<0.03	< 0.64		<0.1	<0.1	<0.1	<0.2
1.00 2.00	LD01 LD01	11/04/2017 11/04/2017	4-6 7-9	7	<0.05	<0.04	<0.07	<0.02	<0.02	<0.04	<0.04	<0.03	<0.04	<0.04	<0.04	<0.03	<0.03	<0.64		<0.1	<0.1	<0.1	<0.2
3.00	LD01	11/04/2017	10-12	9			-					-	-			-	-						-
8.00	LD01	12/04/2017	52-54	10	< 0.05	<0.04	<0.07	<0.02	<0.02	<0.04	<0.04	<0.03	<0.04	<0.04	<0.04	<0.03	<0.03	<0.64		<0.1	<0.1	<0.1	<0.2
0.50	LD02	13/04/2017	1-3 4-6	11	<0.02	- 0.04	<0.07	-	<0.02	- 0.0	<0.04	- 0.00	<0.04	- 0.04	<0.04	- 0.00	<0.03	- 0.05		- 0.4	- 0.4	- 0.4	
1.00 3.00	LD02 LD02	13/04/2017 13/04/2017	4-6 10-12	12 13	<0.02	<0.04	<0.07	<1	<0.02	<0.6	<0.04	<0.03	<0.04	<0.04	<0.04	<0.03	<0.03	<0.05		<0.1	<0.1	<0.1	<0.2
4.00	LD02	13/04/2017	13-16	14	<0.02	<0.04	<0.07	<1	<0.02	<0.6	<0.04	<0.03	<0.04	<0.04	<0.04	<0.03	<0.03	<0.05		<0.1	<0.1	<0.1	<0.2
0.50	LD03	16/05/2017	1-3	15	<0.05	<0.04	<0.07	<0.02	<0.02	<0.04	<0.04	<0.03	<0.04	<0.04	<0.04	<0.03	<0.03	<0.64		<0.1	<0.1	<0.1	<0.2
2.00 6.00	LD03 LD03	16/05/2017 16/05/2017	7-9 19-21	16 17	<0.05 <0.05	<0.04 <0.04	<0.07 <0.07	<0.02 <0.02	<0.02 <0.02	<0.04 <0.04	<0.04 <0.04	<0.03 <0.03	<0.04 <0.04	<0.04 <0.04	<0.04 <0.04	<0.03 <0.03	<0.03	<0.64 <0.64		<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.2 <0.2
0.50	LD03	13/04/2017	38-40	18		<0.04	- <0.07	- <0.02	- <0.02	- <0.04	- <0.04		<0.04	- <0.04	- <0.04	- <0.03	- 40.03	<0.04		- <0.1		- <0.1	- <0.2
1.00	LD04	13/04/2017	41-43	19	<0.02	<0.04	<0.07	<1	<0.02	<0.6	<0.04	< 0.03	<0.04	< 0.04	<0.04	< 0.03	< 0.03	< 0.05		<0.1	<0.1	<0.1	<0.2
3.00	LD04	13/04/2017	46-47	20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Н	-	-	-	-
4.00 0.50	LD04	13/04/2017 10/04/2017	48 16-18	21	<0.02	<0.04 <0.04	<0.07 <0.07	<1 <0.02	<0.02 <0.02	<0.6 <0.04	<0.04 <0.04	<0.03 <0.03	<0.04 <0.04	<0.04 <0.04	<0.04 <0.04	<0.03 <0.03	<0.03	< 0.05	ЭRO	<0.1 <0.1	<0.1 <0.1	<0.1	<0.2
2.00	LD05 LD05	10/04/2017	22-24	22 23	<0.05	<0.04	<0.07	<0.02	<0.02	<0.04	<0.04	<0.03	<0.04	<0.04	<0.04	<0.03	<0.03	<0.64	CAF	<0.1	<0.1	<0.1	<0.2
6.00	LD05	11/04/2017	34-36	24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	HYDROCARBONS	-		-	-
0.50	LD06	13/04/2017	49-51	25	<0.02	< 0.04	< 0.07	<1	< 0.02	<0.6	<0.04	< 0.03	<0.04	< 0.04	< 0.04	< 0.03	< 0.03	< 0.05	S	<0.1	<0.1	<0.1	<0.2
1.00 2.00	LD06 LD06	13/04/2017 13/04/2017	52-54 55-57	26	-	-	-	-	-	-	-	-	-	-	-	-	-	-	큧	-	-	-	-
3.00	LD06	13/04/2017	58-60	28	<0.02	<0.04	<0.07	<1	<0.02	<0.6	<0.04	<0.03	<0.04	<0.04	<0.04	<0.03	<0.03	<0.05	TPH-CWG	<0.1	<0.1	<0.1	<0.2
0.50	TP01	13/04/2017	1-3	29	< 0.05	<0.04	< 0.07	<0.02	< 0.02	-	<0.04	< 0.03	<0.04	<0.04	<0.04	< 0.03	<0.03	<0.6	VG	<0.1	<0.1	<0.1	<0.2
1.00	TP01	13/04/2017	4-6	30	<0.05	<0.04	<0.07	<0.02	<0.02	<0.04	<0.04	< 0.03	<0.04	<0.04	<0.04	< 0.03	<0.03	<0.64			-	-	
3.90 1.00	TP01 TP02	13/04/2017 13/04/2017	7-9 10-12	31 32	<0.05 <0.05	<0.04 <0.04	<0.07 <0.07	<0.02 <0.02	<0.02 <0.02	-	<0.04 <0.04	<0.03 <0.03	<0.04 <0.04	<0.04 <0.04	<0.04 <0.04	<0.03 <0.03	<0.03	<0.6 <0.6		<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.2 <0.2
4.50	TP02	13/04/2017	13-15	33	<0.05	<0.04	<0.07	<0.02	<0.02	-	<0.04	<0.03	<0.04	<0.04	<0.04	<0.03	<0.03	<0.6		<0.1	<0.1	<0.1	<0.2
0.50	TP03	13/04/2017	16-18	34	< 0.05	< 0.04	< 0.07	<0.02	< 0.02	-	<0.04	< 0.03	<0.04	< 0.04	< 0.04	< 0.03	< 0.03	<0.6		<0.1	<0.1	<0.1	<0.2
0.80	TP03	13/04/2017	19-21	35	< 0.05	<0.04	<0.07	<0.02	<0.02	<0.04	<0.04	< 0.03	<0.04	<0.04	<0.04	< 0.03	<0.03	< 0.64		-	-	-	-
3.00 1.00	TP03 TP04	13/04/2017 13/04/2017	22-24 25-27	36 37	<0.05 <0.05	<0.04 <0.04	<0.07 <0.07	<0.02 <0.02	<0.02 <0.02	-	<0.04 <0.04	<0.03 <0.03	<0.04 <0.04	<0.04 <0.04	<0.04 <0.04	<0.03 <0.03	<0.03	<0.6		<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.2 <0.2
2.30	TP04	13/04/2017	28-30	38	<0.05	<0.04	<0.07	<0.02	<0.02	-	<0.04	<0.03	<0.04	<0.04	<0.04	<0.03	<0.03	<0.6		<0.1	<0.1	<0.1	<0.2
0.50	TP05	13/04/2017	31-33	39	< 0.05	< 0.04	< 0.07	<0.02	< 0.02	-	<0.04	< 0.03	<0.04	<0.04	< 0.04	< 0.03	< 0.03	<0.6		<0.1	<0.1	<0.1	<0.2
0.80	TP05	13/04/2017	34-36	40	<0.05	<0.04	<0.07	<0.02	<0.02	<0.04	<0.04	<0.03	<0.04	<0.04	<0.04	<0.03	<0.03	<0.64		- 0.4	- 0.4	- 0.4	-
2.00 1.00	TP05 TP06	13/04/2017 13/04/2017	37-39 40-42	41 42	<0.05 <0.05	<0.04 <0.04	<0.07 <0.07	<0.02 <0.02	<0.02 <0.02	-	<0.04 <0.04	<0.03 <0.03	<0.04 <0.04	<0.04 <0.04	<0.04 <0.04	<0.03 <0.03	<0.03	<0.6 <0.6		<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.2 <0.2
0.50	TP07	13/04/2017	43-45	43	<0.05	<0.04	<0.07	<0.02	<0.02	-	<0.04	<0.03	<0.04	<0.04	<0.04	<0.03	<0.03	<0.6		<0.1	<0.1	<0.1	<0.2
1.00	TP07	13/04/2017	46-48	44	<0.05	<0.04	<0.07	<0.02	<0.02	<0.04	<0.04	< 0.03	<0.04	<0.04	<0.04	<0.03	<0.03	<0.64		-	-	-	
3.80 0.50	TP07 TP08	13/04/2017 13/04/2017	49-51 52-54	45 46	<0.05 <0.05	<0.04 <0.04	<0.07 <0.07	<0.02 <0.02	<0.02 <0.02	-	<0.04 <0.04	<0.03 <0.03	<0.04	<0.04 <0.04	<0.04 <0.04	<0.03 <0.03	<0.03	<0.6 <0.6		<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.2 <0.2
2.00	TP08	13/04/2017	52-54 55-57	46 47	<0.05	<0.04	<0.07	<0.02	<0.02	-	<0.04	<0.03	<0.04	<0.04	<0.04	<0.03	<0.03	<0.6		<0.1	<0.1	<0.1	<0.2
0.50	TP09	13/04/2017	58-60	48	<0.05	<0.04	<0.07	<0.02	<0.02		<0.04	<0.03	<0.04	<0.04	<0.04	<0.03	<0.03	<0.6		<0.1	<0.1	<0.1	<0.2
1.80	TP09	13/04/2017	61-63	49	<0.05	<0.04	<0.07	<0.02	<0.02	-	<0.04	< 0.03	<0.04	<0.04	<0.04	<0.03	<0.03	<0.6		<0.1	<0.1	<0.1	<0.2
0.50	TP10 TP10	13/04/2017	64-66 67-69	50 51	<0.05	<0.04	<0.07	<0.02	<0.02	<0.04	<0.04 <0.04	< 0.03	<0.04	<0.04	<0.04	<0.03	<0.03	<0.64		-0.1	-0.1	- 0.1	
1.00 4.70	TP10 TP10	13/04/2017 13/04/2017	67-69 70-72	51 52	<0.05 <0.05	<0.04 <0.04	<0.07 <0.07	<0.02 <0.02	<0.02 <0.02	-	<0.04	<0.03 <0.03	<0.04	<0.04 <0.04	<0.04 <0.04	<0.03 <0.03	<0.03	<0.6 <0.6		<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.2 <0.2
	SGV co	ommercial (SOM	6%)													,							
	CL:AIRE GA	AC commercial (S	SOM 1%)																				
	CL:AIRE GA	AC commercial (S	OW 2.5%)																				
	S4UL c	ommercial (SOM	1%)		44	3900		1200	350		3.5	23000	63000	500	190	22000	54000			3200	7800	2000	9700
	S4UL co	ommercial (SOM:	2.5%)		44	4000		1200	350		3.6	23000	68000	510	460 1100	22000	54000			5900	17000	4800	23000
Copyright I	and Quality Mana	gement Limited	eproduced wit	th permission	45	4000		1200	350		3.6	23000	71000	510	1100	23000	54000			12000	40000	11000	47000
	Publication Number																						

	Meth	nod Detection Lin	nit		<4	<7	<7	<19	<0.1	<0.1	<0.1	<0.2	<4	<7	<7	<19	<38	<3	<3	<3	<5	<3	<2
Depth	Sample Identity	Sample Date	Exova Jones Environmental Sample ID	Sample No.	Aliphatics EC>C12-C16	Aliphatics EC>C16-C21	Aliphatics EC>C21-C35	Total Aliphatic Hydrocarbons	Aromatics EC C5-C7	Aromatics EC>C7-C8	Aromatics EC>C8-C10	Aromatics EC>C10-C12	Aromatics EC>C12-C16	Aromatics EC>C16-C21	Aromatics EC>C21-C35	Total Aromatic Hydrocarbons	TPH (Aliphatic and Aromatic)	BTEX - Benzene	BTEX - Toluene	BTEX - Ethyl Benzene	BTEX - m & p Xylene	BTEX - o Xylene	MTBE
	Jetty Ext	tension site bore	eholes		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
1.00	L01	25/05/2017	67-69	1	<4	<7	62	62	<0.1	<0.1	<0.1	<0.2	<4	<7	33	33	95	<3	<3	<3	<5	<3	<2
3.00 7.00	L01	25/05/2017 25/05/2017	70-72 76-78	2	<4 <4	<7 <7	64 <7	64 <19	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.2 <0.2	<4 <4	<7 <7	31 <7	31 <19	95 <38	<3 <3	<3 <3	<3 <3	<5 <5	<3 <3	<2 <2
1.00	L01 L05	10/04/2017	10-12	4	<4	<7	<7	<19	<0.1	<0.1	<0.1	<0.2	<4	16	79	95	95	<3	<3	<3	<5 <5	<3	<2
3.00	L05	10/04/2017	13-15	5	<4	<7	<7	<19	<0.1	<0.1	<0.1	<0.2	<4	<7	<7	<19	<38	<3	<3	<3	<5	<3	<2
0.50	Durnis LD01	sh Lands boreh	oles		.4	1 7	40	40	0.4	0.4	0.4	0.0		7	7	- 40	- 00	1 0			-		
1.00	LD01 LD01	11/04/2017 11/04/2017	1-3 4-6	7	<4	<7	13	<19	<0.1	<0.1	<0.1	<0.2	<4	<7	<7	<19	<38	<3	<3	<3	<5 -	<3	<2
2.00	LD01	11/04/2017	7-9	8	<4	<7	<7	<19	<0.1	<0.1	<0.1	<0.2	<4	<7	<7	<19	<38	<3	<3	<3	<5	<3	<2
3.00	LD01	11/04/2017	10-12	9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8.00 0.50	LD01 LD02	12/04/2017 13/04/2017	52-54 1-3	10 11	<4	<7	<7	<19	<0.1	<0.1	<0.1	<0.2	<4	<7	<7	<19	<38	<3	12	<3	<5	<3	<2
1.00	LD02	13/04/2017	4-6	12	<4	<7	<7	<19	<0.1	<0.1	<0.1	<0.2	<4	<7	<7	<19	<38	<3	<3	<3	- <5	<3	<2
3.00	LD02	13/04/2017	10-12	13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4.00	LD02	13/04/2017	13-16	14	<4	<7	34	34	<0.1	<0.1	<0.1	<0.2	<4	<7	30	30	64	<3	<3	<3	<5	<3	<2
0.50	LD03	16/05/2017	1-3	15	<4	<7	<7	<19	<0.1	<0.1	<0.1	<0.2	<4	<7	<7	<19	<38	<3	<3	<3	<5	<3	<2
2.00 6.00	LD03 LD03	16/05/2017 16/05/2017	7-9 19-21	16 17	<4 <4	<7 <7	<7 <7	<19 <19	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.2 <0.2	<4 <4	<7 <7	<7 <7	<19 <19	<38 <38	<3 <3	<3 <3	<3 <3	<5 <5	<3 <3	<2 <2
0.50	LD04	13/04/2017	38-40	18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1.00	LD04	13/04/2017	41-43	19	<4	<7	10	<19	<0.1	<0.1	<0.1	<0.2	<4	<7	24	24	<38	<3	<3	<3	<5	<3	<2
3.00	LD04	13/04/2017	46-47	20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4.00 0.50	LD04 LD05	13/04/2017 10/04/2017	48 16-18	21 22	<4 <4	<7 <7	<7 37	<19 37	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.2 <0.2	<4 <4	<7 <7	<7 75	<19 75	<38 112	<3 <3	<3 <3	<3 <3	<5 <5	<3 <3	<2 <2
2.00	LD05	10/04/2017	22-24	23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6.00	LD05	11/04/2017	34-36	24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	,	-	-	-
0.50	LD06	13/04/2017	49-51	25	<4	<7	<7	<19	<0.1	<0.1	<0.1	<0.2	<4	<7	<7	<19	<38	<3	<3	<3	<5	<3	<2
1.00 2.00	LD06 LD06	13/04/2017 13/04/2017	52-54 55-57	26	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	
3.00	LD06	13/04/2017	58-60	28	<4	<7	<7	<19	<0.1	<0.1	<0.1	<0.2	<4	<7	<7	<19	<38	<3	<3	<3	<5	<3	<2
0.50	TP01	13/04/2017	1-3	29	<4	<7	<7	<19	<0.1	<0.1	<0.1	<0.2	<4	<7	<7	<19	<38	<3	<3	<3	<5	<3	<2
1.00	TP01	13/04/2017	4-6	30	-	-	-	-	-	-	-	-	-	-	-	-	-	<5	<5	<5	<5	<5	<5
3.90 1.00	TP01 TP02	13/04/2017 13/04/2017	7-9 10-12	31 32	<4 <4	<7 <7	<7 <7	<19 <19	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.2 <0.2	<4 <4	<7 <7	<7 <7	<19 <19	<38 <38	<3 <3	<3 <3	<3 <3	<5 <5	<3	<2
4.50	TP02	13/04/2017	13-15	33	<4	<7	<7	<19	<0.1	<0.1	<0.1	<0.2	<4	<7	<7	<19	<38	<3	<3	<3	<5 <5	<3 <3	<2 <2
0.50	TP03	13/04/2017	16-18	34	<4	<7	<7	<19	<0.1	<0.1	<0.1	<0.2	<4	<7	<7	<19	<38	<3	<3	<3	<5	<3	<2
0.80	TP03	13/04/2017	19-21	35	-	-	-	-	-	-	-	-	-	-	-	-	-	<5	<5	<5	<5	<5	<5
3.00	TP03	13/04/2017	22-24	36 37	<4	<7	<7	<19	<0.1	<0.1	<0.1	<0.2	<4	<7	<7	<19	<38	<3	<3	<3	<5	<3	<2
1.00 2.30	TP04 TP04	13/04/2017 13/04/2017	25-27 28-30	38	<4 <4	<7 <7	<7 <7	<19 <19	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.2 <0.2	<4 <4	<7 <7	<7 <7	<19 <19	<38 <38	<3 <3	<3 <3	<3 <3	<5 <5	<3 <3	<2 <2
0.50	TP05	13/04/2017	31-33	39	<4	<7	<7	<19	<0.1	<0.1	<0.1	<0.2	<4	<7	<7	<19	<38	<3	<3	<3	<5	<3	<2
0.80	TP05	13/04/2017	34-36	40	-	-	-	-	-	-	-	-	-	-	-	-	-	<5	<5	<5	<5	<5	<5
2.00 1.00	TP05 TP06	13/04/2017 13/04/2017	37-39 40-42	41 42	<4 <4	<7 <7	<7 <7	<19 <19	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.2 <0.2	<4 <4	<7 <7	<7 <7	<19 <19	<38 <38	<3 <3	<3 <3	<3 <3	<5 <5	<3 <3	<2 <2
0.50	TP06	13/04/2017	40-42	42	<4 <4			<19 <19	<0.1	<0.1	<0.1	<0.2	<4 <4	<7	<7	<19 <19	<38 <38	<3 <3	<3 <3	<3 <3	<5 <5	<3 <3	<2
1.00	TP07	13/04/2017	46-48	44	-	-	-	-	-	-	-	-	-	-	-	-	-	<5	<5	<5	<5	<5	<5
3.80	TP07	13/04/2017	49-51	45	<4	<7	<7	<19	<0.1	<0.1	<0.1	<0.2	<4	<7	<7	<19	<38	<3	<3	<3	<5	<3	<2
0.50	TP08	13/04/2017	52-54	46	<4	<7	<7	<19	<0.1	<0.1	<0.1	<0.2	<4	<7	<7	<19	<38	<3	<3	<3	<5	<3	<2
2.00 0.50	TP08 TP09	13/04/2017 13/04/2017	55-57 58-60	47 48	<4 <4	<7 <7	<7 <7	<19 <19	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.2 <0.2	<4 <4	<7 <7	<7 <7	<19 <19	<38 <38	<3 <3	<3 <3	<3 <3	<5 <5	<3 <3	<2 <2
1.80	TP09	13/04/2017	61-63	49	<4	<7	<7	<19	<0.1	<0.1	<0.1	<0.2	<4	<7	<7	<19	<38	<3	<3	<3	<5 <5	<3	<2
0.50	TP10	13/04/2017	64-66	50	-	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	<5	<5	<5	<5	<5	<5
1.00	TP10	13/04/2017	67-69	51	<4	<7	<7	<19	<0.1	<0.1	<0.1	<0.2	<4	<7	<7	<19	<38	<3	<3	<3	<5	<3	<2
4.70	TP10	13/04/2017 mmercial (SOM	70-72	52	<4	<7	<7	<19	<0.1	<0.1	<0.1	<0.2	<4	<7	<7	<19	<38	<3 95000	<3 4400000	<3 2800000	<5 3200000	<3 2600000	<2
	CL:AIRE G	AC commercial (S	SOM 1%)															93000	4400000	2000000	3200000	2000000	7900000
	CL:AIRE GA	C commercial (S	OM 2.5%)																				13000000
	CL:AIRE GA	ommercial (SOM	SUM 6%)		59000	160	0000		26000	56000	3500	16000	36000	28000	28000			27000	56000000	5700000	5900000	6600000	24000000
	S4UL co	mmercial (SOM:	2.5%)		82000	170	0000		46000	110000	8100	28000	37000	28000	28000			47000	110000000	13000000	14000000	15000000	
	S4UL c	ommercial (SOM	16%)		90000	180	0000		86000	180000	17000	34000	38000	28000	28000			90000	180000000	27000000	30000000	33000000	
	and Quality Mana Publication Number																						
	abhodilon Hallibi	J. 5 TOLOTI 4. All		٥.																			

	Meth	nod Detection Lin	nit			<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<60	<5	<5	<5	<5	<5
Depth	Sample Identity	Sample Date	Exova Jones Environment Sample ID	Sample No.		PCB 77	PCB 81	PCB 105	PCB 114	PCB 118	PCB 123	PCB 126	PCB 156	PCB 157	PCB 167	PCB 169	PCB 189	Total 12 PCBs	PCB 28	PCB 52	PCB 101	PCB 138	PCB 153
			=			ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
1.00	Jetty Ext	ension site bor		4			-	-		-	-		-			-	-	- 00					
3.00	L01 L01	25/05/2017 25/05/2017	67-69 70-72	2		<5	<5 -	<5 -	<5 -	<5 -	<5 -	<5	<5 -	<5 -	<5 -	<5 -	<5 -	<60	-	-	-	-	
7.00	L01	25/05/2017	76-78	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1.00	L05	10/04/2017	10-12	4		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3.00	L05	10/04/2017 sh Lands borehe	13-15	5			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.50	LD01	11/04/2017	1-3	6		_		T -	1 .	_	١.	_	1 -	_	Ι.	I -	1 -	1 -	<50	<50	<50	<50	<50
1.00	LD01	11/04/2017	4-6	7	-	-	-	-	-	<50	-	-	-	-	-	-	-	-	-	-	-	-	-
2.00	LD01	11/04/2017	7-9	8		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3.00	LD01	11/04/2017	10-12	9		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
8.00 0.50	LD01 LD02	12/04/2017 13/04/2017	52-54 1-3	10 11			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1.00	LD02 LD02	13/04/2017	1-3 4-6	12		<5	- <5	- <5	- <5	- <5	- <5	<5	- <5	- <5	- <5	- <5	- <5	<60	-	-	-	-	-
3.00	LD02	13/04/2017	10-12	13		-	-	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4.00	LD02	13/04/2017	13-16	14			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
0.50	LD03	16/05/2017	1-3	15		-	-	-	-	<5	-	-	-	-	-	-	-	-	<5	<5	<5	<5	<5
2.00 6.00	LD03 LD03	16/05/2017 16/05/2017	7-9 19-21	16 17	_	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\vdash
0.50	LD04	13/04/2017	38-40	18	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1.00	LD04	13/04/2017	41-43	19		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<60	-		-	-	-
3.00	LD04	13/04/2017	46-47	20		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
4.00	LD04	13/04/2017	48	21		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
0.50 2.00	LD05 LD05	10/04/2017 10/04/2017	16-18 22-24	22 23	-			-	-	<50	-	-	-		-	-	-	-	<50	<50	<50	<50	<50
6.00	LD05	11/04/2017	34-36	24	РСВ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.50	LD06	13/04/2017	49-51	25	Bs	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<60	-	-	-	-	-
1.00	LD06	13/04/2017	52-54	26		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2.00	LD06	13/04/2017	55-57	27		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3.00 0.50	LD06 TP01	13/04/2017 13/04/2017	58-60 1-3	28 29		<5	<5	<5	- <5	<5	- <5	<5	<5	<5	<5	<5	<5	<60	-	-	-	-	-
1.00	TP01	13/04/2017	4-6	30		-	-	-	-	<5	-	-	-	-	-	-	-	-	<5	<5	<5	<5	<5
3.90	TP01	13/04/2017	7-9	31		-	-	-	-	-	-	-	-	-	-	-	-	-	-	,	-	-	-
1.00	TP02	13/04/2017	10-12	32		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<60	-	-	-	-	-
4.50 0.50	TP02 TP03	13/04/2017 13/04/2017	13-15 16-18	33 34	_	- <5	- <5	- <5	- <5	- <5	- <5	- <5	- <5	- <5	- <5	- <5	- <5	<60	-	-	-	-	-
0.80	TP03	13/04/2017	19-10	35	_	- <5	-	-	-	<5	-	-	-	-	-	-	-	-	- <5	<5	- <5	<5	<5
3.00	TP03	13/04/2017	22-24	36		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1.00	TP04	13/04/2017	25-27	37		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<60	-		-	-	-
2.30	TP04	13/04/2017	28-30 31-33	38 39			- <5	-	- <5	- <5	- <5	-	- <5	-	- <5	-	-	-	-	-	-	-	
0.50	TP05 TP05	13/04/2017 13/04/2017	31-33 34-36	39 40		<5 -	<5	<5 -	<5	<5 <5	<5 -	<5 -	- <5	<5 -	<≎	<5 -	<5 -	<60	<5	- <5	- <5	- <5	<5
2.00	TP05	13/04/2017	37-39	41		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>
1.00	TP06	13/04/2017	40-42	42		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<60	-	-	-	-	-
0.50	TP07	13/04/2017	43-45	43		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<60		-	-		
1.00 3.80	TP07 TP07	13/04/2017 13/04/2017	46-48 49-51	44 45		-	-	-	-	<5		1	-	1		-	-	-	<5 -	<5	<5 -	<5 -	<5 -
0.50	TP08	13/04/2017	52-54	46		<5	- <5	<5	- <5	- <5	- <5	<5	- <5	- <5	- <5	- <5	- <5	<60	-	-	-	-	-
2.00	TP08	13/04/2017	55-57	47		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		
0.50	TP09	13/04/2017	58-60	48		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<60	-	-	-	-	
1.80	TP09	13/04/2017	61-63	49			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
0.50 1.00	TP10 TP10	13/04/2017 13/04/2017	64-66 67-69	50 51		- <5	- <5	- <5	- <5	<5 <5	- <5	- <5	- <5	- <5	- <5	- <5	- <5	- <60	<5 -	<5 -	<5 -	<5 -	<5 -
4.70	TP10	13/04/2017	70-72	52		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	SGV co	mmercial (SOM	16%)																				
	CL:AIRE GA	C commercial (S	SOM 1%)		-																		
	CL:AIRE GA	AC commercial (S	SOM 6%)																				
	S4UL o	ommercial (SOM	1 1%)																				
	S4UL co	mmercial (SOM	2.5%)																				
Copyright I	and Quality Mana	gement Limited	reproduced wit	h permission:																			
	Publication Number																						

	Meth	nod Detection Lin	nit		<5	<35		<0.01	<0.01	<0.01	<0.02	<0.01	<0.03	<0.06	<0.01	<0.01	<0.01	<0.15		<10	<100	<100	<10
Depth	Sample Identity	Sample Date	Exova Jones Environmenta Sample ID	Sample No.	PCB 180	Total 7 PCBs		Resorcinol	Catechol	Phenol	m/p-Cresol	o-Cresol	Cresols	Xylenols	1-Naphthol	2,3,5-Trimethylphenol	2-Isopropylphenol	Phenols - Total by HPLC		Hexachlorobenzene	Diethyl phthalate	Dimethyl phthalate	Dibenzofuran
	lotty Ext	tension site bore	- holos		ug/kg	ug/kg		mg/kg	mg/kg	mg/kg		μg/ kg	μg/ kg	μg/ kg	μg/ kg								
1.00	LO1	25/05/2017	67-69	1	-	-		<0.01	<0.01	0.01	<0.02	<0.01	<0.03	<0.06	<0.01	<0.01	<0.01	<0.15		<10	<100	<100	<10
3.00	L01	25/05/2017	70-72	2	-	-		<0.01	<0.01	<0.01	<0.02	<0.01	<0.03	<0.06	<0.01	<0.01	<0.01	<0.15		<10	<100	<100	<10
7.00 1.00	L01	25/05/2017 10/04/2017	76-78 10-12	3	-	-		<0.01	<0.01 <0.01	<0.01 <0.01	<0.02 <0.02	<0.01 <0.01	<0.03 <0.03	<0.06 <0.06	<0.01 <0.01	<0.01 <0.01	<0.01	<0.15		<10 <10	<100 <100	<100 <100	<10 <10
3.00	L05	10/04/2017	13-15	5	-	-		<0.01	<0.01	<0.01	<0.02	0.06	0.06	<0.06	<0.01	<0.01	<0.01	<0.15		<10	<100	<100	<10
		sh Lands boreh	oles									1		1		1							
0.50 1.00	LD01 LD01	11/04/2017 11/04/2017	1-3 4-6	6	<50	<350		<0.01	<0.01	<0.01	<0.02	<0.01	<0.03	<0.06	<0.01	<0.01	<0.01	<0.15		<10	<100	<100	<10
2.00	LD01	11/04/2017	7-9	8	-	-		<0.01	<0.01	<0.01	<0.02	<0.01	<0.03	<0.06	<0.01	<0.01	<0.01	<0.15		<10	<100	<100	<10
3.00	LD01	11/04/2017	10-12	9	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
8.00	LD01	12/04/2017	52-54	10	-	-		<0.01	<0.01	<0.01	<0.02	0.02	<0.03	<0.06	<0.01	<0.01	<0.01	<0.15		<10	<100	<100	<10
0.50 1.00	LD02 LD02	13/04/2017 13/04/2017	1-3 4-6	11 12	-	-		<0.01	<0.01	<0.01	<0.02	<0.01	<0.03	<0.06	<0.01	<0.01	<0.01	<0.15		- <10	<100	- <100	<10
3.00	LD02	13/04/2017	10-12	13	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-	-	
4.00	LD02	13/04/2017	13-16	14	-	-		<0.01	<0.01	0.01	< 0.02	<0.01	< 0.03	< 0.06	<0.01	<0.01	< 0.01	<0.15		<10	<100	<100	<10
0.50	LD03	16/05/2017	1-3	15	<5	<35		<0.01	<0.01	<0.01	<0.02	<0.01	<0.03	<0.06	<0.01	<0.01	<0.01	<0.15		<10	<100	<100	<10
2.00 6.00	LD03 LD03	16/05/2017 16/05/2017	7-9 19-21	16 17	-	-		<0.01	<0.01 <0.01	<0.01 <0.01	<0.02 <0.02	<0.01 <0.01	<0.03	<0.06 <0.06	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.15 <0.15		<10 <10	<100 <100	<100 <100	<10 <10
0.50	LD03	13/04/2017	38-40	18	-	-		- 40.01		-	-	-	-	-	-	-	-	-	SEMI	-	-	-	-
1.00	LD04	13/04/2017	41-43	19	-	-		<0.01	<0.01	<0.01	<0.02	<0.01	<0.03	<0.06	<0.01	<0.01	<0.01	<0.15		<10	<100	<100	<10
3.00	LD04	13/04/2017	46-47	20	-			-	-	-	-	-	-	-	-		-	-	VOLATILE	-	-	-	
4.00 0.50	LD04 LD05	13/04/2017 10/04/2017	48 16-18	21	- <50	<350		<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.02 <0.02	<0.01	<0.03	<0.06	<0.01 <0.01	<0.01	<0.01 <0.01	<0.15	ATI	<10	<100 <100	<100	<10
2.00	LD05	10/04/2017	22-24	22	<50	<350		<0.01	<0.01	<0.01	<0.02	<0.01	<0.03	<0.06	<0.01	<0.01	<0.01	<0.15	E	<10	<100	<100	<10
6.00	LD05	11/04/2017	34-36	24	-	-	PHENOLS	-	-	-	-	-	-	-	-	-	-	-	ORGANIC	-	-	-	-
0.50	LD06	13/04/2017	49-51	25	-	-	Ē	<0.01	<0.01	<0.01	<0.02	<0.01	< 0.03	< 0.06	<0.01	<0.01	<0.01	<0.15	ÄAN	<10	<100	<100	<10
2.00	LD06	13/04/2017	52-54 55-57	26 27	-	-	6	· ·	-	-	-	-	-	-	-	-	-	-		-	-	-	-
3.00	LD06	13/04/2017 13/04/2017	55-57	28	-	-		<0.01	<0.01	<0.01	<0.02	<0.01	<0.03	<0.06	<0.01	<0.01	<0.01	<0.15	СОМРОИ	<10	<100	<100	<10
0.50	TP01	13/04/2017	1-3	29	-	-		<0.01	<0.01	<0.01	<0.02	0.02	<0.03	<0.06	<0.01	<0.01	<0.01	<0.15	Po	<10	<100	<100	<10
1.00	TP01	13/04/2017	4-6	30	<5	<35		-	-	-	-	-	-	-	-	-	-	-	N	-	-	-	-
3.90	TP01	13/04/2017	7-9	31	-	-		<0.01	<0.01	<0.01	< 0.02	<0.01	<0.03	< 0.06	<0.01	<0.01	<0.01	<0.15	SC	<10	<100	<100	<10
1.00 4.50	TP02 TP02	13/04/2017 13/04/2017	10-12 13-15	32 33	-	-		<0.01	<0.01 <0.01	<0.01 <0.01	<0.02 <0.02	<0.01 <0.01	<0.03	<0.06 <0.06	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.15 <0.15		<10 <10	<100 <100	<100 <100	<10 <10
0.50	TP03	13/04/2017	16-18	34	-	- -		<0.01	<0.01	<0.01	<0.02	<0.01	<0.03	<0.06	<0.01	<0.01	<0.01	<0.15		<10	<100	<100	<10
0.80	TP03	13/04/2017	19-21	35	<5	<35		-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
3.00	TP03	13/04/2017	22-24	36	-			<0.01	<0.01	<0.01	< 0.02	<0.01	<0.03	< 0.06	<0.01	<0.01	<0.01	<0.15		<10	<100	<100	<10
1.00 2.30	TP04 TP04	13/04/2017 13/04/2017	25-27 28-30	37	-	-		<0.01	<0.01 <0.01	<0.01 <0.01	<0.02 <0.02	<0.01 <0.01	<0.03	<0.06 <0.06	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.15		<10 <10	<100 <100	<100 <100	<10 <10
0.50	TP04 TP05	13/04/2017	28-30 31-33	38 39	-	-		<0.01	<0.01	<0.01	<0.02	<0.01 0.02	<0.03	<0.06	<0.01	<0.01	<0.01	<0.15		<10 <10	<100 <100	<100 <100	<10
0.80	TP05	13/04/2017	34-36	40	<5	<35		-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
2.00	TP05	13/04/2017	37-39	41	-	-		<0.01	<0.01	<0.01	<0.02	<0.01	<0.03	<0.06	<0.01	<0.01	<0.01	<0.15		<10	<100	<100	<10
1.00	TP06	13/04/2017	40-42	42	-	-		<0.01	<0.01	<0.01	<0.02	<0.01	<0.03	<0.06	<0.01	<0.01	<0.01	<0.15		<10	<100	<100	<10
0.50 1.00	TP07 TP07	13/04/2017 13/04/2017	43-45 46-48	43	- <5	<35		<0.01	<0.01	<0.01	<0.02	<0.01	<0.03	<0.06	<0.01	<0.01	<0.01	<0.15		<10	<100	<100	<10
3.80	TP07	13/04/2017	49-51	45	-	-		<0.01	<0.01	<0.01	<0.02	<0.01	<0.03	<0.06	<0.01	<0.01	<0.01	<0.15		<10	<100	<100	<10
0.50	TP08	13/04/2017	52-54	46	-	-		<0.01	<0.01	<0.01	<0.02	0.02	<0.03	< 0.06	<0.01	<0.01	<0.01	<0.15		<10	<100	<100	<10
2.00	TP08	13/04/2017	55-57	47 48	-	-		<0.01	<0.01	<0.01	<0.02	<0.01	<0.03	<0.06	<0.01	<0.01	<0.01	<0.15		<10	<100	<100	<10
0.50 1.80	TP09 TP09	13/04/2017 13/04/2017	58-60 61-63	48	-	+ -		<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.02 <0.02	<0.01 <0.01	<0.03	<0.06 <0.06	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.15 <0.15		<10 <10	<100 <100	<100 <100	<10 <10
0.50	TP10	13/04/2017	64-66	50	<5	<35		-	-	-		-		-	-	-				- 10	-	-	-
1.00	TP10	13/04/2017	67-69	51		<u> </u>		<0.01	<0.01	<0.01	<0.02	<0.01	<0.03	<0.06	<0.01	<0.01	<0.01	<0.15		<10	<100	<100	<10
4.70	TP10	13/04/2017	70-72	52	-	-		<0.01	<0.01	<0.01	<0.02	<0.01	<0.03	<0.06	<0.01	<0.01	<0.01	<0.15		<10	<100	<100	<10
	SGV co	ommercial (SOM AC commercial (6%) SOM 1%)							3200			160000					3200			150000000		
	CL:AIRE GA	C commercial (S	OM 2.5%)										180000								220000000		
	CL:AIRE GA	AC commercial (S	SOM 6%)										180000								290000000		
	SAUL o	ommercial (SOM	1%) 2.5%)							440 690								440 690		110000			
	S4UL c	ommercial (SOM	6%)							1300								1300		120000			
	and Quality Mana																						
F	Publication Number	er S4UL3474. All	rights reserve	a.																			

	Meth	nod Detection Lim	nit		<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Depth	Sample Identity	Sample Date	Exova Jones Environmental Sample ID	Sample No.	Carbazole	Butylbenzyl phthalate	Bis(2-ethylhexyl) phthalate	Bis(2-chloroethoxy)methane	Bis(2-chloroethyl)ether	4-Nitrophenol	4-Methylphenol	4-Chlor o-3-methylphenol	2-Nitrophenol	2-Methylphenol	2-Chlorophenol	2,6-Dinitrotoluene	2,4-Dinitrotoluene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dimethylphenol	2,4-Dichlorophenol	2-Chloronaphthalene	2-Methylnaphthalene
	Jetty Ext	tension site bore	eholes		μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg
1.00	L01	25/05/2017	67-69	1	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
3.00 7.00	L01	25/05/2017	70-72	2	<10 <10	<100	<100	<10 <10	<10	<10	<10 <10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
1.00	L01 L05	25/05/2017 10/04/2017	76-78 10-12	4	<10	<100 <100	<100 <100	<10	<10 <10	<10 <10	<10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10
3.00	L05	10/04/2017	13-15	5	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
0.50		sh Lands boreho	oles		40	100	400	10	1 40	1 40	1 40	- 10	40	1 40	10	10	10	40	40	40	40	40	40
0.50 1.00	LD01 LD01	11/04/2017 11/04/2017	1-3 4-6	6 7	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
2.00	LD01	11/04/2017	7-9	8	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
3.00	LD01	11/04/2017	10-12	9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8.00	LD01 LD02	12/04/2017	52-54 1-3	10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
0.50 1.00	LD02 LD02	13/04/2017 13/04/2017	4-6	12	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
3.00	LD02	13/04/2017	10-12	13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4.00	LD02	13/04/2017	13-16	14	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
0.50 2.00	LD03 LD03	16/05/2017 16/05/2017	1-3 7-9	15	<10 <10	<100 <100	<100 <100	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10
6.00	LD03	16/05/2017	19-21	16 17	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
0.50	LD04	13/04/2017	38-40	18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1.00	LD04	13/04/2017	41-43	19	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
3.00	LD04	13/04/2017	46-47	20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
4.00 0.50	LD04 LD05	13/04/2017 10/04/2017	48 16-18	21	<10 <10	<100 <100	<100 <100	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10
2.00	LD05	10/04/2017	22-24	23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6.00	LD05	11/04/2017	34-36	24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.50 1.00	LD06	13/04/2017	49-51 52-54	25 26	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
2.00	LD06	13/04/2017 13/04/2017	55-57	27	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	- -
3.00	LD06	13/04/2017	58-60	28	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
0.50	TP01	13/04/2017	1-3	29	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
1.00	TP01	13/04/2017	4-6 7-9	30 31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- <10	
3.90 1.00	TP01 TP02	13/04/2017 13/04/2017	7-9 10-12	31	<10 <10	<100 <100	<100 <100	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10
4.50	TP02	13/04/2017	13-15	33	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
0.50	TP03	13/04/2017	16-18	34	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
0.80	TP03	13/04/2017	19-21	35	- 40	- 400	400	- 40	- 40	- 40	- 40	- 40	- 40	- 40	- 40	- 40	- 40	- 40	- 40	- 40	- 40	- 40	- 40
3.00 1.00	TP03 TP04	13/04/2017 13/04/2017	22-24 25-27	36 37	<10 <10	<100 <100	<100 <100	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10
2.30	TP04	13/04/2017	28-30	38	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
0.50	TP05	13/04/2017	31-33	39	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
0.80 2.00	TP05 TP05	13/04/2017 13/04/2017	34-36 37-39	40 41	- <10	<100	- <100	- <10	- <10	- <10	- <10	- <10	- <10	- <10	- <10	- <10	- <10	- <10	- <10	- <10	- <10	- <10	- <10
1.00	TP05	13/04/2017	37-39 40-42	41	<10 <10	<100	<100	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10
0.50	TP07	13/04/2017	43-45	43	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
1.00	TP07	13/04/2017	46-48	44	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
3.80 0.50	TP07 TP08	13/04/2017 13/04/2017	49-51 52-54	45 46	<10 <10	<100 <100	<100 <100	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10
2.00	TP08	13/04/2017	52-54 55-57	46 47	<10 <10	<100	<100	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10
0.50	TP09	13/04/2017	58-60	48	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
1.80	TP09	13/04/2017	61-63	49	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
0.50	TP10	13/04/2017	64-66	50 51	-		- 400	-	-	- 40		- 10	-				-	- <10	- <10	- 40	-	- 40	- 40
1.00 4.70	TP10 TP10	13/04/2017 13/04/2017	67-69 70-72	51 52	<10 <10	<100 <100	<100 <100	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10
0	SGV co	ommercial (SOM	6%)	<u> </u>							1.0												
	CL:AIRE GA	AC commercial (S	SOM 1%)			940000000	85000000				160000000*			160000000*		1900000	3700000			16000000		390000	
	CL:AIRE GA	C commercial (Si	OM 2.5%)			940000000	86000000				180000000*			180000000*		1900000	3700000			3000000		2200000	
	S4UL c	ommercial (SOM	1%)			330000000	30000000				130000000			100000000	3500000	1900000	300000			55000000	3500000	2200000	
	S4UL co	mmercial (SOM :	2.5%)												4000000						4000000		
Convright L	S4UL c and Quality Mana	ommercial (SOM	enroduced wit	h nermission:			-								4300000						4300000		
	Publication Number										* 2-, 3- a	nd 4- methylp	nenol total										

	Meth	od Detection Lim	nit		<10	<10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Depth	Sample Identity	Sample Date	Exova Jones Environmental Sample ID	Sample No.	Phenol	Pentachlorophenol	N-nitosodi-n-dipropylamine	n Dioctyl phthalate	n Dibutyl phthalate	Nitrobenzene	Isophorone	Hexachloroethane	Hexachlorocyclopentadiene	2-Nitroaniline	3-Nitroaniline	4-Bromophenylphenylether	4-Chloroaniline	4-Chlorophenylphenylether	4-Nitroaniline	Azobenzene	1.3-Dichlorobenzene	1.4-Dichlorobenzene	1.2-Dichlorobenzene
	Jetty Ext	ension site bore	eholes		μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg
1.00	L01	25/05/2017	67-69	1	<10	<10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
3.00 7.00	L01 L01	25/05/2017 25/05/2017	70-72 76-78	2	<10 <10	<10 <10	<10 <10	<100 <100	<100 <100	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10
1.00	L05	10/04/2017	10-12	4	<10	<10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
3.00	L05	10/04/2017	13-15	5	<10	<10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
0.50	Durnis	h Lands boreho	oles		40	1 40	40	400	400	40	- 40	40	-40	40	-40	40	- 40	- 40	- 40	40	40	-40	40
0.50 1.00	LD01 LD01	11/04/2017 11/04/2017	1-3 4-6	7	<10	<10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
2.00	LD01	11/04/2017	7-9	8	<10	<10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
3.00	LD01	11/04/2017	10-12	9	-	-	-	-	-	-	-	-	-		-		-	-	-		-	-	-
8.00	LD01 LD02	12/04/2017 13/04/2017	52-54	10	<10	<10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
1.00	LD02 LD02	13/04/2017	1-3 4-6	11 12	<10	<10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
3.00	LD02	13/04/2017	10-12	13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4.00	LD02	13/04/2017	13-16	14	<10	<10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
0.50 2.00	LD03 LD03	16/05/2017 16/05/2017	1-3 7-9	15 16	<10 <10	<10 <10	<10 <10	<100 <100	<100 <100	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10
6.00	LD03	16/05/2017	19-21	17	<10	<10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
0.50	LD04	13/04/2017	38-40	18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1.00	LD04	13/04/2017	41-43	19	<10	<10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
3.00 4.00	LD04 LD04	13/04/2017 13/04/2017	46-47 48	20	<10	<10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
0.50	LD04 LD05	10/04/2017	16-18	22	<10	<10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
2.00	LD05	10/04/2017	22-24	23	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-
6.00	LD05	11/04/2017	34-36	24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.50 1.00	LD06 LD06	13/04/2017 13/04/2017	49-51 52-54	25 26	<10	<10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
2.00	LD06	13/04/2017	55-57	27	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3.00	LD06	13/04/2017	58-60	28	<10	<10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
0.50	TP01	13/04/2017	1-3	29 30	<10	<10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
1.00 3.90	TP01 TP01	13/04/2017 13/04/2017	4-6 7-9	30	<10	<10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
1.00	TP02	13/04/2017	10-12	32	<10	<10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
4.50	TP02	13/04/2017	13-15	33	<10	<10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
0.50	TP03 TP03	13/04/2017 13/04/2017	16-18 19-21	34 35	<10	<10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
3.00	TP03	13/04/2017	22-24	36	<10	<10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
1.00	TP04	13/04/2017	25-27	37	<10	<10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
2.30	TP04	13/04/2017	28-30	38	<10	<10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
0.50	TP05 TP05	13/04/2017 13/04/2017	31-33 34-36	39 40	<10	<10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
2.00	TP05	13/04/2017	37-39	41	<10	<10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
1.00	TP06	13/04/2017	40-42	42	<10	<10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
1.00	TP07 TP07	13/04/2017 13/04/2017	43-45 46-48	43 44	<10	<10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
3.80	TP07	13/04/2017	46-48 49-51	44	<10	<10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	- <10	<10	<10
0.50	TP08	13/04/2017	52-54	46	<10	<10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
2.00	TP08	13/04/2017	55-57	47	<10	<10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
0.50 1.80	50 TP09 13/04/2017 58-60 48 80 TP09 13/04/2017 61-63 49			48	<10 <10	<10 <10	<10 <10	<100 <100	<100 <100	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10
0.50	.50 TP10 13/04/2017 64-66 50							- 100	- 100				- < 10	- <10	- 10					-		-	- 10
1.00	TP10	13/04/2017	67-69	51	<10	<10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
4.70	TP10	13/04/2017	70-72	52	<10	<10	<10	<100	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	SGV co	C commercial (SOM	6%) SOM 1%)		3200000			8900000	15000000			22000							-				
	CL:AIRE GA	C commercial (St	OM 2.5%)					89000000	15000000			53000											
	CL:AIRE GA	C commercial (S	SOM 6%)		440000	400000		89000000	15000000			120000									20000	4.400000	0000000
	S4UL co	mmercial (SOM)	1%) 2.5%)		690000	400000															73000	10000000	4800000
	S4UL co	ommercial (SOM	6%)		1300000	400000															170000	25000000	11000000
	and Quality Mana Publication Number																						
	Solication (Variable	J-ULJ4/4. All	gino reserve	٠.																			

	Meth	nod Detection Lim	nit		<10	<10		<2	<2	<3	<2	<1	<2	<2	<6	<30	<3	<3	<3	<4	<3	<3	<3
Depth	Sample Identity	Sample Date	Exova Jones Environmental Sample ID	Sample No.	1.2.4-Trichlorobenzene	Hexachlorobutadiene		Dichlorodifluoromethane	Methyl Tertiary Butyl Ether	Chloromethane	Vinyl Chloride	Bromomethane	Chloroethane	Trichlorofluorormethane	1.1-Dichloroethene	Dichloromethane	trans-1-2-Dichlor oethene	1.1-Dichloroethane	cis-1-2-Dichloroethene	2,2-Dichloropropane	Bromochloromethane	Trichloromethane	1.1.1-Trichloroethane
	Jetty Ext	tension site bore	eholes		μg/ kg	μg/ kg		μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg
1.00	L01	25/05/2017	67-69	1	<10	<10		<2	<2	<3	<2	<1	<2	<2	<6	<30	<3	<3	<3	<4	<3	<3	<3
3.00 7.00	L01 L01	25/05/2017	70-72 76-78	2	<10 <10	<10 <10		<2 <2	<2 <2	<3 <3	<2 <2	<1 <1	<2 <2	<2 <2	<6 <6	<30 <30	<3 <3	<3 <3	<3 <3	<4 <4	<3 <3	<3 <3	<3 <3
1.00	L05	25/05/2017 10/04/2017	10-12	4	<10	<10	-	<2	<2	<3	<2	<1	<2	<2	<6	67	<3	<3	<3	<4	<3	<3	<3
3.00	L05	10/04/2017	13-15	5	<10	<10		<2	<2	<3	<2	<1	<2	<2	<6	<30	<3	<3	<3	<4	<3	<3	<3
0.50	Durnis LD01	11/04/2017	oles 1-3		<10	<10		<2	<2	<3	<2	<1	<2	<2	<6	<30	<3	<3	<3	<4	<3	<3	<3
1.00	LD01 LD01	11/04/2017	1-3 4-6	7	<10	<10		<2	-<2	<3	<2	<1	<2	<2	 -	<30	<3	<3	<3	<4	<3	<3	<3
2.00	LD01	11/04/2017	7-9	8	<10	<10		<2	<2	<3	<2	<1	<2	<2	<6	<30	<3	<3	<3	<4	<3	<3	<3
3.00	LD01	11/04/2017	10-12	9		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
8.00	LD01	12/04/2017	52-54	10 11	<10	<10		<2	<2	<3	<2	<1	<2	<2	<6	<30	<3	<3	<3	<4	<3	<3	<3
0.50 1.00	LD02 LD02	13/04/2017 13/04/2017	1-3 4-6	11	<10	<10		<2	<2	<3	<2	<1	<2	<2	<6	<30	<3	<3	<3	<4	<3	<3	<3
3.00	LD02	13/04/2017	10-12	13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4.00	LD02	13/04/2017	13-16	14	<10	<10		<2	<2	<3	<2	<1	<2	<2	<6	<30	<3	<3	<3	<4	<3	<3	<3
0.50	LD03	16/05/2017	1-3	15	<10	<10		<2	<2	<3	<2	<1	<2	<2	<6	<30	<3	<3	<3	<4	<3	<3	<3
2.00 6.00	LD03 LD03	16/05/2017 16/05/2017	7-9 19-21	16 17	<10 <10	<10 <10		<2 <2	<2 <2	<3 <3	<2 <2	<1 <1	<2 <2	<2 <2	<6 <6	<30 <30	<3 <3	<3 <3	<3 <3	<4 <4	<3 <3	<3 <3	<3 <3
0.50	LD04	13/04/2017	38-40	18	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1.00	LD04	13/04/2017	41-43	19	<10	<10	δ	<2	<2	<3	<2	<1	<2	<2	<6	71	<3	<3	<3	<4	<3	<3	<3
3.00	LD04	13/04/2017	46-47	20	-	-	>	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
4.00	LD04	13/04/2017	48	21	<10	<10	Ē	<2	<2	<3	<2	<1	<2	<2	<6	<30	<3	<3	<3	<4	<3	<3	<3
0.50 2.00	LD05 LD05	10/04/2017 10/04/2017	16-18 22-24	22	<10	<10	유	<2	<2	<3 -	<2	<1	<2	<2	<6 -	<30	<3	<3	<3	<4	<3	<3 -	<3
6.00	LD05	11/04/2017	34-36	24	-	-	G A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.50	LD06	13/04/2017	49-51	25	<10	<10	ā	<2	<2	<3	<2	<1	<2	<2	<6	<30	<3	<3	<3	<4	<3	<3	<3
1.00	LD06	13/04/2017	52-54 55-57	26 27	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2.00 3.00	LD06	13/04/2017 13/04/2017	55-57	28	<10	<10	- F	<2	- <2	<3	<2	<1	<2	<2	- <6	<30	<3	<3	- <3	<4	<3	- <3	<3
0.50	TP01	13/04/2017	1-3	29	<10	<10	Ğ	<2	<2	<3	<2	<1	<2	<2	<6	<30	<3	<3	<3	<4	<3	<3	<3
1.00	TP01	13/04/2017	4-6	30	-	-	DS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3.90	TP01	13/04/2017	7-9	31	<10	<10		<2	<2	<3	<2	<1	<2	<2	<6	<30	<3	<3	<3	<4	<3	<3	<3
1.00 4.50	TP02 TP02	13/04/2017 13/04/2017	10-12 13-15	32 33	<10 <10	<10 <10	_	<2 <2	<2 <2	<3 <3	<2 <2	<1 <1	<2 <2	<2 <2	<6 <6	<30 <30	<3 <3	<3 <3	<3 <3	<4 <4	<3 <3	<3 <3	<3 <3
0.50	TP03	13/04/2017	16-18	34	<10	<10	_	<2	<2	<3	<2	<1	<2	<2	<6	<30	<3	<3	<3	<4	<3	<3	<3
0.80	TP03	13/04/2017	19-21	35	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3.00	TP03	13/04/2017	22-24	36	<10	<10		<2	<2	<3	<2	<1	<2	<2	<6	<30	<3	<3	<3	<4	<3	<3	<3
1.00 2.30	TP04 TP04	13/04/2017 13/04/2017	25-27	37	<10 <10	<10		<2	<2	<3	<2	<1	<2	<2	<6	<30	<3	<3	<3	<4	<3	<3	<3
0.50	TP04 TP05	13/04/2017	28-30 31-33	38 39	<10 <10	<10 <10		<2 <2	<2 <2	<3 <3	<2 <2	<1 <1	<2 <2	<2 <2	<6 <6	<30 <30	<3 <3	<3 <3	<3 <3	<4 <4	<3 <3	<3 <3	<3 <3
0.80	TP05	13/04/2017	34-36	40	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2.00	TP05	13/04/2017	37-39	41	<10	<10		<2	<2	<3	<2	<1	<2	<2	<6	<30	<3	<3	<3	<4	<3	<3	<3
1.00	TP06	13/04/2017	40-42	42	<10	<10		<2	<2	<3	<2	<1	<2	<2	<6	<30	<3	<3	<3	<4	<3	<3	<3
0.50 1.00	TP07 TP07	13/04/2017 13/04/2017	43-45 46-48	43 44	<10	<10		<2	<2	<3	<2	<1	<2	<2	<6	<30	<3	<3	<3	<4	<3	<3	<3
3.80	TP07	13/04/2017	49-51	45	<10	<10		<2	<2	<3	<2	<1	<2	<2	<6	<30	<3	<3	<3	<4	<3	<3	<3
0.50	TP08	13/04/2017	52-54	46	<10	<10		<2	<2	<3	<2	<1	<2	<2	<6	<30	<3	<3	<3	<4	<3	<3	<3
2.00	TP08	13/04/2017	55-57	47	<10	<10		<2	<2	<3	<2	<1	<2	<2	<6	<30	<3	<3	<3	<4	<3	<3	<3
0.50	TP09	13/04/2017	58-60 61-63	48 49	<10 <10	<10		<2	<2	<3	<2	<1	<2	<2	<6	<30	<3	<3	<3	<4	<3	<3	<3 <3
1.80 0.50	TP09 TP10	13/04/2017 13/04/2017	64-66	49 50	<10	<10		<2	<2	<3 -	<2	<1	<2	<2	<6 -	<30	<3	<3	<3 -	<4	<3 -	<3 -	<3 -
1.00	TP10	13/04/2017	67-69	51	<10	<10		<2	<2	<3	<2	<1	<2	<2	<6	<30	<3	<3	<3	<4	<3	<3	<3
4.70	TP10	13/04/2017	70-72	52	<10	<10		<2	<2	<3	<2	<1	<2	<2	<6	<30	<3	<3	<3	<4	<3	<3	<3
	SGV co	mmercial (SOM	6%)						7000000	1000			060000		26000	270000	22000	200000	14000				
	CL:AIRE GA	C commercial (S	OM 2.5%)						13000000	1000			1300000		46000	360000	40000	450000	24000				
	CL:AIRE G/	AC commercial (S	SOM 6%)						24000000	1600			2100000		92000	560000	81000	850000	47000				
	S4UL c	ommercial (SOM	1%)		220000 530000	31000					59 77											99000	660000
	S4UL C	ommercial (SOM)	6%)		1300000	120000					120											350000	3000000
	and Quality Mana																						
	Publication Number	er S4UL3474. All	rights reserve	d.																			

	Meth	nod Detection Lim	nit		<3	<4	<4	<3	<3	<6	<3	<3	<4	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
Depth	Sample Identity	Sample Date	Exova Jones Environmental Sample ID	Sample No.	1.1-Dichloropropene	Tetrachloromethane	1.2-Dichloroethane	Benzene	Trichloroethene	1.2-Dichloropropane	Dibromomethane	Bromodichloromethane	cis-1-3-Dichloropropene	Toluene	trans-1-3-Dichloropropene	1.1.2-Trichloroethane	1.3-Dichloropropane	Tetrachloroethene	Dibromochloromethane	1.2-Dibromoethane	Chlorobenzene	1.1.1.2-Tetrachloroethane	Ethylbenzene
	Jetty Fyt	tension site bore	eholes		μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg
1.00	L01	25/05/2017	67-69	1	<3	<4	<4	<3	<3	<6	<3	<3	<4	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
3.00	L01	25/05/2017	70-72	2	<3	<4	<4	<3	<3	<6	<3	<3	<4	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
7.00	L01	25/05/2017	76-78	3	<3	<4	<4	<3	<3	<6	<3	<3	<4	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
1.00 3.00	L05	10/04/2017 10/04/2017	10-12	- 4 - 5	<3	<4	<4	<3	<3 <3	<6	<3 <3	<3	<4	<3	<3	<3	<3	<3	<3 <3	<3	<3 <3	<3 <3	<3
3.00		sh Lands boreho	13-15	5	<3	<4	<4	<3	<3	<6	<3	<3	<4	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
0.50	LD01	11/04/2017	1-3	6	<3	<4	<4	<3	<3	<6	<3	<3	<4	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
1.00	LD01	11/04/2017	4-6	7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2.00	LD01	11/04/2017	7-9	8	<3	<4	<4	<3	<3	<6	<3	<3	<4	5	<3	<3	<3	<3	<3	<3	<3	<3	<3
3.00	LD01	11/04/2017	10-12	9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8.00	LD01	12/04/2017	52-54	10	<3	<4	<4	<3	<3	<6	<3	<3	<4	9	<3	<3	<3	<3	<3	<3	<3	<3	<3
0.50 1.00	LD02 LD02	13/04/2017 13/04/2017	1-3 4-6	11	-	-	-	-	-	-	-	-		-	-	-	-	-	- <3	-	-	-	-
3.00	LD02 LD02	13/04/2017	10-12	12 13	<3 -	<4	<4	<3 -	<3	<6 -	<3	<3	<4	<3 -	<3 -	<3 -	<3	<3	- <3	<3	<3 -	<3	<3
4.00	LD02	13/04/2017	13-16	14	<3	<4	<4	<3	<3	<6	<3	<3	<4	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
0.50	LD03	16/05/2017	1-3	15	<3	<4	<4	<3	<3	<6	<3	<3	<4	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
2.00	LD03	16/05/2017	7-9	16	<3	<4	<4	<3	<3	<6	<3	<3	<4	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
6.00	LD03	16/05/2017	19-21	17	<3	<4	<4	<3	<3	<6	<3	<3	<4	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
0.50	LD04	13/04/2017	38-40	18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
1.00	LD04	13/04/2017	41-43	19	<3	<4	<4	<3	<3	<6	<3	<3	<4	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
3.00 4.00	LD04 LD04	13/04/2017 13/04/2017	46-47 48	20	<3	- <4	<4	<3	- <3	- <6	- <3	<3	<4	<3	- <3	- <3	- <3	- <3	- <3	- <3	- <3	<3	- <3
0.50	LD04 LD05	10/04/2017	16-18	21	<3	<4	<4	<3	<3	<6	<3	<3	<4	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
2.00	LD05	10/04/2017	22-24	23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6.00	LD05	11/04/2017	34-36	24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.50	LD06	13/04/2017	49-51	25	<3	<4	<4	<3	<3	<6	<3	<3	<4	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
1.00	LD06	13/04/2017	52-54	26	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
2.00	LD06	13/04/2017	55-57 58-60	27 28	- <3	- <4	- <4	-	-	-	-	-	- <4	-	-	- <3	- <3	- <3	- <3	- <3	- <3	-	-
3.00 0.50	TP01	13/04/2017 13/04/2017	1-3	28	<3 <3	<4 <4	<4 <4	<3 <3	<3 <3	<6 <6	<3 <3	<3 <3	<4 <4	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3
1.00	TP01	13/04/2017	4-6	30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
3.90	TP01	13/04/2017	7-9	31	<3	<4	<4	<3	<3	<6	<3	<3	<4	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
1.00	TP02	13/04/2017	10-12	32	<3	<4	<4	<3	<3	<6	<3	<3	<4	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
4.50	TP02	13/04/2017	13-15	33	<3	<4	<4	<3	<3	<6	<3	<3	<4	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
0.50	TP03	13/04/2017	16-18	34	<3	<4	<4	<3	<3	<6	<3	<3	<4	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
0.80	TP03	13/04/2017	19-21	35	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
3.00 1.00	TP03 TP04	13/04/2017 13/04/2017	22-24 25-27	36 37	<3 <3	<4 <4	<4 <4	<3 <3	<3 <3	<6 <6	<3 <3	<3 <3	<4 <4	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3
2.30	TP04	13/04/2017	28-30	38	<3	<4	<4	<3	<3	<6	<3	<3	<4	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
0.50	TP05	13/04/2017	31-33	39	<3	<4	<4	<3	<3	<6	<3	<3	<4	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
0.80	TP05	13/04/2017	34-36	40	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2.00	TP05	13/04/2017	37-39	41	<3	<4	<4	<3	<3	<6	<3	<3	<4	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
1.00	TP06 TP07	13/04/2017 13/04/2017	40-42 43-45	42	<3	<4	<4	<3	<3	<6	<3	<3	<4	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3 <3
0.50 1.00	TP07	13/04/2017	43-45 46-48	43 44	<3 -	<4	<4	<3 -	<3 -	<6 -	<3 -	<3	<4	<3 -	<3 -	<3 -	<3	<3	<3	<3	<3 -	<3	<3
3.80	TP07	13/04/2017	49-51	45	<3	<4	<4	<3	<3	<6	<3	<3	<4	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
0.50	TP08	13/04/2017	52-54	46	<3	<4	<4	<3	<3	<6	<3	<3	<4	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
2.00	TP08	13/04/2017	55-57	47	<3	<4	<4	<3	<3	<6	<3	<3	<4	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
0.50	TP09	13/04/2017	58-60	48	<3	<4	<4	<3	<3	<6	<3	<3	<4	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
1.80	TP09	13/04/2017	61-63	49	<3	<4	<4	<3	<3	<6	<3	<3	<4	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
0.50 1.00	TP10 TP10	13/04/2017 13/04/2017	64-66 67-69	50 51	- <3	- <4	- <4	<3	- <3	- <6	- <3	<3	- <4	<3	- <3	- <3	- <3	- <3	- <3	- <3	- <3	- <3	- <3
4.70	TP10 TP10	13/04/2017	70-72	52	<3 <3	<4 <4	<4 <4	<3	<3 <3	<6	<3 <3	<3 <3	<4 <4	<3	<3 <3	<3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3
0	SGV co	ommercial (SOM	6%)		10	1		95000						4400000		.0	Ü	.0	.v	.0	.0	,0	2800000
	CL:AIRE GA	AC commercial (S	SOM 1%)							3300		2100				94000							
	CL:AIRE GA	C commercial (S	OM 2.5%)							5900		3700				190000							
	CL:AIRE GA	commercial (SOM	5UM 6%)			2900	670	27000	1200	12000		7600		56000000		400000		19000			56000	110000	5700000
	S4UL co	ommercial (SOM	2.5%)			6300	970	47000	2600					110000000				42000			130000	250000	13000000
	S4UL o	ommercial (SOM	16%)			14000	1700	90000	5700					180000000				95000			290000	560000	27000000
	and Quality Mana																						
F	Publication Number	er 54UL3474. All	rights reserve	a.																			

	Meti	nod Detection Lin	nit		<5	<3	<3	<3	<3	<3	<4	<2	<4	<3	<3	<3	<5	<6	<4	<4	<4	<4	<4
Depth	Sample Identity	Sample Date	Exova Jones Environmenta Sample ID	Sample No.	p/m-Xylene	o-Xylene	Styrene	Tribromomethane	Isopropylbenzene	1.1.2.2-Tetrachloroethane	1.2.3-Trichloropropane	Bromobenzene	Propylbenzene	2-Chlorotoluene	1.3.5-Trimethylbenzene	4-Chlorotoluene	tert-Butylbenzene	1.2.4-Trimethylbenzene	sec-Butylbenzene	4-Isopropyltoluene	1,3-Dichlorobenzene	1,4-Dichtorobenzene	n-Butylbenzene
	letty Fy	tension site bore	eholes		μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg
1.00	L01	25/05/2017	67-69	1	<5	<3	<3	<3	<3	<3	<4	<2	<4	<3	<3	<3	<5	<6	<4	<4	<4	<4	<4
3.00	L01	25/05/2017	70-72	2	<5	<3	<3	<3	<3	<3	<4	<2	<4	<3	<3	<3	<5	<6	<4	<4	<4	<4	<4
7.00 1.00	L01 L05	25/05/2017 10/04/2017	76-78 10-12	3	<5 <5	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<4 <4	<2 <2	<4 <4	<3 <3	<3 <3	<3 <3	<5 <5	<6 <6	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4
3.00	L05	10/04/2017	13-15	5	<5	<3	<3	<3	<3	<3	<4	<2	<4	<3	<3	<3	<5	<6	<4	<4	<4	<4	<4
	Durni	sh Lands boreh	oles																				
0.50	LD01	11/04/2017	1-3	6	<5	<3	<3	<3	<3	<3	<4	<2	<4	<3	<3	<3	<5	<6	<4	<4	<4	<4	<4
1.00 2.00	LD01 LD01	11/04/2017 11/04/2017	4-6 7-9	7	- <5	- <3	- <3	- <3	- <3	- <3	- <4	- <2	- <4	- <3	- <3	- <3	- <5	- <6	- <4	- <4	- <4	- <4	- <4
3.00	LD01	11/04/2017	10-12	9	<5	<3	- <3	- <3	- <3	<3	- <4	- <2	- <4	<3	- <3	- <3	- <0	- <0	- <4	- <4	- <4	- <4	- <4
8.00	LD01	12/04/2017	52-54	10	<5	<3	<3	<3	<3	<3	<4	<2	<4	<3	<3	<3	<5	<6	<4	<4	<4	<4	<4
0.50	LD02	13/04/2017	1-3	11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1.00	LD02	13/04/2017	4-6	12	<5	<3	<3	<3	<3	<3	<4	<2	<4	<3	<3	<3	<5	<6	<4	<4	<4	<4	<4
3.00	LD02	13/04/2017	10-12	13 14	-	-	-	-	-	-	- 4	-			-		-	-			4	4	
4.00 0.50	LD02 LD03	13/04/2017 16/05/2017	13-16 1-3	14 15	<5 <5	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<4 <4	<2 <2	<4 <4	<3 <3	<3 <3	<3 <3	<5 <5	<6 <6	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4
2.00	LD03	16/05/2017	7-9	16	<5	<3	<3	<3	<3	<3	<4	<2	<4	<3	<3	<3	<5	<6	<4	<4	<4	<4	<4
6.00	LD03	16/05/2017	19-21	17	<5	<3	<3	<3	<3	<3	<4	<2	<4	<3	<3	<3	<5	<6	<4	<4	<4	<4	<4
0.50	LD04	13/04/2017	38-40	18	-	-	-	-	-	-	-	÷	-	-	-	-	-	-	-	-	-	-	-
1.00	LD04	13/04/2017	41-43	19	<5	<3	<3	<3	<3	<3	<4	<2	<4	<3	<3	<3	<5	<6	<4	<4	<4	<4	<4
3.00 4.00	LD04 LD04	13/04/2017 13/04/2017	46-47 48	20	- <5	- <3	- <3	- <3	<3	<3	- <4	<2	- <4	<3	- <3	- <3	- <5	- <6	<4		<4	- <4	<4
0.50	LD04	10/04/2017	16-18	21 22	<5 <5	<3	<3	<3	<3	<3	<4	<2	<4	<3	<3	<3	<5 <5	<6	<4	<4 <4	<4	<4	<4
2.00	LD05	10/04/2017	22-24	23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
6.00	LD05	11/04/2017	34-36	24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.50	LD06	13/04/2017	49-51	25	<5	<3	<3	<3	<3	<3	<4	<2	<4	<3	<3	<3	<5	<6	<4	<4	<4	<4	<4
1.00 2.00	LD06 LD06	13/04/2017 13/04/2017	52-54 55-57	26	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3.00	LD06	13/04/2017	58-60	27	<5	<3	<3	<3	<3	<3	<4	<2	<4	<3	<3	<3	- <5	<6	<4	<4	<4	<4	<4
0.50	TP01	13/04/2017	1-3	29	<5	<3	<3	<3	<3	<3	<4	<2	<4	<3	<3	<3	<5	<6	<4	<4	<4	<4	<4
1.00	TP01	13/04/2017	4-6	30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3.90	TP01	13/04/2017	7-9	31	<5	<3	<3	<3	<3	<3	<4	<2	<4	<3	<3	<3	<5	<6	<4	<4	<4	<4	<4
1.00 4.50	TP02	13/04/2017	10-12	32 33	<5 <5	<3 <3	<3 <3	<3 <3	<3 <3	<3	<4	<2	<4	<3	<3 <3	<3	<5 <5	<6	<4 <4	<4	<4 <4	<4 <4	<4 <4
0.50	TP02 TP03	13/04/2017 13/04/2017	13-15 16-18	33	<5 <5	<3 <3	<3	<3 <3	<3 <3	<3 <3	<4 <4	<2 <2	<4 <4	<3 <3	<3 <3	<3 <3	<5 <5	<6 <6	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4
0.80	TP03	13/04/2017	19-21	35	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3.00	TP03	13/04/2017	22-24	36	<5	<3	<3	<3	<3	<3	<4	<2	<4	<3	<3	<3	<5	<6	<4	<4	<4	<4	<4
1.00	TP04	13/04/2017	25-27	37	<5	<3	<3	<3	<3	<3	<4	<2	<4	<3	<3	<3	<5	<6	<4	<4	<4	<4	<4
2.30 0.50	TP04 TP05	13/04/2017 13/04/2017	28-30 31-33	38 39	<5 <5	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<4 <4	<2 <2	<4 <4	<3 <3	<3 <3	<3 <3	<5 <5	<6	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4
0.50	TP05	13/04/2017	31-33 34-36	40	- <5	<3	<3	<3 -	- <3	<3	- <4	- <2	-<4	<3 -	- <3	<3 -	٠ -	<6 -	<4	- <4	- <4	- <4	<4
2.00	TP05	13/04/2017	37-39	41	<5	<3	<3	<3	<3	<3	<4	<2	<4	<3	<3	<3	<5	<6	<4	<4	<4	<4	<4
1.00	TP06	13/04/2017	40-42	42	<5	<3	<3	<3	<3	<3	<4	<2	<4	<3	<3	<3	<5	<6	<4	<4	<4	<4	<4
0.50	TP07	13/04/2017	43-45	43	<5	<3	<3	<3	<3	<3	<4	<2	<4	<3	<3	<3	<5	<6	<4	<4	<4	<4	<4
1.00	TP07	13/04/2017	46-48	44	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3.80 0.50	TP07 TP08	13/04/2017 13/04/2017	49-51 52-54	45 46	<5 <5	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<4 <4	<2 <2	<4 <4	<3 <3	<3 <3	<3 <3	<5 <5	<6 <6	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4
2.00	TP08	13/04/2017	55-57	47	<5 <5	<3	<3	<3	<3	<3	<4	<2	<4	<3	<3	<3	<5 <5	<6	<4	<4	<4	<4	<4
0.50	TP09	13/04/2017	58-60	48	<5	<3	<3	<3	<3	<3	<4	<2	<4	<3	<3	<3	<5	<6	<4	<4	<4	<4	<4
1.80	TP09	13/04/2017	61-63	49	<5	<3	<3	<3	<3	<3	<4	<2	<4	<3	<3	<3	<5	<6	<4	<4	<4	<4	<4
0.50	TP10	13/04/2017	64-66	50	-	<u> </u>	-	-	-	-	-	-	-		-				-	-	-	-	
1.00 4.70	TP10 TP10	13/04/2017 13/04/2017	67-69 70-72	51 52	<5 <5	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<4 <4	<2 <2	<4 <4	<3 <3	<3 <3	<3 <3	<5 <5	<6 <6	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4
4.70	SGV co	ommercial (SOM	10-12	JZ	<0	<0	ν.ο	ν.ο	ν.ο	43	×4	*2	×4	Κ.Ο.	Κ.Ο	<3	<0	<0	~ 4	×4	×4	\4	\4
	CL:AIRE G	AC commercial (S	SOM 1%)				3300000		1400000			97000	4100000					42000					
	CL:AIRE GA	C commercial (S	OM 2.5%)				6500000		3300000			220000	9700000					99000					
	CL:AIRE G	ommercial (SOM	5UM 6%)		5900000	6600000	11000000		7700000	270000		520000	21000000					220000			30000	4400000	
	S4UL co	ommercial (SOM	2.5%)		14000000	15000000				550000											73000	10000000	
	S4UL c	ommercial (SOM	1 6%)		30000000	33000000				1100000											170000	25000000	
	and Quality Mana Publication Numb																						
	ubilcation Numb	CI 340L3474. All	rigina reserve	u.																			

3.00 L01 25	Sample Date	Exova Jones Environmental Sample ID	Sample No.	1,2-Dichlorobenzene	1.2-Dibromo-	1,2,4-Tric	Hexac	Z	1.2.3-7
1.00 L01 25 3.00 L01 25	on site bore			enzene	1.2-Dibromo-3-chloropropane	1,2,4-Trichlorobenzene	Hexachlorobutadiene	Naphthalene	.2.3-Trichlorobenzene
1.00 L01 25 3.00 L01 25	on site bore	<u>a</u>		μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg	μg/ kg
1.00 L01 25 3.00 L01 25		eholes		pg/ kg	μg/ kg	μg/ kg	pg/ kg	μg/ kg	pg/ kg
3.00 L01 25	5/05/2017	67-69	1	<4	<4	<7	<4	<27	<7
7.00 L01 25	/05/2017	70-72	2	<4	<4	<7	<4	<27	<7
	5/05/2017	76-78	3	<4	<4	<7	<4	<27	<7
)/04/2017	10-12	4	<4	<4	<7	<4	<27	<7
)/04/2017	13-15	5	<4	<4	<7	<4	<27	<7
Durnish La				4	4	7		.07	7
	/04/2017 /04/2017	1-3 4-6	6 7	<4 -	<4 -	<7 -	<4 -	<27	<7
	/04/2017	7-9	8	<4	<4	<7	<4	<27	<7
	/04/2017	10-12	9	- <4	- <4	-	-	-	-
	2/04/2017	52-54	10	<4	<4	<7	<4	<27	<7
	3/04/2017	1-3	11	-	-	-	-	-	-
	3/04/2017	4-6	12	<4	<4	<7	<4	<27	<7
	3/04/2017	10-12	13	1		-	-		
4.00 LD02 13	3/04/2017	13-16	14	<4	<4	<7	<4	<27	<7
	6/05/2017	1-3	15	<4	<4	<7	<4	<27	<7
	6/05/2017	7-9	16	<4	<4	<7	<4	<27	<7
	6/05/2017	19-21	17	<4	<4	<7	<4	<27	<7
	3/04/2017	38-40	18	-	-	-	-	-	-
	3/04/2017	41-43	19	<4	<4	<7	<4	<27	<7
	3/04/2017	46-47 48	20 21	- <4	- <4	<7	<4	<27	- <7
	3/04/2017 0/04/2017	48 16-18	21	<4 <4	<4 <4		<4 <4	<27 <27	<7
	0/04/2017	22-24	23	<4	<4	</td <td><4</td> <td><21</td> <td><!--</td--></td>	<4	<21	</td
	/04/2017	34-36	24			-	-	-	-
	3/04/2017	49-51	25	<4	<4	<7	<4	<27	<7
	3/04/2017	52-54	26			-	-	-	-
	3/04/2017	55-57	27	-		-		-	
3.00 LD06 13	3/04/2017	58-60	28	<4	<4	<7	<4	<27	<7
0.50 TP01 13	3/04/2017	1-3	29	<4	<4	<7	<4	<27	<7
	3/04/2017	4-6	30	-	-	-	-	-	-
	3/04/2017	7-9	31	<4	<4	<7	<4	<27	<7
	3/04/2017	10-12	32	<4	<4	<7	<4	<27	<7
	3/04/2017	13-15	33	<4	<4	<7	<4	<27	<7
	3/04/2017	16-18	34	<4	<4	<7	<4	<27	<7
	3/04/2017	19-21	35	-		-		-	
	8/04/2017	22-24	36 37	<4	<4	<7	<4	<27	<7
	3/04/2017 3/04/2017	25-27 28-30	37	<4 <4	<4 <4	<7 <7	<4 <4	<27 <27	<7 <7
	3/04/2017	31-33	39	<4	<4	<7	<4	<27	<7
	3/04/2017	34-36	40	-	-	-	-	-	-
	3/04/2017	37-39	41	<4	<4	<7	<4	<27	<7
	3/04/2017	40-42	42	<4	<4	<7	<4	<27	<7
	3/04/2017	43-45	43	<4	<4	<7	<4	<27	<7
	3/04/2017	46-48	44	-	-	-	-	-	-
	3/04/2017	49-51	45	<4	<4	<7	<4	<27	<7
	3/04/2017	52-54	46	<4	<4	<7	<4	<27	<7
	3/04/2017	55-57	47	<4	<4	<7	<4	<27	<7
	3/04/2017	58-60	48	<4	<4	<7	<4	<27	<7
	3/04/2017	61-63	49	<4	<4	<7	<4	<27	<7
	3/04/2017 3/04/2017	64-66 67-69	50	- <4	- <4	- <7	- <4	- <27	- <7
	8/04/2017	70-72	51 52	<4 <4	<4 <4	<7	<4 <4	<27 <27	<7
SGV comme	rcial (SOM	6%)	JŁ	\4	<u> </u>	,	V 4	\Z1	×1
CL:AIRE GAC co	mmercial (S	SOM 1%)							
CL:AIRE GAC con	nmercial (SC	OM 2.5%)							
	mmercial (S	SOM 6%)							
S4UL comme	ercial (SOM	1%)		2000000		220000	31000	190000	102000
S4UL commer	rcial (SOM 2	2.5%)		4800000		530000	66000	460000	250000
Copyright Land Quality Manageme	ant Limited	enroduced with	nermission	11000000		1300000	120000	1100000	590000
Publication Number S4L									
T abilidation Traffiber 040									

Appendix C

Groundwater screening tables

Status: Final Date: April 2018

	METHOD DET	ECTION LIMIT			<0.5	<0.3	<0.05	<0.006	<0.03	<5	<0.03	<1	<0.01	<0.1	<0.1
Sample ID	Sample Date.	Lab Sample Number	Sample No.		Sulphate as SO4	Chloride	Nitrate as N	Nitrite as N	Ortho Phosphate as P	Total Cyanide	Ammoniacal Nitrogen as N	Total Alkalinity as CaCO3	Нд	Dibutyttin	TributyItin
				₹	mg/l	mg/l	mg/l	mg/l	mg/l	ug/l	mg/l	mg/l	pH Units	ug/l	ug/l
	ROUND 1 - 1	5th June 2017		OR											
LD01	10/08/2017	1-6	1	G AI	90	267.9	0.12	0.014	<0.03	1587	<0.03	682	7.3	<0.1	<0.1
LD02	10/08/2017	7-12	2	INORGANICS	137.7	525.2	0.55	0.06	<0.03	1090	0.1	466	7.36	<0.1	<0.1
LD03	10/08/2017	13-18	3	o,	1918.4	13829	<0.05	<0.006	<0.03	3326	<0.03	204	7.74	<0.1	<0.1
LD04	10/08/2017	19-24	4		1258.5	7814.3	<0.05	<0.006	<0.03	1760	7.89	1126	7.22	<0.1	<0.1
LD05	10/08/2017	25-30	5		91.4	267	0.12	0.014	<0.03	2637	0.22	646	7.32	<0.1	<0.1
LD06	10/08/2017	31-36	6		198.3	195.4	2.4	<0.006	<0.03	1627	<0.03	558	7.53	<0.1	<0.1
	1. WHO H	lealth 2011						3							
2. European Unio	MHO Health 2011 European Union Environmental Objectives (Groundwater) (Amendment Regulations 2016		ter) (Amendment)		187.5	24-187.5	37.5	0.375							
	 European Union Environmental Objectives (Surface Waters) (Amendment Regulations 2015 (AA-EQS Other surface water) 													0.0002	0.0002
4. Environme	4. Environmental Protection Agency Interim Guideline Values 2003				200	30	25	0.1	0.03	10			≥6.5 and ≤9.5		
5. European Communities (Drinking Water) Regulations 2014 Ireland			ns 2014 Ireland				50	0.5		50					
	6. Atkins WSV Commercial														

	METHOD DET	TECTION LIMIT		<0.1	<20	<2.5	<3	<0.5	<12	<0.5	<0.2	<7	<1.5	<0.006	<20
Sample ID	Sample Date.	Lab Sample Number	Sample No.	Triphenyttin	Aluminium	Arsenic	Barium	Beryllium	Boron	Cadmium	Calcium	Copper	Chromium	Chromium (hexavalent)	Iron
				ug/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	mg/l	μg/l	μg/l	mg/l	μg/l
		5th June 2017	·												
LD01	10/08/2017	1-6	1	<0.1	261	52.5	36	<0.5	268	<0.5	285.5	<7	9.3	<0.006	37220
LD02	10/08/2017	7-12	2	<0.1	250	7.5	15	<0.5	259	<0.5	290.3	<7	8.3	<0.006	1458
LD03	10/08/2017	13-18	3	<0.1	134	4.1	179	<0.5	2500	<0.5	369	<7	6.7	<0.006	1537
LD04	10/08/2017	19-24	4	<0.1	355	11.8	53	<0.5	2459	<0.5	321.2	<7	4	<0.006	7391
LD05	10/08/2017	25-30	5	<0.1	<20	13.3	18	<0.5	227	<0.5	179.3	<7	<1.5	<0.006	<20
LD06	10/08/2017	31-36	6	<0.1	<20	10.9	135	<0.5	537	<0.5	109.3	<7	<1.5	<0.006	<20
	1. WHO F	lealth 2011	•			10	700		2400	3		2000	50		
2. European Uni	European Union Environmental Objectives (Groundwater) (Amendment) Regulations 2016				150	7.5							37.5	0.0075	
	European Union Environmental Objectives (Surface Waters) (Amendment Regulations 2015 (AA-EQS Other surface water)									0.2					
4. Environmental Protection Agency Interim Guideline Values 2003					200	10	100		1000	5	200	30	30		200
5. European (ns 2014 Ireland						1000	5		2000	50				
	6. Atkins WS														

								ı	ı	1	ı			Company	, Port expans
	METHOD DET	ECTION LIMIT		<5	<0.1	<2	<1	<2	<0.1	<3	<0.1	<1.5	<3		<10
Sample ID	Sample Date.	Lab Sample Number	Sample No.	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Sodium	Vanadium	Zinc	TOTAL PETROLEUM HYDROCARBONS	Aliphatics >C5-C6
				μg/l	mg/l	μg/l	μg/l	μg/l	mg/l	μg/l	mg/l	μg/l	μg/l	'R O	μg/l
	ROUND 1 - 15	5th June 2017												LEC	
LD01	10/08/2017	1-6	1	<5	56.1	6122	<1	7	15.4	<3	486.6	7.9	18	M	<10
LD02	10/08/2017	7-12	2	<5	42.4	344	<1	5	13.6	<3	273.5	4.5	12	αγŧ	<10
LD03	10/08/2017	13-18	3	<5	1062	779	<1	7	291.7	<3	8473	<1.5	126	RO	<10
LD04	10/08/2017	19-24	4	<5	661.6	415	<1	34	186.4	<3	5237	<1.5	31	CAF	<10
LD05	10/08/2017	25-30	5	<5	34.1	667	<1	23	11	<3	143.2	<1.5	17	₹ВС	<10
LD06	10/08/2017	31-36	6	<5	24.1	77	<1	4	9.2	<3	335.8	<1.5	20	SNC	<10
	1. WHO H	ealth 2011	•	10			6	70		40					
2. European Uni	European Union Environmental Objectives (Groundwater) (Amendment) Regulations 2016		7.5			0.75						75			
	. European Union Environmental Objectives (Surface Waters) (Amendment) Regulations 2015 (AA-EQS Other surface water)		1.3				8.6								
	4. Environmental Protection Agency Interim Guideline Values 2003		10	50	50	1	20	5		150		100			
5. European (Communities (Drinking	, ,	ns 2014 Ireland	10			1	20		10					
	6. Atkins WS	V Commercial					428								198000

	METHOD DET	ECTION LIMIT		<10	<10	<5	<10	<10	<10	<10	<10	<10	<10	<5	<10
Sample ID	Sample Date.	Lab Sample Number	Sample No.	Aliphatics >C6-C8	Aliphatics >C8-C10	Aliphatics >C10-C12	Aliphatics >C12-C16	Aliphatics >C16-C21	Aliphatics >C21-C35	Total Aliphatics	Aromatics >C5-C7	Aromatics >C7-C8	Aromatics >EC8-EC10	Aromatics >EC10-EC12	Aromatics >EC12-EC16
				μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l
		5th June 2017													
LD01	10/08/2017	1-6	1	<10	<10	<5	<10	<10	<10	<10	<10	<10	<10	<5	<10
LD02	10/08/2017	7-12	2	<10	<10	<5	<10	<10	<10	<10	<10	<10	<10	<5	<10
LD03	10/08/2017	13-18	3	<10	<10	<5	<10	<10	<10	<10	<10	<10	<10	<5	<10
LD04	10/08/2017	19-24	4	<10	<10	<5	<10	<10	<10	<10	<10	<10	<10	<5	<10
LD05	10/08/2017	25-30	5	<10	<10	<5	<10	<10	<10	<10	<10	<10	<10	<5	<10
LD06	10/08/2017	31-36	6	<10	<10	<5	<10	<10	<10	<10	<10	<10	<10	<5	<10
	1. WHO H	ealth 2011	•												
2. European Uni	NHO Health 2011 European Union Environmental Objectives (Groundwater) (Amendment Regulations 2016														
European Union Environmental Objectives (Surface Waters) (Amendment) Regulations 2015 (AA-EQS Other surface water)															
4. Environmental Protection Agency Interim Guideline Values 2003															
5. European Communities (Drinking Water) Regulations 2014 Ireland															
	6. Atkins WSV Commercial			144000	2900	2230					8460	9090000	96500	380000	

	METHOD DET	TECTION LIMIT		<10	<10	<10	<10		<0.013	<0.013	<0.013	<0.015	<0.016	<0.01	<0.01
Sample ID	Sample Date.	Lab Sample Number	Sample No.	Aromatics >EC16-EC21	Aromatics >EC21-EC35	Total Aromatics	TPH (Ali & Aro)	POLYAROMATIC HYDROCARBONS (PAHS)	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene
				μg/l	μg/l	μg/l	μg/l	ATIC	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l
		5th June 2017						푸							
LD01	10/08/2017	1-6	1	<10	<10	<10	<10	DR	<0.013	<0.013	<0.013	<0.015	<0.016	<0.01	<0.01
LD02	10/08/2017	7-12	2	<10	<10	<10	<10	OC,	<0.013	<0.013	<0.013	<0.015	<0.016	<0.01	<0.01
LD03	10/08/2017	13-18	3	<10	<10	<10	<10	RB	<0.013	<0.013	<0.013	<0.015	<0.016	<0.01	<0.01
LD04	10/08/2017	19-24	4	<10	<10	<10	<10	Ö	<0.013	<0.013	<0.013	<0.015	<0.016	<0.01	<0.01
LD05	10/08/2017	25-30	5	<10	<10	<10	<10	S (F	<0.013	<0.013	<0.013	<0.015	<0.016	<0.01	<0.01
LD06	10/08/2017	31-36	6	<10	<10	<10	<10	ÅΗ	<0.013	<0.013	<0.013	<0.015	<0.016	<0.01	<0.01
	1. WHO H	lealth 2011						S)					0.7		
European Union Environmental Objectives (Groundwater) (Amendment) Regulations 2016					7.5						0.0075				
European Union Environmental Objectives (Surface Waters) (Amendment) Regulations 2015 (AA-EQS Other surface water)									0.1		0.00017				
4. Environmental Protection Agency Interim Guideline Values 2003						10				10000		0.01	0.5	0.05	
5. European	5. European Communities (Drinking Water) Regulations 2014 Ireland												0.01	0.1+	0.1+
	6. Atkins WS														

	METHOD DETECTION LIMIT											Onamion	1 Oyrics 1 Or	t Company	, Fuit expans
	METHOD DET	ECTION LIMIT		<0.011	<0.011	<0.1	<0.01	<0.012	<0.014	<0.011	<0.1	<0.011	<0.013	<0.295	
Sample ID	Sample Date.	Lab Sample Number	Sample No.	Benzo(g,h,i)perylene	Chrysene	Coronene	Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene	Total of 17 PAHs	POLYCHLORINATED
				μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	ILOF
	ROUND 1 - 15th June 2017		·												ÎZ
LD01	10/08/2017	1-6	1	<0.011	<0.011	<0.1	<0.01	<0.012	<0.014	<0.011	<0.1	<0.011	<0.013	<0.295	á
LD02	10/08/2017	7-12	2	<0.011	<0.011	<0.1	<0.01	<0.012	<0.014	<0.011	<0.1	<0.011	<0.013	<0.295	Ö
LD03	10/08/2017	13-18	3	<0.011	<0.011	<0.1	<0.01	<0.012	<0.014	<0.011	<0.1	<0.011	<0.013	<0.295	₽
LD04	10/08/2017	19-24	4	<0.011	<0.011	<0.1	<0.01	<0.012	<0.014	<0.011	<0.1	<0.011	<0.013	<0.295	Ē
LD05	10/08/2017	25-30	5	<0.011	<0.011	<0.1	<0.01	<0.012	<0.014	<0.011	<0.1	<0.011	<0.013	<0.295	BIPHENYLS
LD06	10/08/2017	31-36	6	<0.011	<0.011	<0.1	<0.01	<0.012	<0.014	<0.011	<0.1	<0.011	<0.013	<0.295	
	1. WHO H	ealth 2011													
2. European Unio	European Union Environmental Objectives (Groundwater) (Amendment Regulations 2016													0.075	
	European Union Environmental Objectives (Surface Waters) (Amendmen Regulations 2015 (AA-EQS Other surface water)							0.0063			2				
4. Environme	4. Environmental Protection Agency Interim Guideline Values 2003			0.05				1		0.05	1			0.1	
5. European C	5. European Communities (Drinking Water) Regulations 2014 Ireland			0.1+						0.1+					
	6. Atkins WSV Commercial										99800				

	METHOD DET	TECTION LIMIT		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.7		<0.01	<0.01	<0.01
Sample ID	Sample Date.	Lab Sample Number	Sample No.	PCB 28	PCB 52	PCB 101	PCB 118	PCB 138	PCB 153	PCB 180	Total 7 PCBs		Resorcinol	Catechol	Phenol
				ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l		mg/l	mg/l	mg/l
	ROUND 1 - 1	5th June 2017										Ĭ Ĭ			
LD01	10/08/2017	1-6	1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.7	PHENOLS	<0.01	<0.01	<0.01
LD02	10/08/2017	7-12	2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.7	L _S	<0.01	<0.01	<0.01
LD03	10/08/2017	13-18	3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.7		<0.01	<0.01	<0.01
LD04	10/08/2017	19-24	4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.7		<0.01	<0.01	<0.01
LD05	10/08/2017	25-30	5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.7		<0.01	<0.01	<0.01
LD06	10/08/2017	31-36	6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.7		<0.01	<0.01	<0.01
	1. WHO H	lealth 2011													
2. European Ur	1. WHO Health 2011 pean Union Environmental Objectives (Groundwater) (Amenda Regulations 2016														
	pean Union Environmental Objectives (Surface Waters) (Amend Regulations 2015 (AA-EQS Other surface water) Environmental Protection Agency Interim Guideline Values 2003														
4. Environn	nental Protection Age	e Values 2003								0.01				0.0005	
5. European	Communities (Drinkii		ns 2014 Ireland												
	6. Atkins WS	V Commercial													269

	METHOD DET	TECTION LIMIT		<0.02	<0.01	<0.03	<0.06	<0.01	<0.01	<0.01	<0.1		<0.1	<1	<1
Sample ID	Sample Date.	Lab Sample Number	Sample No.	m/p-cresol	o-cresol	Total cresols	Xylenols	1-naphthol	2,3,5-trimethyl phenol	2-isopropylphenol	Total Speciated Phenols HPLC	SEMI VOLATILE	Methyl Tert-Butyl Ether	Phenol	2-Chlorophenol
				mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l		μg/l	μg/l	μg/l
	ROUND 1 - 1	5th June 2017										Q Q			
LD01	10/08/2017	1-6	1	<0.02	<0.01	<0.03	<0.06	<0.01	<0.01	<0.01	<0.1	Ĝ A	1	<1	<1
LD02	10/08/2017	7-12	2	<0.02	<0.01	<0.03	<0.06	<0.01	<0.01	<0.01	<0.1	ORGANIC	<0.1	<1	<1
LD03	10/08/2017	13-18	3	<0.02	<0.01	< 0.03	<0.06	<0.01	<0.01	<0.01	<0.1		<0.1	<1	<1
LD04	10/08/2017	19-24	4	<0.02	<0.01	<0.03	<0.06	<0.01	<0.01	<0.01	<0.1	Š	<0.1	<1	<1
LD05	10/08/2017	25-30	5	<0.02	<0.01	<0.03	<0.06	<0.01	<0.01	<0.01	<0.1	COMPOUNDS	<0.1	<1	<1
LD06	10/08/2017	31-36	6	<0.02	<0.01	<0.03	<0.06	<0.01	<0.01	<0.01	<0.1	ND,	<0.1	<1	<1
	1. WHO H	lealth 2011													
2. European Uni	WHO Health 2011 uropean Union Environmental Objectives (Groundwater) (Amendmental Regulations 2016												10		
3. European Unio	pean Union Environmental Objectives (Surface Waters) (Amenda Regulations 2015 (AA-EQS Other surface water) Environmental Protection Agency Interim Guideline Values 2003														
												30	0.5	200	
5. European (Communities (Drinkir	, ,	ns 2014 Ireland							_					
	6. Atkins WS	V Commercial											33800000	269000000	

	METHOD DET	ECTION LIMIT		<1	<1	<1	<0.5	<1	<0.5	<1	<1	<0.5	<0.5	<1	<0.5
Sample ID	Sample Date.	Lab Sample Number	Sample No.	bis(2-Chloroethyl)ether	1,4-Dichlorobenzene	1,2-Dichlorobenzene	2-Methylphenol (o-Cresol)	Hexachloroethane	n-Nitroso-n-dipropylamine	4-Methylphenol	Nitrobenzene	Isophorone	2-Nitrophenol	2,4-Dimethylphenol	bis(2-Chloroethoxy)methane
	POLIND 1 - 15th June 2017			μg/l	μg/l	μg/l	μg/l	μg/l		μg/l	μg/l	μg/l	μg/l	μg/l	μg/l
	ROUND 1 - 15th June 2017														
LD01	10/08/2017	1-6	1	<1	<1	<1	<0.5	<1	<0.5	<1	<1	<0.5	<0.5	<1	<0.5
LD02	10/08/2017	7-12	2	<1	<1	<1	<0.5	<1	<0.5	<1	<1	<0.5	<0.5	<1	<0.5
LD03	10/08/2017	13-18	3	<1	<1	<1	<0.5	<1	<0.5	<1	<1	<0.5	<0.5	<1	<0.5
LD04	10/08/2017	19-24	4	<1	<1	<1	<0.5	<1	<0.5	<1	<1	<0.5	<0.5	<1	<0.5
LD05	10/08/2017	25-30	5	<1	<1	<1	<0.5	<1	<0.5	<1	<1	<0.5	<0.5	<1	<0.5
LD06	10/08/2017	31-36	6	<1	<1	<1	<0.5	<1	<0.5	<1	<1	<0.5	<0.5	<1	<0.5
	1. WHO H	ealth 2011			300	1000									
2. European Uni	WHO Health 2011 European Union Environmental Objectives (Groundwater) (Amendme Regulations 2016														
	on Environmental Objegulations 2015 (AA-E														
	ental Protection Ager					10					10				
5. European (Communities (Drinkin		ns 2014 Ireland												
	6. Atkins WS\							50000						30900000	

	METHOD DET	ECTION LIMIT		<0.5	<1	<1	<1	<0.5	<1	<1	<1	<0.5	<1	<1	<1 <1
Sample ID	Sample Date.	Lab Sample Number	Sample No.	2,4-Dichlorophenol	1,2,4-Trichlorobenzene	4-Chloroaniline	Hexachlorobutadiene	4-Chioro-3-methylphenol	2-Methylnaphthalene	Hexachlorocyclopentadiene	2,4,6-Trichlorophenol	2,4,5-Trichlorophenol	2-Chloronaphthalene	2-Nitroaniline	Dimethyl phthalate
	POLIND 1 - 15th June 2017			μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l
	ROUND 1 - 15th June 2017														
LD01	10/08/2017	1-6	1	<0.5	<1	<1	<1	<0.5	<1	<1	<1	<0.5	<1	<1	<1
LD02	10/08/2017	7-12	2	<0.5	<1	<1	<1	<0.5	<1	<1	<1	<0.5	<1	<1	<1
LD03	10/08/2017	13-18	3	<0.5	<1	<1	<1	<0.5	<1	<1	<1	<0.5	<1	<1	<1
LD04	10/08/2017	19-24	4	<0.5	<1	<1	<1	<0.5	<1	<1	<1	<0.5	<1	<1	<1
LD05	10/08/2017	25-30	5	<0.5	<1	<1	<1	<0.5	<1	<1	<1	<0.5	<1	<1	<1
LD06	10/08/2017	31-36	6	<0.5	<1	<1	<1	<0.5	<1	<1	<1	<0.5	<1	<1	<1
	1. WHO H	ealth 2011					0.6				200				
2. European Uni	WHO Health 2011 iuropean Union Environmental Objectives (Groundwater) (Amendme Regulations 2016														
	opean Union Environmental Objectives (Surface Waters) (Amendr Regulations 2015 (AA-EQS Other surface water) I. Environmental Protection Agency Interim Guideline Values 2003				0.4										
		•									200				
5. European	Communities (Drinking		ns 2014 Ireland												
	6. Atkins WS	V Commercial											62700		

	METHOD DET	ECTION LIMIT		<1	<1	<0.5	<1	<0.5	<1	<0.5	<0.5	<1	<1	<1	<0.5
Sample ID	Sample Date.	Lab Sample Number	Sample No.	2,6-Dinitrotoluene	3-Nitroaniline	Dibenzofuran	4-Chlorophenylphenylether	2,4-Dinitrotoluene	Diethyl phthalate	4-Nitroaniline	Azobenzene	4-Bromophenylphenylether	Hexachlorobenzene	Pentachlorophenol	Carbazole
				μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l
	ROUND 1 - 15th June 2017														
LD01	10/08/2017	1-6	1	<1	<1	<0.5	<1	<0.5	<1	<0.5	<0.5	<1	<1	<1	<0.5
LD02	10/08/2017	7-12	2	<1	<1	<0.5	<1	<0.5	<1	<0.5	<0.5	<1	<1	<1	<0.5
LD03	10/08/2017	13-18	3	<1	<1	<0.5	<1	<0.5	<1	<0.5	<0.5	<1	<1	<1	<0.5
LD04	10/08/2017	19-24	4	<1	<1	<0.5	<1	<0.5	<1	<0.5	<0.5	<1	<1	<1	<0.5
LD05	10/08/2017	25-30	5	<1	<1	<0.5	<1	<0.5	<1	<0.5	<0.5	<1	<1	<1	<0.5
LD06	10/08/2017	31-36	6	<1	<1	<0.5	<1	<0.5	<1	<0.5	<0.5	<1	<1	<1	<0.5
	1. WHO H	ealth 2011												9	
2. European Uni	1. WHO Health 2011 European Union Environmental Objectives (Groundwater) (Amendmer Regulations 2016														
	ropean Union Environmental Objectives (Surface Waters) (Amendm Regulations 2015 (AA-EQS Other surface water)													0.4	
	Environmental Protection Agency Interim Guideline Values 2003												0.03	2	
5. European (Communities (Drinkir	, ,	ns 2014 Ireland												
	6. Atkins WS	V Commercial													

	METHOD DET	ECTION LIMIT		<1.5	<1	<5	<1	<10		<2	<3	<0.1	<1	<3	<3
Sample ID	Sample Date.	Lab Sample Number	Sample No.	n-Dibutyl phthalate	Butylbenzyl phthalate	bis(2-Ethylhexyl) phthalate	n-Dioctyl phthalate	4-Nitrophenol	VOLATILE	Dichlorodifluoromethane	Chloromethane	Vinyl chloride	Bromomethane	Chloroethane	Trichlorofluoromethane
				μg/l	μg/l	μg/l	μg/l	μg/l		μg/l	μg/l	μg/l	μg/l	μg/l	μg/l
	ROUND 1 - 15th June 2017								Ĝ,						
LD01	10/08/2017	1-6	1	<1.5	<1	<5	<1	<10	ORGANIC	<2	<3	<0.1	<1	<3	<3
LD02	10/08/2017	7-12	2	<1.5	<1	<5	<1	<10		<2	<3	<0.1	<1	<3	<3
LD03	10/08/2017	13-18	3	<1.5	<1	<5	<1	<10	OMF	<2	<3	<0.1	<1	<3	<3
LD04	10/08/2017	19-24	4	<1.5	<1	<5	<1	<10	ဝို	<2	<3	<0.1	<1	<3	<3
LD05	10/08/2017	25-30	5	<1.5	<1	<5	<1	<10	COMPOUNDS	<2	<3	<0.1	<1	<3	<3
LD06	10/08/2017	31-36	6	<1.5	<1	<5	<1	<10	S	<2	<3	<0.1	<1	<3	<3
	1. WHO H	ealth 2011										0.3			
2. European Uni	1. WHO Health 2011 furopean Union Environmental Objectives (Groundwater) (Amendmental Objectives (Groundwater) (Amendmental Objectives (Objectives (Groundwater))					6						0.375			
	opean Union Environmental Objectives (Surface Waters) (Amendr Regulations 2015 (AA-EQS Other surface water) I. Environmental Protection Agency Interim Guideline Values 2003					1.3									
		•		2		8									
5. European	Communities (Drinkir	, ,	ns 2014 Ireland									0.5			
	6. Atkins WS	V Commercial									5500	249		4180000	

	METHOD DET	ECTION LIMIT		<3	<5	<3	<3	<3	<1	<2	<2	<2	<2	<3	<0.5
	METHOD DET	ECTION LIMIT		<3	<5	<3	<3	<3	<1	<2	<2	<2	<2	<3	<0.5
Sample ID	Sample Date.	Lab Sample Number	Sample No.	1,1-Dichloroethene	Dichloromethane (DCM)	trans-1,2-Dichloroethene	1,1-Dichloroethane	cis-1,2-Dichloroethene	2,2-Dichloropropane	Bromochloromethane	Chloroform	1,1,1-Trichloroethane	Carbontetrachloride	1,1-Dichloropropene	Benzene
				μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l
	ROUND 1 - 15th June 2017														
LD01	10/08/2017	1-6	1	<3	<5	<3	<3	<3	<1	<2	<2	<2	<2	<3	<0.5
LD02	10/08/2017	7-12	2	<3	<5	<3	<3	<3	<1	<2	<2	<2	<2	<3	<0.5
LD03	10/08/2017	13-18	3	<3	<5	<3	<3	<3	<1	<2	<2	<2	<2	<3	<0.5
LD04	10/08/2017	19-24	4	<3	<5	<3	<3	<3	<1	<2	<2	<2	<2	<3	<0.5
LD05	10/08/2017	25-30	5	<3	<5	<3	<3	<3	<1	<2	<2	<2	<2	<3	<0.5
LD06	10/08/2017	31-36	6	<3	<5	<3	<3	<3	<1	<2	<2	<2	<2	<3	<0.5
	1. WHO H	ealth 2011			20			50			300		4		10
2. European Uni	WHO Health 2011 European Union Environmental Objectives (Groundwater) (Amendmer Regulations 2016				15			0.375							0.75
	ropean Union Environmental Objectives (Surface Waters) (Amendmental Regulations 2015 (AA-EQS Other surface water) 4. Environmental Protection Agency Interim Guideline Values 2003				20								12		8
										12	500			1	
5. European	Communities (Drinkin		ns 2014 Ireland								100~				1
	6. Atkins WS\			65600	1500000	65700	1110000	54600			369000	1270000	3310		8460

	ROUND 1 - 15th June 2017 10/08/2017 1-6 10/08/2017 7-12 10/08/2017 13-18 10/08/2017 19-24 10/08/2017 19-24 10/08/2017 31-36 1. WHO Health 2011			<2	<3	<2	<3	<2	<2	<5	<2	<2	<3	<2	<2 <2
Sample ID		Sample	Sample No.	1,2-Dichloroethane	Trichloroethene	1,2-Dichloropropane	Dibromomethane	Bromodichloromethane	cis-1,3-Dichloropropene	Toluene	trans-1,3-Dichloropropene	1,1,2-Trichloroethane	Tetrachloroethene	1,3-Dichloropropane	Dibromochloromethane
				μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l
LD01	10/08/2017	1-6	1	<2	<3	<2	<3	<2	<2	<5	<2	<2	<3	<2	<2
LD02	10/08/2017	7-12	2	<2	<3	<2	<3	<2	<2	<5	<2	<2	<3	<2	<2
LD03	10/08/2017	13-18	3	<2	<3	<2	<3	<2	<2	<5	<2	<2	<3	<2	<2
LD04	10/08/2017	19-24	4	<2	<3	<2	<3	<2	<2	<5	<2	<2	<3	<2	<2
LD05	10/08/2017	25-30	5	<2	<3	<2	<3	<2	<2	<5	<2	<2	<3	<2	<2
LD06	10/08/2017	31-36	6	<2	<3	<2	<3	<2	<2	<5	<2	<2	<3	<2	<2
	1. WHO H	lealth 2011		30	20	40		60		700	20		40		100
2. European Un	WHO Health 2011 European Union Environmental Objectives (Groundwater) (Amendme Regulations 2016				7.5=					525			7.5=		
	Regulations 2016 opean Union Environmental Objectives (Surface Waters) (Amendi Regulations 2015 (AA-EQS Other surface water) I. Environmental Protection Agency Interim Guideline Values 2003														
4. Environm	ental Protection Age	ncy Interim Guideline	e Values 2003	3	70					10			40		
5. European	Communities (Drinking		ns 2014 Ireland	3	10-			100~					10-		100~
	6. Atkins WS	V Commercial		3540		11100		6820		9090000		208000	174000		38700

												0	. 0,00 . 0.	t company	T OIL CAPUL
	METHOD DET	TECTION LIMIT		<2	<2	<2	<1	<2	<1	<2	<2	<3	<4	<2	<3
Sample ID	Sample Date.	Lab Sample Number	Sample No.	1,2-Dibromoethane	Chlorobenzene	1,1,1,2-Tetrachloroethane	Ethylbenzene	m,p-Xylene	o-Xylene	Styrene	Bromoform	Isopropylbenzene	1,1,2,2-Tetrachloroethane	Bromobenzene	1,2,3-Trichloropropane
				μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l
		5th June 2017													
LD01	10/08/2017	1-6	1	<2	<2	<2	<1	<2	<1	<2	<2	<3	<4	<2	<3
LD02	10/08/2017	7-12	2	<2	<2	<2	<1	<2	<1	<2	<2	<3	<4	<2	<3
LD03	10/08/2017	13-18	3	<2	<2	<2	<1	<2	<1	<2	<2	<3	<4	<2	<3
LD04	10/08/2017	19-24	4	<2	<2	<2	<1	<2	<1	<2	<2	<3	<4	<2	<3
LD05	10/08/2017	25-30	5	<2	<2	<2	<1	<2	<1	<2	<2	<3	<4	<2	<3
LD06	10/08/2017	31-36	6	<2	<2	<2	<1	<2	<1	<2	<2	<3	<4	<2	<3
	1. WHO H	lealth 2011					300	Tota	al 500	20	100				
2. European Ur	1. WHO Health 2011 1. WHO Health 2011 uropean Union Environmental Objectives (Groundwater) (Amendmental Regulations 2016														
	Regulations 2016 opean Union Environmental Objectives (Surface Waters) (Amendi Regulations 2015 (AA-EQS Other surface water) 4. Environmental Protection Agency Interim Guideline Values 2003														
				1		10	1	10							
5. European	Communities (Drinki		ns 2014 Ireland								100~				
		V Commercial			1300000	96700	1250000	413000	503000	3530000	1770000	389000	650000	87700	
	Evenedance of 2 or	. 🤈													

												Chambin	i dynidd i di	Company	, i oit expans
	METHOD DET	ECTION LIMIT		<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
Sample ID	Sample Date.	Lab Sample Number	Sample No.	n-Propylbenzene	2-Chlorotoluene	1,3,5-Trimethylbenzene	4-Chlorotoluene	tert-Butylbenzene	1,2,4-Trimethylbenzene	sec-Butylbenzene	1,3-Dichlorobenzene	4-iso-Propyltoluene	1,4-Dichlorobenzene	n-Butylbenzene	1,2-Dichlorobenzene
	POLIND 4 15th June 2017			μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l
	ROUND 1 - 15th June 2017														
LD01	10/08/2017	1-6	1	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
LD02	10/08/2017	7-12	2	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
LD03	10/08/2017	13-18	3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
LD04	10/08/2017	19-24	4	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
LD05	10/08/2017	25-30	5	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
LD06	10/08/2017	31-36	6	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
	1. WHO H	lealth 2011											300		1000
2. European Uni	WHO Health 2011 uropean Union Environmental Objectives (Groundwater) (Amendme Regulations 2016														
	ropean Union Environmental Objectives (Surface Waters) (Amendm Regulations 2015 (AA-EQS Other surface water) 4. Environmental Protection Agency Interim Guideline Values 2003														
															10
5. European (Communities (Drinkir		ns 2014 Ireland												
	6. Atkins WS	V Commercial		1100000					9830						

	METHOD DET	ECTION LIMIT		<2	<3	<3	<3
Sample ID	Sample Date.	Lab Sample Number	Sample No.	1,2-Dibromo-3-chloropropane	1,2,4-Trichlorobenzene	Hexachlorobutadiene	1,2,3-Trichlorobenzene
				μg/l	μg/l	μg/l	μg/l
		5th June 2017					
LD01	10/08/2017	1-6	1	<2	<3	<3	<3
LD02	10/08/2017	7-12	2	<2	<3	<3	<3
LD03	10/08/2017	13-18	3	<2	<3	<3	<3
LD04	10/08/2017	19-24	4	<2	<3	<3	<3
LD05	10/08/2017	25-30	5	<2	<3	<3	<3
LD06	10/08/2017	31-36	6	<2	<3	<3	<3
	1. WHO H	ealth 2011		1		0.6	
2. European Uni	ion Environmental Ol Regulati	ojectives (Groundwa ons 2016	ter) (Amendment)				
	n Environmental Obj gulations 2015 (AA-E				0.4		0.4
	ental Protection Age	•			0.4	0.1	
5. European	Communities (Drinkir	, ,	s 2014 Ireland				
	6. Atkins WS	V Commercial					

*, =, +, - sum of values

IBR0973/Reports Status: Final Date: April 2018

